Didaktik des Sachrechnens
|
|
|
- Hartmut Meyer
- vor 9 Jahren
- Abrufe
Transkript
1 Didaktik des Sachrechnens 6. Geometrie in der Anwendung Eine Auswahl Pont de la Caille, Frankreich (eigenes Foto) 1
2 6. Geometrie in der Anwendung Eine Auswahl 6.1 Satzgruppe des Pythagoras 6.2 Ähnlichkeit / Strahlensätze 6.3 Kreislehre 6.4 Weitere Beispiele geometrischer Modellierungen 2
3 6.1 Satzgruppe des Pythagoras Zur Satzgruppe des Pythagoras gehören folgende Sätze: Satz des Pythagoras Kathetensatz Höhensatz 3
4 6.1 Satzgruppe des Pythagoras Satz des Pythagoras: In einem rechtwinkligen Dreieck ist die Summe der Flächeninhalte der beiden Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrats. Wichtige Anwendungen: Längen- und Abstandsberechnungen 4
5 Anmerkung: 6.1 Satzgruppe des Pythagoras Der Kosinussatz ist die Verallgemeinerung des Satzes von Pythagoras für beliebige Dreiecke: c a b ab 2 cos wobei der Winkel zwischen a und b ist. Da der Kosinus von 90 gleich null ist, ergibt sich für ein rechtwinkliges Dreieck der Satz des Pythagoras. 5
6 6.1 Satzgruppe des Pythagoras Satz des Pythagoras: Beispielaufgaben und ihre didaktische Funktion Einführung in den Themenbereich aus: Mathematik heute, Klasse 9, S
7 6.1 Satzgruppe des Pythagoras außermathematische Anwendung aus: Schnittpunkt 9, S. 133 aus: MatheNetz 9, S. 67 7
8 6.1 Satzgruppe des Pythagoras innermathematische Anwendung aus: Mathematik heute, Klasse 9, S
9 6.1 Satzgruppe des Pythagoras Umkehrung des Satzes des Pythagoras Ist für ein Dreieck die Summe der Flächen der Quadrate über den beiden kürzeren Seiten gleich der Fläche des Quadrates über der längsten Seite, so ist das Dreieck rechtwinklig. Wichtige Anwendung: rechte Winkel festlegen/konstruieren 9
10 6.1 Satzgruppe des Pythagoras Umkehrung des Satzes, Beispiel: aus: Schnittpunkt 9, S
11 6.1 Satzgruppe des Pythagoras Anmerkung: rechte Winkel lassen sich in manchen Anwendungsfällen auf andere Weise leichter festlegen. z. B.: Aufbau eines Schranks oder Gartenhauses, bei dem eine rechteckige Fläche leicht verscheren kann. Hier nutzt man die Eigenschaft eines Rechtecks, längengleiche Diagonalen zu haben. (Dies ist bei einem Parallelogramm, das kein Rechteck ist, nicht der Fall.) 11
12 6.2 Strahlensätze, Ähnlichkeit Voraussetzung: g h 1. Strahlensatz: Strecken auf der einen Halbgeraden verhalten sich wie entsprechende Strecken auf der anderen Halbgeraden. (Hölzl 2009) AD AE AC AB ED AE BC AB AD ED AC BC D 2. Strahlensatz: Parallele Querstrecken E verhalten sich wie zugehörige Abschnitte auf den Halbgeraden. A B g C h AD AE CD BE AC AB Wichtige Anwendungen: Längenberechnungen, Feststellen der Parallelität zweier Geraden 12
13 6.2 Strahlensätze, Ähnlichkeit Beispiel, didaktische Funktion: außermathematische Anwendung: aus: Mathematik heute, Klasse 9, S
14 6.3 Kreislehre Wichtige Anwendungen: Berechnung der Kreisfläche und des Kreisumfangs (von denen teils andere Größen, die in Anwendungen betrachtet werden, abhängen) Beispiel, didaktische Funktion: Einführung in den Themenbereich aus: Schnittpunkt 9, S
15 6.3 Kreislehre außermathematische Anwendung, Verlebendigung aus: Schnittpunkt 9, S. 148 (links), S. 156 (rechts) 15
16 6.3 Kreislehre außermathematische Anwendung: aus: Schnittpunkt 9, S
17 6.3 Kreislehre Aufgabe: Leistung von Windkraftanlagen (Brinkmann 2005) Info: Die Leistung einer Windkraftanlage hängt von der Größe der Rotorfläche dieser Windkraftanlage ab (Abbildung 1). Leistung ist die in einer Zeiteinheit umgesetzte Energie und wird in Watt [W] angegeben. Abbildung 1: Abhängigkeit der Leistung einer Windkraftanlage von dem Durchmesser der Rotorfläche (1 kw = 1000 W) 17
18 6.3 Kreislehre Aufgabe: Leistung von Windkraftanlagen ff. a) Kommentiere die Abbildung 1. Was wird hier ersichtlich? b) Zeige die Abhängigkeit der Leistung einer Windkraftanlage von dem Durchmesser der Rotorfläche von der Rotorfläche mittels Graphen in einem Koordinatensystem. c) Gib für die unter b) dargestellten Abhängigkeiten jeweils eine Funktionsgleichung an. d) Welche Rotorfläche ist für eine Windkraftanlage mit einer Leistung von 3 MW nötig? Begründe. (Hinweis: 1 MW = 1000 kw.) Welche Länge haben dann die Rotorblätter? 18
19 6.3 Kreislehre Aufgabe: Leistung von Windkraftanlagen ff. Info: Die Energie, die bei einer Leistung von einem Kilowatt (kw) in einer Stunde (h) umgesetzt wird, beträgt eine Kilowattstunde (kwh). In Deutschland ist durchschnittlich 2000 Stunden im Jahr ausreichend Wind vorhanden, damit Windkraftanlagen Energie (entsprechend ihrer Leistung) produzieren können. Ein durchschnittlicher Haushalt in Deutschland hat einen Jahresverbrauch von näherungsweise 4000 kwh elektrische Energie pro Jahr. e) Berechne die durchschnittliche Energiemenge in kwh, die von einer Windkraftanlage mit einer Leistung von 1,5 MW im Laufe eines Jahres in Deutschland produziert wird. Wie viele durchschnittliche Privathaushalte könnten in Deutschland theoretisch von einer 1,5 MW Windkraftanlage mit elektrischer Energie ausreichend versorgt werden? Warum handelt es sich bei der errechneten Anzahl nur um einen theoretischen Wert? 19
20 6.3 Kreislehre Aufgabe: Leistung von Windkraftanlagen ff. f) Angenommen, eine 600 kw Windkraftanlage erbringt volle Leistung bei einer Windgeschwindigkeit von 15 m/s gemessen an der Rotorachse. Wie schnell bewegen sich dann die Spitzen der Rotorblätter, wenn die Rotorblätter 15 Umdrehungen pro Minute durchführen? Gib diese Geschwindigkeit sowohl in m/s als auch in km/h an und vergleiche mit der Windgeschwindigkeit. 20
21 6.3 Kreislehre didaktische Funktionen: Außermathematische Anwendung (Erwerb von Wissen im Bereich des Sachkontextes), Innermathematisch: Quadratische Funktionen mit einem Funktionsterm der Form ax 2 + b lassen sich durch Substitution von x 2 linearisieren (wichtig für Modellierungsprozesse). 21
22 6.4 Weitere Beispiele geometrischer Modellierungen Besondere Linien im Dreieck (z. B. Mittelsenkrechte, Winkelhalbierende) 22
23 6.4 Weitere Beispiele geometrischer Modellierungen Besondere Linien im Dreieck (z. B. Mittelsenkrechte, Winkelhalbierende) Mathematik plus 7, S. 62, Aufgabe 7 23
24 Literatur Brinkmann, Astrid & Brinkmann, Klaus Mathematikaufgaben zum Themenbereich Rationelle Energienutzung und Erneuerbare Energien. Hölzl, Reinhard Ähnlichkeit. In: Weigand, Hans-Georg (Hrsg.): Didaktik der Geometrie für die Sekundarstufe I. Spektrum Akademischer Verlag, Heidelberg, S Schulbücher: Schnittpunkt 9, 1. Auflage, Klett-Verlag, Stuttgart MatheNetz 9, Auflage A1, Bildungsverlage Westermann, Schroedel, Diesterweg, Schöningh Winklers GmbH, Braunschweig Mathematik heute, Klasse 9, Auflage A2, Bildungsverlage Westermann, Schroedel, Diesterweg, Schöningh Winklers GmbH, Braunschweig Mathematik plus, Gymnasium Klasse 7, Nordrhein-Westfalen, Volk und Wissen, Berlin
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit
6. Sachaufgaben zu klassischen Themen des Mathematikunterrichts der Sekundarstufe I
6. Sachaufgaben zu klassischen Themen des Mathematikunterrichts der Sekundarstufe I 6.1 Themenbereich Proportionalität / Funktionen 6.2 Themenbereich Lineare Gleichungen / Gleichungssysteme 6.3 Themenbereich
Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.
Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken
Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.
Jgst. 11/I 2.Klausur
Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,
Kompetenzbereich. Kompetenz
Faltkunst Du vertiefst dein Verständnis für Achsenspiegelungen und achsensymmetrische Figuren, indem du vom einfachen Scherenschnitt bis zur anspruchsvollen Origamifigur vieles mit Papier umsetzt. Die
Der Satz von Pythagoras
Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung
Rechnen mit Quadratwurzeln
9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür
Geschichte von Pythagoras
Satz von Pythagoras Inhalt Geschichte von Pythagoras Entdeckung des Satzes von Pythagoras Plimpton 322 Lehrsatz Beweise Kathetensatz und Höhensatz Pythagoreische Tripel Kosinussatz Anwendungen des Satzes
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade
993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt
Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke
edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke
Grundwissen Abitur Geometrie 15. Juli 2012
Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke
Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,
Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich.
1 9. Ähnlichkeit rechtwinkliger Dreiecke Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich. Die Höhe h zerlegt das Dreieck in zwei ähnliche Teildreiecke
VERTIEFUNGSKURS MATHEMATIK
VERTIEFUNGSKURS MATHEMATIK KLAUSUR 1, 8.12.2015 (1) Verwandle die folgenden Zahlen in Keilschrift bzw. in unsere Schreibweise: a) 14 b) 30 c) 100 d) 1 2 e) 1 1 3 (2) a) Begründe, warum für kleine x die
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016 Anzahl der schriftlichen Arbeiten: 4, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe Anlage,
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)
π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).
Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 5: Skalarprodukt 5.1 Inhalte Didaktik der Linearen
1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9
Zahlen. Die Quadratwurzel Die Quadratwurzel a ist die nicht negative Lösung der Gleichung x a. a 0 0 0 a heißt Radikand Ein Teil der Quadratwurzeln sind rationale Zahlen (z.b. 9, 0,0 oder ), 9 andere dagegen
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Der Satz des Pythagoras
Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen
GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK 9 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P
Schulcurriculum Mathematik
Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 9 Lehrwerk: Fundamente der Mathematik 9, Cornelsen-Verlag, ISBN 978-3-06-040149-9 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans
Geometrie Satz des Pythagoras
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: November
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen
Quadratwurzel Reelle Zahlen Quadratwurzeln Reelle Zahlen Zusammenhang zwischen Wurzelziehen und Quadrieren Rechenregeln Umformungen (Bd. Kl. 9) 7 46 8 18 19 20 21 24 25 29 30 34 + 2 mit Excel Beschreiben
Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000
Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Aufgaben Ähnlichkeit:
Aufgaben Ähnlichkeit: 1. Berechne die gesuchten Zahlwerte, beziehungsweise z. a) 8 21 14 α 18 β α β b) 40 α 16 12 α 22 β β c) d) e) Geometrie-Dossier 3-2 Ähnlichkeit.doc A.Räz Seite 23 2. Berechne die
Formelsammlung Mathematik 9
I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen
2015/16 Jahrgangsstufe 9 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am
2015/16 Jahrgangsstufe 9 A Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 8.10.2015 Name: Note: Klasse: Punkte: 1 Aufgabe 1 Die Abbildung rechts zeigt zwei Parallelenpaare. a, b, c,
Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?
Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,
Inhaltsverzeichnis. I Planimetrie.
Inhaltsverzeichnis I Planimetrie. Winkel 1.1 Einführung 1.1.1 Definition eines Winkels 1 1.1.2 Messung von Winkeln in Grad (Altgrad) 1 1.1.3 Orientierte Winkel 2 1.1.4 Winkelkategorien 2 1.2 Winkel an
a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.
und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I
Gymnasium St. Wolfhelm Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I Mit ihrer Hilfe kannst du selbstständig kontrollieren, ob du die abgefragten Kompetenzen
Sinus-und Kosinussatz
Sinus-und Kosinussatz Referentin: Theresia Herrmann a sinα = b sin β = c sinγ = 2r r 1 = r 2 = r a 2 = b 2 +c 2 2 b c cosα b 2 = a 2 +c 2 2 a c cosβ c 2 = a 2 +b 2 2 a b cosγ Gliederung: 1.Sinussatz 2.Beweis
Grundlagen IV der Kathetensatz
Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des
3. Stegreifaufgabe aus der Mathematik Lösungshinweise
(v0.1 16.1.09) Schuljahr 008/009. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Der Satz des Pythagoras lässt sich zum Beispiel so formulieren: In einem rechtwinkligen Dreieck
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Das komplette Material finden Sie hier: School-Scout.de Hinweise zur Arbeit mit den Kopiervorlagen
Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011
Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
Berufsmaturitätsprüfung 2006 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,
Mathematisch modellieren eine Situation in ein mathematisches Modell transferieren und bearbeiten (z.b. Bestimmung einer Höhe).
MAT 09-01 Ähnlichkeit 14 DS Leitidee: Raum und Form Thema im Buch: Konstruieren und Projizieren ähnliche Figuren erkennen. den Ähnlichkeitsfaktor bestimmen. anhand des Ähnlichkeitsfaktors erkennen, ob
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung 1. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(11/-1) sind gegenüberliegende Ecken eines
@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite
Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit
Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.
LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(/-) sind gegenüberliegende Ecken eines
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
2.5. Aufgaben zu Dreieckskonstruktionen
2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere
Kapitel 3 Mathematik. Kapitel 3.6 Geometrie Satz des Pythagoras
TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87
Trigonometrische Berechnungen
Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.
Didaktik der Linearen Algebra Grundlagen aus der SekI
Didaktik der Linearen Algebra Grundlagen aus der SekI SS 2010 Oliver Passon [email protected] Material zur Veranstaltung unter: www.psiquadrat.de Prozess- und Inhaltskompetenzen Kommunizieren, Argumentieren
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Mathematisch modellieren eine Situation in ein mathematisches Modell transferieren und bearbeiten (z.b. Bestimmung einer Höhe).
MAT 09-01 Ähnlichkeit 14 DS Leitidee: Raum und Form Thema im Buch: Konstruieren und Projizieren ähnliche Figuren erkennen. den Ähnlichkeitsfaktor bestimmen. anhand des Ähnlichkeitsfaktors erkennen, ob
Aufgabe W1b/2003. Aufgabe W4a/2003. Aufgabe W3a/2004. Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von
8 Aufgaben im Dokument Aufgabe W1b/2003 Die Punkte 4 0 und 0 bilden mit dem Koordinatenursprung ein rechtwinkliges Dreieck. Der Punkt ist auf der Achse beweglich. Der Innenwinkel des Dreiecks bei wird
Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans
Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans Einstufungstest Mathematik für den Vorkurs PH an der ISME Erlaubte Hilfsmittel: Formelsammlung für den Vorkurs PH, Taschenrechner ohne
Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!
Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B
WBK Bonn Abendrealschule Mathematik Vorklausur WS 2016/2017. Aufgabe 1: Basiswissen (Abgabe nach 20 Min.)
28.09.2016 Aufgabe 1: Basiswissen (Abgabe nach 20 Min.) a) Ein geometrisches Problem Auf einem rechteckigen Grundstück mit den Seitenlängen a = 14 m und b = 10 m ist in der Mitte ein quadratischer Brunnen
1.4 Steigung und Steigungsdreieck einer linearen Funktion
Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer
Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 9
Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 9 Reihe n-folge Buchabschnit t 1 1.1; 1.3; 1.4 1.5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Die
4.16 Buch II der Elemente
4.16 Buch II der Elemente Der Großteil des II. Buchs der Elemente beschreibt Relationen zwischen Flächeninhalten, die wir lieber algebraisch formulieren, d.h. die sogenannte geometrische Algebra. Es beginnt
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
2016/17 Jahrgangsstufe 9 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am
2016/17 Jahrgangsstufe 9 A Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2016 Name: Note: Klasse: Punkte: 1 Aufgabe 1 [AB] ist der Durchmesser des Kreises mit Mittelpunkt M.
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen
Prüfungsteil 2, Aufgabe 4 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über
SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2016 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten
Pflichtteil 2 und Wahlpflichtteil Arbeitszeit: 160 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Kreuzen Sie die Wahlpflichtaufgabe, die bewertet werden soll, an. Wahlpflichtaufgabe
Inhalt der Lösungen zur Prüfung 2015:
Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen
Stoffverteilungsplan Mathematik 9 und 10 auf Grundlage der Rahmenpläne Schnittpunkt 9 und 10 Klettbuch
Schnittpunkt 9 Kapitel 1 Lineare Gleichungssysteme Größer, kleiner, gleich nutzen Lösungsprinzipien für lineare Gleichungssysteme zur Berechnung von Schnittpunkten von Funktionsgraphen 1 Lineare Gleichungen
Übungen. Löse folgende Aufgaben mit GeoGebra
Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden
Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks
Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks
1 Pyramide, Kegel und Kugel
1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 007 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,
Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind
Kursarbeit Nr.1 LK Mathematik NAME :
Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 39 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck 2 / 39 Wir betrachten nur konvexe Vierecke:
Inhaltsbezogene Mathematische Kompetenzen
Stoffverteilungsplan Schnittpunkt Band 9 Schule: 978-3-12-742391-4 Lehrer: Wdh. aus Klasse 8 Problemlösen 4: Kontrollen durch Lösen von Aufgaben auf einem weiteren Lösungsweg Modellieren 2: Aufstellen
Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2017 / 2018 (G9)
Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 017 / 018 (G9) Die Reihenfolge der Themen ist verbindlich, um Transparenz und Vergleichbarkeit zu sichern. Die Länge der Einheiten
2. Mathematikschulaufgabe
1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1
Problemlösen. Zerlegen von Problemen Vorwärts-/Rückwärtsarbeiten Bewerten von Lösungswegen. Funktionen lineare und quadratische Funktionen
Welches sind die wesentlichen Kompetenzen für die Jahrgangsstufen 9/0? Die folgende Tabelle gibt einen Überblick über die Kompetenzerwartungen des Kernlehrplans am Ende der Klasse 0: prozessbezogene Kompetenzen
Raumgeometrie - schiefe Pyramide
1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;
Elementare Geometrie - Die Gerade & das Dreieck Teil I
Proseminar zur Linearen Algebra und Elementargeometrie Elementare Geometrie - Die Gerade & das Dreieck Teil I Eingereicht von: Alexandra Kopp 178294 [email protected] Eingereicht bei: Prof.
Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis
Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken
