Sinus-und Kosinussatz
|
|
|
- Otto Glöckner
- vor 9 Jahren
- Abrufe
Transkript
1 Sinus-und Kosinussatz Referentin: Theresia Herrmann a sinα = b sin β = c sinγ = 2r r 1 = r 2 = r a 2 = b 2 +c 2 2 b c cosα b 2 = a 2 +c 2 2 a c cosβ c 2 = a 2 +b 2 2 a b cosγ
2 Gliederung: 1.Sinussatz 2.Beweis des Sinussatzes 3. Kosinussatz 4.Beweis des Kosinussatzes 5. Anwendungen /Beispiele aus Schulbüchern 6.Literauturverzeichnis
3 1. Sinussatz Sinussatz: Seien a,b,c die Seiten eines beliebigen Dreiecks, α, β,γ die jeweils gegenüberliegenden Winkel und r der Radius des Umkreises, dann gilt: a sinα = b sin β = c sinγ = 2r r 1 = r 2 = r
4 Historisches: Der Sinussatz wurde von Abu Nasr Mansur (persischer Mathematiker und Astronom; um 960 bis 1036 n. Chr.) erstmals bewiesen. Der erste Beweis wird in einigen wenigen auch Quellen Al-Battani, in anderen Abu Mamud al- Chudschandi zugeschrieben
5 2. Beweis des Sinussatzes (1.Beweis mit Fallunterscheidung) 1.Fall: Spitzer Winkel: ( 0 <α<90 ) : In einem bel. Dreieck ABC 0 < α < 90 mit gilt : sinα = h c b h c = sinα b sin β = h c a h c = sin β a
6 Durch die beiden Ergebnisse von somit folgende Gleichung: sinα b = sin β a b sin β = a sinα (*) 1 / sinα sin β h c erhalten wir Weiter gilt: sinγ = h a b sin β = h a c h a = sinγ b h a = sin β c
7 Die beiden Ergebnisse von sinγ b = sin β c b sin β = c sinγ / ha liefern die Gleichung: 1 sin β sinγ Mit (*) = a sinα = b sin β = b sin β = a sinα c sinγ folgt dann:
8 2.Fall: Stumpfer Winkel ( 90 <α<180 ) : Mit und h c = sin β α h c = sin(180 α) b ergibt sich die Gleichung: sin(180 α) b = sin β a / b sin β = a sin(180 α) 1 sin(180 α) sin β
9 Für weitere Vereinfachung, benötigen wir eine zusätzliche trigonometrische Beziehung. sin(x) sin(180 α) = sinα
10 Mit sin(180 α) = sinα folgt: b (*) sin β = a sinα Weiter erhalten wir analog: h a = sinγ b und sowie die Gleichung: sinγ b = sin β c / b sin β = c sinγ h a = sin β c 1 sin β sinγ Wieder folgt mit (*) : a sinα = b sin β = c sinγ
11 3.Fall: Rechter Winkel (α=90 ) : sinα = a a sin β = b a sinα = sin(90 ) =1 b sin β = a und a sinα = a sinγ = c a c sinγ = a a sinα = b sin β = c sinγ
12 Bleibt nur noch zu zeigen, dass a sinα = b sin β = c sinγ = 2r Betrachte und Radius r. Δ(A 1 BC) mit Umkreis K, Mittelpunkt M Seite a ist eine Sehne des Umkreises. Winkel α ist Umfangswinkel zur Sehne a. Nach dem Umfangswinkelsatz sind alle Umfangswinkel zu a (auf der selben Seite des Kreises) gleich groß. r = r 1
13 Δ(A 2 BC) Im rechtwinkligen gilt: A 2 C A 2 C = 2r besitzt bei Punkt B einen rechten Winkel. geht durch M (Umkehrung Satz des Thales). sinα = a 2r a sinα = 2r Δ(A 2 BC) r = r 1
14 Da bereits gezeigt wurde, dass a sinα = ist nun mit b sin β = c sinγ a sinα = 2r bewiesen, dass a sinα = b sin β = c sinγ = 2r q.e.d.
15 2.Beweis des Sinussatzes (2.Spezieller Beweis ohne Fallunterscheidung) Betrachte Kreis K. Sei 0 der Mittelpunkt des Umkreises von Δ(ABC) Seien D,E,F die Mittelpunkte der Seiten BC, AC, AB à Welche Beziehungen können hier gefunden werden?
16 Betrachte Kreis K. Sei 0 der Mittelpunkt des Umkreises von Δ(ABC) Seien D,E,F die Mittelpunkte der Seiten Es gelten: Δ(AFO) Δ(BFO) Δ(BDO) Δ(CDO) Δ(AE0) Δ(CEO) SWS [ ] BC, AC, AB δ 1 δ 2
17 Durch den Umfangswinkelsatz erhalten wir weitere Informationen. Der Umfangswinkelsatz besagt auch: AB Sei eine Sehne des Kreises K mit Mittelpunkt O. Sei C ein weiterer Punkt auf K, wobei C und O auf der selben Seite von AB liegen und 0 kein Element AB, dann gilt: 2γ δ
18 Damit folgt für unseren Beweis: 2 γ δ 1 +δ 2 γ δ 1 sinγ = sinδ 1 = AF c AO = 2 r = c 2r c sinγ = 2r Analog: a sinα = 2r a sinα = b sin β = c sinγ = 2r, b sin ß = 2r q.e.d. c
19 Beispielbezogene und allgemeine Herleitung des Sinussatzes
20 3.Kosinussatz Verallgemeinerung des Satz des Pythagoras Kosinussatz: Für die drei Seiten a,b,c eines Dreiecks, sowie für den der Seite gegenüberliegenden Winkel gilt: a 2 = b 2 +c 2 2 b c cosα b 2 = a 2 +c 2 2 a c cosβ c 2 = a 2 +b 2 2 a b cosγ
21 4.Beweis des Kosinussatzes 1.Fall: Spitzer Winkel: ( 0 < <90 ) : In einem bel. Dreieck ABC mit 0 < <90 gilt : cosγ = a 1 b a = b cosγ 1 a h 2 a = b 2 h 2 a = b 2 2 a 1 a 1 + a 2 = a a 2 = a a 1 γ h a 2 = b 2 b 2 cos 2 γ a 2 = a b cosγ γ
22 c 2 = h 2 a + a 2 2 = b 2 b 2 cos 2 γ + (a b cosγ) 2 (Binomische Formel!) = b 2 b 2 cos 2 γ + a 2 2ab cosγ + b 2 cos 2 γ = b 2 + a 2 2ab cosγ c 2 = a 2 +b 2 2 a b cosγ Durch zyklische Vertauschung ergeben sich ebenso: a 2 = b 2 +c 2 2 b c cosα b 2 = a 2 +c 2 2 a c cosβ
23 2.Fall: Stumpfer Winkel ( 90 < <180 ) : In einem bel. Dreieck ABC mit 90 < <180 gilt : γ γ cos(180 γ) = x b x = b cos(180 γ)
24 < x = b cos(180 γ) = b ( cosγ) = b cosγ > x cos(180 γ) = cosγ cos(180 γ) = cosγ / ( 1) h 2 a = b 2 x 2 = b 2 b 2 cos 2 γ
25 c 2 = h 2 a + (a + x) 2 = b 2 b 2 cos 2 γ + (a b cosγ) 2 (Binomische Formel) = b 2 b 2 cos 2 γ + a 2 2ab cosγ + b 2 cos 2 γ = b 2 + a 2 2ab cosγ c 2 = a 2 +b 2 2 a b cosγ Durch zyklische Vertauschung ergeben sich ebenso: a 2 = b 2 +c 2 2 b c cosα b 2 = a 2 +c 2 2 a c cosβ
26 3.Fall: Rechter Winkel ( =90 ) : γ Wir zeigen: c 2 = a 2 +b 2 2 a b cosγ a 2 = b 2 = ( und ergeben sich wieder durch zyklische Vertauschung) c 2 = a 2 +b 2 2 a b cos(90 ) = a 2 +b 2 2 a b 0 c 2 = a 2 +b 2 Satz des Pythagoras
27 Satz des Pythagoras Für diesen Satz sind mehrere hundert verschiedene Beweise bekannt. Damit ist er der meistbewiesene mathematische Satz. Pythagoras von Samos ( v.chr.) legte einen Beweis für diesen Satz vor. Ob er allerdings der erste war, der diesen Satz bewies, ist in der Forschung umstritten. Die Aussage des Satzes war auch schon lange vor der Zeit Pythagoras in Baylon und Indien bekannt und wurde dort genutzt. Allerdings gibt es keinen Nachweis, dass man dort auch einen Beweis hatte.
28 Aussage des Satzes: In allen rechtwinkligen Dreiecken ist die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypothenusenquadrates. Beispiel für einen Zerlegungs-/Ergänzungsbeweis des Satzes:
29 Beispiel für einen rechnerischen Beweis des Satzes des Pythagoras: A(Δ) = 1 2 b h b = 1 2 b a = ab 2
30 5. Beispiele aus Schulbüchern Schulbuch: Kurs Mathematik 10, S.144f,1993 Verlag Diesterweg, Frankfurt a. M. :
31
32
33
34
35
36
37 6.Literaturverzeichnis Elementargeometrie und Wirklichkeit: Einführung in geometrisches Denken, Wittmann, Vieweg 1987 Didaktik der Geometrie für die Sekundarstufe 1, Weigand, Springer Spektrum 2014 Leitfaden Geometrie: Für Studierende der Lehrämter,Müller-Philipp, Springer 2012 Elementargeometrie, Ilka Agricola; Thomas Friedrich, Vieweg 2005 Elementargeometrievorlesung von Prof. Dr. Mohnke Mathematik 10, Appelhans, Westermann 1995
38 Mathematik in der Sekundarstufe, Ausgabe 10B, Glatfeld, Metzler 1982 Kurs Mathematik 10,1993 Verlag Diesterweg, Frankfurt a. M. Mathematik 10, Hahn/Dezewas, Westermann 1995 Mathematik live: Mathematik für die Sekundarstufe 1, Böer, Klett 2009 Mathematik entdecken, verstehen, anwenden; Hans Bock, Oldenbourg 1996 Mathematik 10. Schuljahr, Breidenbach, Westermann material/sek1/
39 Sinussatzes.html trigonometrie/sinuscosinussatz/sinuscosinussatz.html kosinussatz.htm cosinussatz.htm
40 Manfred Leppig (Hrsg.): Lernstufen Mathematik. 1. Auflage, 4. Druck. Girardet, Essen 1981, ISBN , S H. S. M. Coxeter, S. L. Greitzer: Geometry Revisited. Washington, DC: Assoc. Amer., S de.wikipedia.org/wiki/radiant_(einheit)
Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1
Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen
Der Satz von Pythagoras
Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung
Didaktik der Geometrie
Didaktik der Geometrie 7.1 Didaktik der Geometrie Didaktik der Geometrie 7.2 Inhalte Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen
Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:
Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN
Mathematik Mag. Schmid Wolfgang Arbeitsblatt 4 3. Semester ARBEITSBLATT 4 VERMESSUNGSAUFGABEN Nun wollen wir unser Wissen über recht- und schiefwinkelige Aufgaben an einigen Aufgaben beweisen Beispiel
und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b
Blatt Nr 1906 Mathematik Online - Übungen Blatt 19 Dreieck Geometrie Nummer: 41 0 2009010074 Kl: 9X Aufgabe 1911: (Mit GTR) In einem allgemeinen Dreieck ABC sind a = 18782, c = 1511 und β = 33229 gegeben
Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5
(Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei
Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge
Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition
Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich
Trigonometrie Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 29. Januar 2012 Inhaltsverzeichnis 3 Trigonometrie 1 3.1 Warum Trigonometrie........................
E r g ä n z u n g. zur Trigonometrie
E r g ä n z u n g zur Trigonometrie Klasse 10 b 2018 / 19 Deyke www.deyke.com Trigonometrie.pdf W I N K E L F U N K T I O N E N Die Strahlensätze und der Satz des Pythagoras sind bisher die einzigen Hilfsmittel
Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte
1 Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 19. Tag der Mathematik 17. Mai 014, TU Berlin Pythagoräische
(von Punkt A nach Punkt B) gemessen und auch die entsprechenden Zenitwinkel z B
Aufgabe a.1 Verwendet dieses elementare geometrische Verhältnis der Strecken, um die Höhe eines Turmes oder eines sonstigen hohen Gebäudes in eurer Nähe zu bestimmen. Dokumentiert euer Experiment. Wiederholt
Trigonometrie. Unterrichtsinhalte und Beispiele. Olaf Schimmel
Trigonometrie Unterrichtsinhalte und Beispiele Olaf Schimmel 1 Die Definition der Winkelfunktioen 1.1 Die Winkelfunktionen im rechtwinkligen Dreieck Gegeben sei ein rechtwinkliges Dreieck mit den Katheten
Prüfungsaufgaben zum Realschulabschluss - Flächenberechnung
Prüfungsaufgaben zum Realschulabschluss - Flächenberechnung Die Giebelseite eines 4,8 m breiten Gebäudes soll verbrettert werden. Die Dachsparren auf der einen Seite sind 7 m, auf der anderen Seite m lang.
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit
Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)
Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei
Trigonometrie aus geometrischer und funktionaler Sicht
Trigonometrie aus geometrischer und funktionaler Sicht Der Kosinussatz und der Sinussatz: Wenn in einem Dreieck nur zwei Seiten und der eingeschlossene Winkel gegeben sind, oder nur die drei Seiten bekannt
Vergessene Sätze am Dreieck (Teil 2)
Vergessene Sätze am Dreieck (Teil 2) Von Florian Modler Hallo Geometrie Freunde, dies ist nun der zweite Teil der Serie Vergessene Sätze am Dreieck. In diesem Teil wird es um zwei ganz bestimmte Sätze
Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt
1 Einleitung. 2 Sinus. Trigonometrie
1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische
Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L.
Kugeldreieck 1. Berechnen Sie die Fläche des vom Äquator, vom Nullmeridian und dem Längenkreis durch den angegebenen Ort begrenzten Kugeldreiecks. Geben Sie den sphärischen Exzeß des Dreiecks im Grad-
1 Einleitung 1. 2 Notation 1
Inhaltsverzeichnis 1 Einleitung 1 2 Notation 1 3 Definitionen & Hilfssätze 1 3.1 Definition (Sehne)............................... 1 3.2 Satz (Peripheriewinkelsatz).......................... 2 3.3 Lemma.....................................
1. Unterteilung von allgemeinen Dreiecken in rechtwinklige
Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck
Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner
Geschichte von Pythagoras
Satz von Pythagoras Inhalt Geschichte von Pythagoras Entdeckung des Satzes von Pythagoras Plimpton 322 Lehrsatz Beweise Kathetensatz und Höhensatz Pythagoreische Tripel Kosinussatz Anwendungen des Satzes
Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen
Mathematik Klasse 10c Vorbereitung Klassenarbeit Nr. 3 am 1.3.019 Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen Checkliste Was ich alles können soll Ich erkennen die Strahlensatzfiguren
Lösungen der Übungsaufgaben III
Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion
Der Flächeninhalt eines Sehnenvierecks auf den Spuren des indischen Mathematikers Brahmagupta ( )
Den Flächeninhalt eines allgemeinen Vierecks bestimmt man meistens durch Zerlegung in Dreiecke. Geht es auch anders? Für den Fall, dass das Viereck ein Sehnenviereck ist, hat der indische Mathematiker
Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018
Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:
Trigonometrie. Geometrie. Kapitel 3, 4 & 5. MNProfil - Mittelstufe. Ronald Balestra CH Zürich
Trigonometrie Geometrie Kapitel 3, 4 & 5 MNProfil - Mittelstufe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 25. März 2019 Überblick über die bisherigen Geometrie - Themen: 1 Ähnlichhkeit 1.1
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken
Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.
Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck
Didaktik des Sachrechnens
Didaktik des Sachrechnens 6. Geometrie in der Anwendung Eine Auswahl Pont de la Caille, Frankreich (eigenes Foto) 1 6. Geometrie in der Anwendung Eine Auswahl 6.1 Satzgruppe des Pythagoras 6.2 Ähnlichkeit
Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University
Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige
Zahlentheorie und Geometrie
1 Zahlentheorie und Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin Herbsttagung der Mathematischen Gesellschaft in Hamburg 15. November 2014 Zahlentheorie
Arbeitsblatt Geometrie / Trigonometrie
Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016
Rechtwinklige Dreiecke konstruieren
1 Vertiefen 1 Rechtwinklige Dreiecke konstruieren zu Aufgabe Schulbuch, Seite 106 Dreiecke konstruieren a) Konstruiere die Dreiecke mit den Angaben aus der Tabelle. Miss dann die übrigen Maße und vervollständige
Trigonometrie und Planimetrie
Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben
Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $
$Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich
Aufgabe 1: Definieren
Aufgabe 1: Definieren a) Definieren Sie den Begriff Mittelpunkt einer Strecke AB. Der Punkt M ist Mittelpunkt der Strecke AB, wenn er zu dieser gehört und AM = MB gilt b) Definieren Sie den Begriff konvexes
3. Erweiterung der trigonometrischen Funktionen
3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x
befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck.
Trigonometrie Lernziele befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck. Selbständiges Erarbeiten der Kurztheorie Kenntnis der wichtigsten Begriffe, Definitionen und Formeln
Die Kreispotenz und die Sätze von Pascal und Brianchon
1 Die Kreispotenz und die Sätze von Pascal und Brianchon 26. September 2007 1 Kreispotenz Zur Konstruktion der Potenzlinie zweier Kreise k 1 und k 2, die sich nicht schneiden, wähle man sich einen Hilfskreis
Trigonometrische Funktionen
Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:
Trigonometrie. Schülerzirkel Mathematik Schülerseminar
Schülerzirkel Mathematik Schülerseminar Trigonometrie Im Schülerseminar für Schülerinnen und Schüler der Klassenstufen 8 10 wurde die Trigonometrie innerhalb der Einheit über komplexe Zahlen behandelt,
4.18 Buch IV der Elemente
4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen
Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $
$Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten
Konstruierbarkeit des Siebzehnecks
Konstruierbarkeit des Siebzehnecks Der Kinofilm Die Vermessung der Welt war Anstoß, sich mit der Konstruktion des regelmäßigen Siebzehnecks und damit den Gedankengängen des berühmten Mathematikgenies Carl
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten
Inhaltsverzeichnis. 1. Einleitung Eigenschaften von Kreisen Literaturverzeichnis... 11
Inhaltsverzeichnis 1. Einleitung...2 2. Eigenschaften von Kreisen... 3 2.1 Sehnensatz.................................................... 3 2.2 Sekantensatz..................................................
Übungen zur Vorlesung Elementare Geometrie
Westfälische Wilhelms-Universität Münster Mathematisches Institut al. Prof. Dr. Lutz Hille Dr. Karin Haluczok Übungen zur Vorlesung Elementare Geometrie Sommersemester 00 Musterlösung zu Blatt 3 vom 6.
1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4
1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2
Lösung zur Übung 3 vom
Lösung zur Übung 3 vom 28.0.204 Aufgabe 8 Gegeben ist ein Dreieck mit den nachfolgenden Seiten- und Winkelbezeichnung. Der Cosinussatz ist eine Verallgemeinerung des Satzes des Pythagoras: a) c 2 = a 2
Das Vektorprodukt und Sphärische Geometrie
Das Vektorprodukt und Sphärische Geometrie Proseminar zu Algebra von Methnani Lassaad Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf 12. April 2010 Betreuung: Prof. Dr. Bogopolski Ÿ1)
Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University
Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine
f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.
Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und
Trigonometrie. Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe. Ronald Balestra CH Zürich
Trigonometrie Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 31. Januar 2013 Überblick über die bisherigen ALGEBRA - Themen:
Grundwissen. 10. Jahrgangsstufe. Mathematik
Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt
Elementare Geometrie - Die Gerade & das Dreieck Teil I
Proseminar zur Linearen Algebra und Elementargeometrie Elementare Geometrie - Die Gerade & das Dreieck Teil I Eingereicht von: Alexandra Kopp 178294 [email protected] Eingereicht bei: Prof.
Kürzeste Wege Mathematik ist schön 4
E R L Ä U T E R U N G E N Z U D E N K A L E N D E R N M A T H E M A T I K I S T S C H Ö N Kürzeste Wege Mathematik ist schön Der FERMAT-Punkt eines Dreiecks Der französische Mathematiker PIERRE DE FERMAT
Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter
Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................
1. Grundaufgabe WSW: Berechnung eines (zunächst spitzwinkligen) Dreiecks aus einer Seite und zwei Winkeln. oder. sin β
10 Der Sinussatz Die Berechnung von spitz- oder stumpfwinkligen Dreiecken kann nach dem Sinus- bzw. Cosinussatz erfolgen. Der Sinussatz kann angewendet, wenn zu einer Seite auch der Gegenwinkel bekannt
SWS-Kongruenzsatz. A B = d(a,b) = A B und A C = d(a,c) ) = A C. Dann ist das Winkelmaß BAC = arccos
SWS-Kongruenzsatz. SWS-Kongruenzsatz. Es seien A,B,C und A,B,C Punkte des R 2, s.d. weder A,B,C noch A,B,C auf einer Geraden liegen. Dann gilt: es gibt eine Isometrie I, mit A A, B B, C C, genau dann wenn
2.2C. Das allgemeine Dreieck
.C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die
S. 44 AAz Ich kann in Summentermen gemeinsame Faktoren finden und diese ausklammern.
Klasse 8b Mathematik Vorbereitung zur Klassenarbeit Nr. am 12.4.2018 Themen: Algebra (Ausmultiplizieren und Ausklammern, Binomische Formeln, Gleichungen und Ungleichungen) und Geometrie (Geraden am Kreis,
1.4 Trigonometrie. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 3
1.4 Trigonometrie Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 3 2.1 Was sind trigonometrischen Funktionen?.......................... 3 2.2 Die
Der Satz des Pythagoras: a 2 + b 2 = c 2
Der Satz des Pythagoras: a 2 + b 2 = c 2 Beweise: Mathematiker versuchen ihre Behauptungen durch Beweise zu untermauern. Die Suche nach absolut wasserdichten Argumenten ist eine der treibenden Kräfte der
Trigonometrie. Schülerzirkel Mathematik Schülerseminar
Schülerzirkel Mathematik Schülerseminar Trigonometrie Im Schülerseminar für Schülerinnen und Schüler der Klassenstufen 8 10 wurde die Trigonometrie innerhalb der Einheit über komplexe Zahlen behandelt,
Der Punkt von Fermat 1
Der Punkt von Fermat 1 Geometrie Der Punkt von Fermat Autor: Peter Andree Inhaltsverzeichnis 9 Der Punkt von Fermat 1 9.1 Die Aufgabe von Fermat an Torricelli................... 1 9.2 Der klassische, analytische
Trigonometrische Berechnungen
Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =
Rechnen mit Quadratwurzeln
9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür
Didaktik der Elementargeometrie
Humboldt-Universität zu Berlin Sommersemester 2014 Institut für Mathematik A. Filler. Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 3 Argumentieren, Beweisen, lokales Ordnen
Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $
$Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in
Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.
Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck
Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 2: Trigonometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017
Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 2: Trigonometrie MAC.05043UB/MAC.05041PH, VU im SS 2017 http://imsc.uni-graz.at/pfeiffer/2017s/linalg.html Christoph GRUBER, Florian KRUSE,
Geometrie Satz des Pythagoras
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: November
1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $
$Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann
Sinus- und Kosinussatz
Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan
9, Im Dreck gilt: Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9. und. Tipp: Dreimal Sinussatz für,
Aufgabe P1/2014 Im Viereck sind gegeben 3,2 5,8 54,6 Berechnen Sie den Umfang des Dreiecks Lösung 17,4 14 Aufgaben im Dokument Aufgabe P2/2014 Das Dreieck und das Dreieck überdecken sich teilweise Es gilt
Inhaltsverzeichnis. 1 Einführung 1
Inhaltsverzeichnis 1 Einführung 1 2 Der Inkreis und die Ankreise eines Dreiecks 1 2.1 Kreistangente und Berührradius....................... 1 2.2 Konstruktion von Kreistangenten mit Hilfe des Satzes von
[Text eingeben] CARNOT
[Text eingeben] CARNOT Ein auch nicht in der Schule gelehrter Satz von CARNOT: Fällt man von einem inneren Punkt P die drei Lote auf die Seiten, mit den Fußpunkten X Y und Z, dann gilt für die Seitenabschnitte
Klausur zur Akademischen Teilprüfung, Modul 2,
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung
Exkurs: Klassifikation orthogonaler 2 2-Matrizen.
Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so
Einführung in die Trigonometrie. von: Franz Friedrich Datum:
Einführung in die Trigonometrie von: Franz Friedrich Datum: 12.05.2014 Einführung in die Trigonometrie Grundlagen der Ähnlichkeitslehre Definition von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck
2.2A. Das allgemeine Dreieck
.A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (
Musterprüfung Mathematik an Wirtschaftsschulen Aufgabe B3 Trigonometrie
Seite 1 Die Skizze zeigt den rechten unteren Teil eines Hochspannungsmastes. Teile des Mastes müssen wegen Rostschäden mit Spezialfarbe gestrichen werden.. Die Strecken [DE] und [FG] verlaufen parallel
Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT
Reihe 9 S Verlauf Material Schritt für Schritt erklärt Sinus und Kosinus Florian Borges, Traunstein y 5 6 R ϕ( t ) 7 0 Die Sinusfunktion entsteht durch Projektion eines rotierenden Zeigers auf die y-achse.
Abitur 2011 G8 Abitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen
2 Geometrie und Vektoren
Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz
