Physik der sozio-ökonomischen Systeme mit dem Computer. 6. Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Physik der sozio-ökonomischen Systeme mit dem Computer. 6. Vorlesung"

Transkript

1 Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM JOHANN WOLFGANG GOETHE UNIVERSITÄT Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG GOETHE UNIVERSITÄT INSTITUT FÜR THEORETISCHE PHYSIK ARBEITSGRUPPE RELATIVISTISCHE ASTROPHYSIK D FRANKFURT AM MAIN GERMANY

2 Plan für die heutige Vorlesung Kurze Wiederholung der Inhalte der letzten Vorlesung: Evolutionären Spieltheorie von Bi-Matri Spielen (unsymmetrischer (22)-Spiele), Python Programm: Bi-Matri Spiele, Evolutionäre (23)-Spiele, das Räuber-Beute Spiel, mögliche Projekte Anwendungsfelder der Spieltheorie Einführung: Komplee Netzwerke Grundlagen der Theorie der kompleen Netzwerke Klassen von Netzwerken (zufällige, small world, eponentielle und skalenfreie Netzwerke) Simulation und Darstellung von kompleen Netzwerken mit Python

3 Weitere

4 Evolutionäre Spieltheorie (I) Unsymmetrische (22)-Spiele (Bimatrispiele) Bei unsymmetrischen (22)-Spielen besteht die zugrundeliegende Population aus zwei Gruppen (hier große und kleine Kreise). Aufgrund der unterschiedlichen Auszahlungsmatrizen können die Populationsgruppen sich in ihren Strategieentscheidungen (grün, schwarz) unterschiedlich entwickeln. zeitliche Entwicklung der Population (0)=0.5, y(0)=0.5 (10)=0.15, y(10)=0.7 Mögliche Strategien: (grün, schwarz), Parameter t stellt die Zeit dar. ( : Anteil der großen Spieler, die im Zeitpunkt t die Strategie grün spielen. y( : Anteil der kleinen Spieler, die im Zeitpunkt t die Strategie grün spielen.

5 Evolutionäre Spieltheorie (II) Unsymmetrische (22)-Spiele (Bimatrispiele) Die einzelnen Akteure innerhalb der betrachteten gesamten Population spielen ein andauernd sich wiederholendes Spiel miteinander, wobei sich jeweils zwei Spieler mit unterschiedlichen Gruppenzugehörigkeiten zufällig treffen, das Spiel spielen und danach zu dem nächsten Spielpartner der anderen Gruppe wechseln. (10)=0.5, y(10)=0.5 Die Anfangspopulat ion von Spielern spielt zum Zeitpunkt t=0 das erste Mal das Spiel. Es bilden sich stets Zweier- Gruppen aus großen und kleinen Kreisen. (10)=0.15, y(10)=0.7 Das evolutionäre Spiel schreitet voran und die grüne Strategie wird für die kleinen Spieler zunehmend attraktiver (y(10)=0.7 ), wohingegen sie für die großen Spieler zunehmend weniger attraktiv wird ((10)=0.15 ).

6 Bi-Matri Spiele unsymmetrische (22)-Spiele, zwei unterscheidbare Populationsgruppen

7 Beispiel 1: Kampf der Geschlechter als evolutionäres Spiel Das gekoppelte System von Differentialgleichung lautet: d( ( dt dy( y( dt 4 y( 4 ( y( 3 ( 3 4 ( 4 ( y( A A ( : 1 (, 2 ( 1 ( B B y( : 1 (, 2 ( 1 y( y( 1 Die beiden Gruppen der Population sind Männer (A, ()und Frauen (B, y(). Da nur zwei Strategien wählbar sind, lassen sich die jeweiligen Populationsanteile durch lediglich eine Größe ausdrücken (( und y(). Kino Disko Kino (1, 3) (0, 0) Disko (0, 0) (3, 1) Die Lösung der Gleichung erfolgt wiederum durch Integration bzw. kann mithilfe des Computers nummerisch berechnet werden. Es muss in beiden Fällen ein fester Anfangswert ((0),y(0)) gewählt werden. Nummerische Lösung der Gleichung wobei der Anfangswert zu ((0),y(0))=(0.85, 0.3) gewählt wurde.

8 Beispiel 1: Kampf der Geschlechter als evolutionäres Spiel Das Kampf der Geschlechter - Spiel gehört der Klasse der Sattelpunktsspiele (Saddle Class) an. Das Phasenportrait des Spiels besitzt das folgende Aussehen: Kino Disko Kino (1, 3) (0, 0) Disko (0, 0) (3, 1) (1,1) entspricht (Kino,Kino) Die rechte Abbildung zeigt das zeitliche Verhalten von drei nummerischen Lösungen mit unterschiedlichen Anfangsbedingungen. Die evolutionäre Erweiterung des Spiels besitzt zwei evolutionär stabile Strategien ((0,0) und (1,1)). Die blaue und grüne Populationsentwicklung enden bei (0,0) während die Anfangsbedingung der roten Population bei (1,1) endet. (0,0) entspricht (Disko,Disko)

9 Beispiel 2: Klasse der Zentrumsspiele (Center Class) Strat. 1 Strat. 2 Strat. 1 (2, -2) (0, 0) Strat. 2 (0, 0) (1, -1) Das gekoppelte System von Differentialgleichung für dieses Beispiel lautet: Die Lösung der Gleichung erfolgt wiederum durch d( ( 3 y( 3 ( y( ( 1 Integration bzw. kann mithilfe des Computers dt nummerisch berechnet werden. Es wurde der dy( Anfangswert zu y( 3 ( 3 ( y( y( 1 dt ((0),y(0)) =(0.05, 0.05) gewählt. Die rechte Abbildung zeigt eine nummerische Lösung der obigen Gleichung, wobei der Anfangswert zu ((0),y(0)) =(0.05, 0.05) gewählt wurde. Im Gegensatz zu allen anderen möglichen Klassen von Bimatrispielen, treten bei der Klasse der Zentrumsspiele periodische Verläufe der Populationsanteile ( und y( auf - die Populationsanteile enden nicht in einer evolutionär stabilen Strategie.

10 Beispiel 2: Klasse der Zentrumsspiele (Center Class) Strat. 1 Strat. 2 Strat. 1 (2, -2) (0, 0) Strat. 2 (0, 0) (1, -1) Das Phasenportrait des zweiten Beispiels besitzt das folgende Aussehen: Zentrum: Gemischtes Nash-Gleichgewicht des Spiels Die rechte Abbildung zeigt das zeitliche Verhalten von drei nummerischen Lösungen mit unterschiedlichen Anfangsbedingungen. Dieses Bimatrispiel besitzt keine evolutionär stabile Strategie, da die einzelnen Phasenraum-Trajektorien sich keinem Punkt annähern, sondern auf einer geschlossenen, zyklischen Bahn um das gemischte Nash-Gleichgewicht kreisen.

11 Beispiel 3: Klasse der Eckenspiele (Corner Class) Strat. 1 Strat. 2 Strat. 1 (-2, 2) (0, 0) Strat. 2 (0, 0) (1, 1) Das gekoppelte System von Differentialgleichung für dieses Beispiel lautet: Die Lösung der Gleichung erfolgt wiederum durch d( Integration bzw. kann mithilfe des Computers ( y( ( y( ( 1 dt nummerisch berechnet werden. Es wurde der Anfangswert zu dy( y( 3 ( 3 ( y( y( 1 ((0),y(0)) =(0.9, 0.4) gewählt. dt Die rechte Abbildung zeigt eine nummerische Lösung der obigen Gleichung, wobei der Anfangswert zu ((0),y(0)) =(0.9, 0.4) gewählt wurde. Bei der Klasse der Eckspiele gibt es eine evolutionär stabile Strategie, die unabhängig von der gewählten Anfangsbedingung stets von der Population angestrebt wird.

12 Beispiel 3: Klasse der Eckspiele (Corner Class) Das Phasenportrait des dritten Beispiels besitzt das folgende Aussehen: Die rechte Abbildung zeigt das zeitliche Verhalten von drei nummerischen Lösungen mit unterschiedlichen Anfangsbedingungen. Dieses Bimatrispiel besitzt eine evolutionär stabile Strategie, da es nur ein gemeinsames symmetrisches Nash- Gleichgewicht gibt ((,y)=(0,0)). Der rote Spieler besitzt sogar bei (0,0) eine dominante Strategie. Strat. 1 Strat. 2 Strat. 1 (-2, 2) (0, 0) Strat. 2 (0, 0) (1, 1) Einziges gemeinsames Nash-Gleichgewicht des Spiels

13 Klassifizierung von Bi-Matri Spielen Eckspiele Sattelspiele Zentrumsspiele Die Spielklasse der Gruppe A oder der Gruppe B ist ein Dominantes Spiel Spiel A: Koordinationspiel Spiel B: Koordinationspiel oder Spiel A: Anti-Koordinationspiel Spiel B: Anti-Koordinationspiel Spiel A: Koordinationspiel Spiel B: Anti-Koordinationspiel oder Spiel A: Anti-Koordinationspiel Spiel B: Koordinationspiel

14 Bi-Matri Spiele mit Python V1

15 Bi-Matri Spiele mit Python V2 (Feldliniendiagramm)

16 Bi-Matri Spiele mit Python Version bimatri1.py

17 1,2,3 $ $ $ $ $ $ $ $ $ $ $ $ ) ( ) ( $ ) ( $ ) ( ) ( j dt d t t t t dt t d j j j j j k l k k k kl k jk j j Replikatordynamik (für symmetrische (23)-Spiele) Wir beschränken uns nun auf symmetrische (23)-Spiele, d.h. zwei Personen - 3 Strategien Spiele (M=3). Die Differentialgleichung der Replikatordynamik vereinfacht sich unter dieser Annahme wie folgt: $

18 Replikatordynamik (für symmetrische (23)-Spiele) Man erhält ein System von drei gekoppelten Differentialgleichungen: d dt d dt d dt $ $ $ $ 12 $ $ $ 2 13 $ $ $ $ $ Das System von Differentialgleichungen lässt sich bei gegebener Auszahlungsmatri $ˆ und Anfangsbedingung 1 ( 0), 2(0), 3(0) meist nur nummerisch (auf dem Computer) lösen. Die Lösungen bestehen dann aus den drei (zeitlich abhängigen) Populationsanteilen, (, ( ). 1( 2 3 t

19 Replikatordynamik (für symmetrische (23)-Spiele, Beispiel 1) Wir betrachten im Folgenden ein Beispiel eines (23)-Spiels mit der rechts angegebenen Auszahlungsstruktur: Die rechte Abbildung zeigt die zeitliche Entwicklung der relativen Populationsanteile der gewählten Strategien für drei mögliche Anfangsbedingungen. Die einzige evolutionär stabile Strategie dieses Beispiels befindet sich beim gemischten Nash-Gleichgewicht Die einzelnen Pfeile im Dreieck veranschaulichen den durch die 1 1 1,, Spielmatri bestimmten Strategien- Richtungswind, dem die Population zeitlich folgen wird. Strategie 1 Strategie 2 Strategie 3 Strategie 1 (0, 0) (2, -1) (-1, 2) Strategie 2 (-1, 2) (0, 0) (2, -1) Strategie 3 (2, -1) (-1, 2) (0, 0) Reine Strategie 3 Gemischtes Nash- Gleichgewicht und ESS Reine Strategie 1 Reine Strategie 2

20 Replikatordynamik (für symmetrische (23)-Spiele, Beispiel 2) Wir betrachten im Folgenden ein Beispiel eines (23)-Spiels mit der rechts angegebenen Auszahlungsstruktur: Strategie 1 Strategie 2 Strategie 3 Strategie 1 (0, 0) (-3, -3) (-1, -1) Strategie 2 (-3, -3) (0, 0) (-1, -1) Strategie 3 (-1, -1) (-1, -1) (0, 0) Die rechte Abbildung zeigt die zeitliche Entwicklung der relativen Populationsanteile der gewählten Strategien für drei mögliche Anfangsbedingungen. Das Spiel besitzt drei Nash-Gleichgewichte in reinen Strategien, die ebenfalls evolutionär stabile Strategien darstellen. Welche der drei ESS die Population realisiert hängt von dem Anfangswert der Populationsanteile ab. Die zeitliche Entwicklung folgt wieder dem Strategien- Richtungswind der zugrundeliegenden Auszahlungsmatri. Reine Strategie 1 Reine Strategie 3 Reine Strategie 2

21 Replikatordynamik (Klassifizierung symmetrische (23)-Spiele) E. C. Zeeman, POPULATION DYNAMICS FROM GAME THEORY, In: Global Theory of Dynamical Systems, Springer 1980 E. C. Zeeman zeigt in seinem im Jahre 1980 veröffentlichten Artikel, dass man evolutionäre, symmetrische (23)-Spiele in 19 Klassen einteilen kann. Die Abbildung rechts zeigt das evolutionäre Verhalten dieser 19 Spieltypen. Die ausgefüllten schwarzen Punkte markieren die evolutionär stabilen Strategien der jeweiligen Spiele. Es gibt Spielklassen, die besitzen lediglich eine ESS und Klassen die sogar drei ESS besitzen.

22 Das Räuber-Beute Spiel

23 Die Lotka-Volterra-Gleichung (Räuber-Beute-Gleichung) für N-Populationen Anzahl der Räuber/Beute Wesen der i-ten Population zur Zeit t Reproduktionsbzw. Sterberaten Interaktionsmatri

24 Mögliche Projekte

25 Anwendungsfelder der evolutionären Spieltheorie (I) Biologie Verteilung von Bakterien in Organismen Siehe z.b.: Kerr, Feldmann, Nature 2002 Kooperation von Virus-Populationen Siehe z.b.: Turner, Chao, Nature 1999 Paarungsstrategien von Eidechsen Siehe z.b.: Sinervo, Hazard, Nature 1996 Evolutionäre Entwicklung von Makromolekülen Siehe z.b.: Eigen, Schuster, Naturwissenschaften 64, 1977

26 Anwendungsfelder der evolutionären Spieltheorie (II) Ökonomie Public Goods - (Öffentliches Gu- Spiele Trust in Private and Common Property Eperiments, Elinor Ostrom, et al. Evolutionary Dynamics in Public Good Games, CHRISTIANE CLEMENS and THOMAS RIECHMANN, Computational Economics (2006) 28: Institution Formation in Public Goods Games, Michael Kosfeld, Akira Okada, and Arno Riedl, American Economic Review 2009, 99:4, Eperimentelle Ökonomie Cooperation in PD games: Fear, greed, and history of play, T.K. AHN, ELINOR OSTROM, DAVID SCHMIDT, ROBERT SHUPP, Public Choice 106: , Behavioral - Verhaltensökonomie (Altruismus, Empathie, ) z.b.: Fehr et al. Evolution von Informationsnetzwerken

27 Anwendungsfelder der evolutionären Spieltheorie (III) Sozialwissenschaft Kulturelle und moralische Entwicklungen Evolution of social learning does not eplain the origin of human cumulative culture, Magnus Enquist, Stefano Ghirlanda, Journal of Theoretical Biology 246 (2007) EVOLUTION OF MORAL NORMS, William Harms and Brian Skyrms, For Oford Handbook on the Philosophy of Biology ed. Michael Ruse Evolution der Sprache Finite populations choose an optimal language, Christina Pawlowitsch, Journal of Theoretical Biology 249 (2007) Soziales Lernen Evolution of social learning does not eplain the origin of human cumulative culture, Magnus Enquist, Stefano Ghirlanda, Journal of Theoretical Biology 246 (2007) Evolution von sozialen Normen Collective Action and the Evolution of Social Norms, Elinor Ostrom, The Journal of Economic Perspectives, Vol. 14, No. 3 (Summer, 2000), pp Evolution von sozialen Netzwerken GOVERNING SOCIAL-ECOLOGICAL SYSTEMS, MARCO A. JANSSEN and ELINOR OSTROM A General Framework for Analyzing Sustainability of Social-Ecological Systems, Elinor Ostrom, et al., Science 325, 419 (2009)

28 Aufgaben auf Lon-Cappa Weitere

29 Evolutionäre Spieltheorie auf kompleen Netzwerken Viele in der Realität vorkommende evolutionäre Spiele werden auf einer definierten Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind hierbei nicht gleichwertig, sondern wählen als Spielpartner nur mit ihnen durch das Netzwerk verlinkte (verbundene) Partner aus. zeitliche Entwicklung der Population auf vorgegebener Netzwerkstruktur (0)=0.5 (10)=0.75 Mögliche Strategien: (grün, schwarz), Parameter t stellt die Zeit dar. ( : Anteil der Spieler, die im Zeitpunkt t die Strategie grün spielen. Die roten Verbindungslinien beschreiben die möglichen Spielpartner des Spielers

30 Theorie der kompleen Netzwerke (I) Da die Theorie der kompleen Netzwerke aus dem mathematischen Zweig der Graphentheorie entstanden ist benutzt sie nicht die mathematischen Vokabeln der Spieltheorie. Man spricht z.b. nicht von Spielern, sondern von Knoten (bzw. Vertices). Die Verbindungen zwischen den Knoten werden als Kanten (bzw. Links) bezeichnet. Während die Spieler eines (klassischen) evolutionären Spiels mit allen anderen Spielern der Population in Kontakt treten können, ist dies bei einem Spiel auf einem kompleen Netzwerk im allgemeinen nicht möglich.

31 Theorie der kompleen Netzwerke (II) Komplee Netzwerke lassen sich wie folgt untergliedern: Handelt es sich nur um eine Knotenart (Spielergruppe), oder besteht das Netzwerk aus mehreren Knotenarten (z.b. Bi-Matri Spiele). Sind die Kanten (Verbindungslinien zwischen den Knoten) gerichtet oder ungerichtet. Besitzen die Kanten zahlenmäßige Gewichtungen oder geben sie einfach an ob ein Knoten mit einem anderen verbunden oder nicht verbunden ist. Gibt es zeitliche Veränderungen des Netzwerks; ist die Anzahl der Knoten konstant oder wächst bzw. schrumpft sie im laufe der Zeit.

32 Theorie der kompleen Netzwerke (III) (Beispiele unterschiedlicher kompleer Netzwerke) a) Nicht gerichtetes und ungewichtetes Netzwerk einer einzigen Knotenart. b) Nicht gerichtetes und ungewichtetes Netzwerk dreier verschiedener Knotenarten, wobei zusätzlich drei verschiedene Kantenarten eistieren. c) Nicht gerichtetes aber gewichtetes Netzwerk. Sowohl die Knoten als auch die Kanten des Netzwerks besitzen zahlenmäßige Gewichtungen. d) Gerichtetes aber nicht gewichtetes Netzwerk. Es eistiert nur eine Knoten- und gerichtete Kantenart. Abbildung: Unterschiedliche Netzwerktypen Die Abbildung ist dem folgenden Artikel entnommen: M. E. J. Newman, The structure and function of comple networks

33 Theorie der kompleen Netzwerke (IV) (Größen die ein Netzwerk charakterisieren) Der Knotengrad k i Der Knotengrad des Knotens i ist gleich der Anzahl der Kanten die der Knoten i besitzt. Bei gerichteten Netzwerken unterscheidet man zwischen dem eingehenden und ausgehenden Knotengrad. Bei gewichteten Netzwerken summiert man über die Zahlenfaktoren der gewichteten Kanten. Der Clusterkoeffizient C i Der Clusterkoeffizient gibt die Wahrscheinlich-keit an, dass zwei nächste Nachbarn eines Knotens ebenfalls nächste Nachbarn untereinander sind. Der globale Wert C des Netzwerks stellt demnach eine Art von Cliquen - Nachbarschafts-Eigenschaft des Netzwerks dar Der Durchmesser des Netzwerks Der Durchmesser des Netzwerks gibt die maimale kürzeste Kantenlänge zwischen zwei beliebigen Knoten des Netzwerkes an. k 8 1 k 9 2 k 1 1 k 2 3 k4 2 k 5 1 k 3 1 k 14 7 k 6 1 k 7 1

34 Theorie der kompleen Netzwerke (IV) (Die Verteilungsfunktion der Knotengrade) Die Verteilungsfunktion der Knotengrade P(k) (bzw. N(k)) ist eine wichtige das Netzwerk charakterisierende Größe. Sie gibt an, wie groß der Anteil an Netzwerkknoten mit Knotengrad k ist. Bei realen (endlichen) Netzwerken ist diese Funktion keine kontinuierliche, sondern eine diskrete Funktion. In dem rechten Beispiel besitzt die Verteilungsfunktion das folgende Aussehen: P(k) 0,70 0,60 0,50 0,40 0,30 0,20 0,10 k 8 1 k 9 2 k 1 1 k 2 3 k4 2 k 5 1 k 3 1 k 14 7 k 6 1 k 7 1 0, k

35 Netzwerk-Klassen Aufgrund ihrer unterschiedlichen Eigenschaften unterscheidet man die folgenden Netzwerk-Klassen: i. Zufällige Netzwerke Die einzelnen Kanten bei zufälligen Netzwerke werden von den Knoten (Spielern) nach einem rein zufälligen Muster ausgewählt. ii. Kleine Welt -Netzwerke (small-world networks) i. Kleine Welt -Netzwerke zeichnen sich durch einen kleinen Wert der durchschnittlichen kürzesten Verbindung zwischen den Knoten des Netzwerkes und einem großen Wert des Clusterkoeffizienten aus. iii. Eponentielle Netzwerke iv. Skalenfreie Netzwerke

36 Netzwerke in der Realität Netzwerke finden sich in den unterschiedlichsten sozialen, physikalischen und biologischen Systemen o Biologische Netzwerke o Protein- und Gennetzwerke o Soziale Netzwerke o Beziehungs- und Freundschaftsnetzwerke o Netzwerke von Geschäftsbeziehungen und Firmenbeteiligungen o Internetbasierte, soziale Web2.0 Netzwerke o Technologische Netzwerke o Transportnetzwerke (Flug-, Zugrouten) o Internetverbindungen zwischen Computerservern o Informationsnetzwerke o Wissensnetzwerke, Verlinkungen von Internetseiten o Zitationsnetzwerke von wissenschaftlichen Artikeln o Linguistische Netzwerke

37 Beispiel eines kompleen Netzwerks

38 Frankfurt als mächtiger Knoten der Informationsströme Internet-Knoten Das Internet stellt ein skalenfreies Netwerk. Trägt man die 80 wichtigsten Internet-Knoten sortiert auf, so erhält man den typischen Verlauf eines skalenfreien Netzwerks. Frankfurt am Main mit seinem Internet-Knoten DE-CIX ist in der veralteten Grafik an Stelle 2, laut Wikipedia ist er jetzt sogar auf Rang 1 Beispiel eines kompleen Netzwerks

39 Die Frankfurter Wertpapierbörse (FWB) ist die bedeutendste deutsche Börse mit Sitz in Frankfurt am Main. Betreiberin und Träger ist die Deutsche Börse AG. Im Jahr 2000 wurde die Neue Börse im Industriehof in Frankfurt am Main in einem neuen Gebäude bezogen. Im Jahr 2005 wurden an den deutschen Börsen rund 3,8 Billionen Euro umgesetzt. Dabei entfielen vom Gesamtumsatz rund 3,2 Billionen Euro auf Aktien, Optionsscheine und börsengehandelte Fonds und rund 615 Milliarden Euro auf Anleihen. Der Aktienumsatz betrug 1,3 Billionen Euro, bei deutschen Aktien entfallen rund 98 % des Handels auf die Frankfurter Wertpapierbörse und Xetra, das elektronische Handelssystem der Deutschen Börse. Im Oktober 2008 entfielen 97 % der Umsätze in deutschen Aktien auf Xetra und die Frankfurter Parkettbörse. Bei ausländischen Aktien liefen über 86 % des Umsatzes über Xetra und den Präsenzhandel.'

40 Zitationsnetzwerke Wissenschaftliche Artikel Internetseiten

41 Zitationsnetzwerk wissenschaftlicher Artikel

42 Schematische Darstellung des implementierten Zitationsnetzwerks

43 Das Java Simulationsapplet

44 Vergleich des simulierten Artikelnetzwerks mit empirischen Daten Das auf der Artikelebene simulierte Zitationsnetzwerk (Abbildung b) stimmt gut mit der in Realität beobachteten Netzwerkstruktur (Abbildung a) überein. In Abbildung a sind die Zitationsnetzwerke der Zeitschrift Physical Review D und der Datenbank ISI (Institute of scientific Information) aufgetragen.

45 Der Atlas der Wissenschaft

46 Der Atlas der Wissenschaft

47 Netzwerkstrukturen in unterschiedlichsten Systemen

48 Netzwerkstrukturen in unterschiedlichsten Systemen

49 Verlinkungswahrscheinlichkeit p

50 Zufällige Netzwerke Verteilungsfunktion der Knotengrade P(k)

51 Simulation und Darstellung von kompleen Netzwerken mit Python (Version 1)

52 Python (Version 2)

53 Python (Version 3)

54 Python (Version 3)

55 Eponentielle und Skalenfreie Netzwerke Bei eponentiellen und Skalenfreien Netzwerken besitzen viele Knoten wenig Kanten und einige wenige Knoten sehr viele Kanten. Im folgenden wollen wir die Konstruktion eines solchen Netzwerks mittels einer Agenten-basierten Computersimulation betrachten:

56 Konstruktion eines Skalenfreien Netzwerks Das im folgenden konstruierte skalenfreie Netzwerk besitz zwei wesentliche Eigenschaften: Zeitliches Anwachsen der Knoten Die Kantenwahl eines neu in das Netzwerk hinzukommenden Knotens erfolgt nach dem Prinzip des Preferential Attachment (Die Knoten die schon viele Kanten haben bekommen mit einer höheren Wahrscheinlichkeit eine neue Kante, als die Knoten die bisher keinen, oder wenige Kanten aufweisen können)

57 Das Java-Applet der Netzwerksimulation

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 01.12.2017 7. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 5. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 5. Vorlesung Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM 0.0 JOHANN WOLFGANG GOETHE UNIVERSITÄT 7..07 5. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 6. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 6. Vorlesung Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 23.11.2018 6. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Dr. Matthias Hanauske Institut für Wirtschaftsinformatik Goethe-Universität Frankfurt am Main Grüneburgplatz 1, 60323 Frankfurt

Mehr

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Dr. Matthias Hanauske Institut für Wirtschaftsinformatik Goethe-Universität Frankfurt am Main Grüneburgplatz, 6033 Frankfurt

Mehr

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Dr. Matthias Hanauske Institut für Wirtschaftsinformatik Goethe-Universität Frankfurt am Main Grüneburgplatz 60 Frankfurt

Mehr

Allgemeine Relativitätstheorie mit dem Computer. 1. Vorlesung

Allgemeine Relativitätstheorie mit dem Computer. 1. Vorlesung Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 21. APRIL, 2017 1. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 11. MAI, 2017 5. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Networks, Dynamics, and the Small-World Phenomenon

Networks, Dynamics, and the Small-World Phenomenon Seminar aus Data und Web Mining Mining Social and Other Networks Sommersemester 2007 Networks, Dynamics, and the Small-World Phenomenon, Eine kleine Welt? Ein Erlebnis das wahrscheinlich fast jedem schon

Mehr

Geometrie in der Spieltheorie

Geometrie in der Spieltheorie Evolutionäre Spieltheorie November 3, 2011 Evolution der Spieltheorie John von Neumann, Oskar Morgenstern 1944: The Theory of Games and Economic Behavior John Nash 1950: Non-cooperative Games Nash Gleichgewicht:

Mehr

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26 Spieldynamik Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kap. 8 Simon Maurer Saarbrücken, den 13.12.2011 1 / 26 Ablauf 1 Imitationsdynamik 2 Monotone Auszahlung

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 04. MAI, 2017 4. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011 Asymmetrische Spiele Eric Barré 13. Dezember 2011 Gliederung 1 Einführung Allgemeines Definition Begründung Nash-Gleichgewicht 2 Kampf der Geschlechter Allgemein Auszahlungsmatrix Nash-Gleichgewicht Beispiel

Mehr

Ausarbeitung zum Seminarvortrag Skalenfreie Netze

Ausarbeitung zum Seminarvortrag Skalenfreie Netze Ausarbeitung zum Seminarvortrag Skalenfreie Netze Jens Arnold 14.07.2005 Inhaltsverzeichnis 1 Einleitung 2 2 Skalenfreie Netze in der Realität 2 2.1 Beschreibung komplexer Netzwerke.....................

Mehr

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 4. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 4. Vorlesung Physik der sozio-ökonomischen Syseme mi dem Compuer PC-POOL RAUM 0.0 JOHANN WOLFGANG GOETHE UNIVERSITÄT 0..07 4. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG GOETHE

Mehr

Spatial Games. Vortrag im Rahmen der Vorlesung Spieltheorie von M.Schottenloher. Anne-Marie Rambichler, Christoph Wichmann. 23.

Spatial Games. Vortrag im Rahmen der Vorlesung Spieltheorie von M.Schottenloher. Anne-Marie Rambichler, Christoph Wichmann. 23. Spatial Games Vortrag im Rahmen der Vorlesung Spieltheorie von M.Schottenloher Anne-Marie Rambichler, Christoph Wichmann 23. März 2009 Anne-Marie Rambichler, Christoph Wichmann () Spatial Games 23. März

Mehr

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.

Mehr

Graphentheorie 2. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Kantenzüge Small-World Networks Humor SetlX

Graphentheorie 2. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Kantenzüge Small-World Networks Humor SetlX Graphentheorie 2 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 26 Diskrete Strukturen Graphentheorie 2 Slide /23 Agenda Hausaufgaben Kantenzüge Small-World Networks Humor SetlX Diskrete Strukturen

Mehr

Netzwerkverbindungsspiele

Netzwerkverbindungsspiele Netzwerkverbindungsspiele Algorithmische Spieltheorie Sommer 2017 Annamaria Kovacs Netzwerkverbindungsspiele 1 / 12 Local Connection Spiel Computer (oder autonome Systeme) sind die Spieler (Knoten). Sie

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Rational Choice Theory

Rational Choice Theory Rational Choice Theory Rational Choice and Rationale Entscheidung ist eine Sammelbezeichnung für verschiedene Ansätze in den Wirtschafts- und Sozialwissenschaften. Generell schreiben diese Ansätze handelnden

Mehr

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache

Mehr

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Dr. Matthias Hanauske Institut für Wirtschaftsinformatik Goethe-Universität Frankfurt am Main Grüneburgplatz 1, 60323 Frankfurt

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 2 Übung zur Vorlesung Modellierung und Simulation 3 (WS 2013/14) Prof Dr G Queisser Markus Breit, Martin Stepniewski Abgabe: Dienstag,

Mehr

x=r cos y=r sin } r2 =x 2 y 2

x=r cos y=r sin } r2 =x 2 y 2 6. Grenzzyklen Grenzzyklen eistieren in Systemen, die nach einer äußeren Störung wieder ein stabiles periodisches Verhalten annehmen. Sie sind eine weitere Ursache für periodisches Verhalten. 6.1. Modell

Mehr

D Spieltheorie und oligopolistische Märkte

D Spieltheorie und oligopolistische Märkte D Spieltheorie und oligopolistische Märkte Verhaltensannahmen in der Markttheorie, die bisher analysiert wurden Konkurrenz: viele sehr kleine Wirtschaftssubjekte, die für sich genommen keinen Einfluss

Mehr

Das Paket raeuber_beute_modelle enthält 3 Modelle mit denen das Verhalten von Lotka-Volterra-Systemen simuliert werden kann.

Das Paket raeuber_beute_modelle enthält 3 Modelle mit denen das Verhalten von Lotka-Volterra-Systemen simuliert werden kann. Räuber Beute Modell 1. Versionsgeschichte: Version 0.1 2. Aufgabenstellung für das Modell Das Paket raeuber_beute_modelle enthält 3 Modelle denen das Verhalten von Lotka-Volterra-Systemen simuliert werden

Mehr

Auslastungs- und Potenzialspiele

Auslastungs- und Potenzialspiele Definition Existenz Konvergenzzeit Matroidspiele Algorithmische Spieltheorie Sommer 2017 Definition Existenz Konvergenzzeit Matroidspiele Auslastungsspiele Existenz eines reinen Nash-Gleichgewichtes Konvergenzzeit

Mehr

Local Search Algorithmen 1

Local Search Algorithmen 1 Local Search Algorithmen 1 Seminar über Algorithmen Manuel Gellfart 18.05.2012 Fachbereich Mathematik und Informatik 18.05.2012 2 Gliederung 1. Einleitung 2. Theorie 3. Beispiel: Vertex Cover 4. Beispiel:

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdarstellungen Maike Buchin 0.6.017 Graphen Motivation: Graphen treten häufig als Abstraktion von Objekten (Knoten) und ihren Beziehungen (Kanten) auf. Beispiele: soziale

Mehr

Populationsdynamik mit grafischer Modellbildung

Populationsdynamik mit grafischer Modellbildung Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik Populationsdynamik mit grafischer Modellbildung Bachelorarbeit im Studiengang polyvalenter Bachelor Lehramt im

Mehr

Übungen mit dem Applet Rangwerte

Übungen mit dem Applet Rangwerte Rangwerte 1 Übungen mit dem Applet Rangwerte 1 Statistischer Hintergrund... 2 1.1 Verteilung der Einzelwerte und der Rangwerte...2 1.2 Kurzbeschreibung des Applets...2 1.3 Ziel des Applets...4 2 Visualisierungen

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer 5. und 6. Vorlesung Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 12. MAI, 2017 MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer Vorlesung 10 Allgemeine Relativitätstheorie mit dem Computer PC-Pool Raum 01.120 Johann Wolfgang Goethe Universität 20. Juni, 2016 Matthias Hanauske Frankfurt Institute for Advanced Studies Johann Wolfgang

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Komplexe Netzwerke Einführung

Komplexe Netzwerke Einführung Ernst Moritz Arndt Universität Greifswald 17. 4. 2009 Komplexe Netzwerke Einführung Dr. Matthias Scholz www.network-science.org/ss2009.html 1 Komplexe Netzwerke Fachübergreifendes Gebiet: Physik, Mathematik,

Mehr

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum.

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Fassung vom 1. Dezember 1 Weitere Materialien sind erhältlich unter: http://www.rub.de/spieltheorie

Mehr

Mathematisches Modellieren. snowdrift game. Lukas Grossar Alexander Jesner

Mathematisches Modellieren. snowdrift game. Lukas Grossar Alexander Jesner Mathematisches Modellieren snowdrift game Lukas Grossar Alexander Jesner 26. Juli 2009 1 Einführung Die Spieltheorie hat breite Verwendung in der Modellbildung gefunden und wird auch für quantitative Studien

Mehr

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien Probleme bei reinen Strategien Bisher hatten wir angenommen, daß sich jeder Spieler b auf genau eine Strategie S b S b festlegt. Das ist nicht immer plausibel. Nash Gleichgewichte in gemischten Strategien

Mehr

Spieltheorie. Kapitel 6 Evolutionär stabile Strategien

Spieltheorie. Kapitel 6 Evolutionär stabile Strategien Kapitel 6 2 Agenda Einführung Klassische Entscheidungstheorie Nash-Gleichgewichte in reinen Strategien Nash-Gleichgewichte in gemischten Strategien Anwendungen des Nash-Konzepts Alternative Gleichgewichtskonzepte

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Reaktions-Diffusions-Modelle

Reaktions-Diffusions-Modelle Reaktions-Diffusions-Modelle Gegenstück zu zellulären Automaten: ebenfalls raumorientiert, mit fester Nachbarschaftsrelation und kontextsensitiven Regeln aber: kontinuierlich in Raum, Zeit und Strukturen

Mehr

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele Kapitel 3 Matrix Spiele Seminar Spieltheorie, SS 006 3. Matrix-Spiele Vorgegeben sei ein Nullsummenspiel Γ = (S, T, φ, φ mit endlichen Strategiemengen S und T, etwa S = (s,..., s m und T = (t,..., t n.

Mehr

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Diskrete Strukturen c Javier Esparza und Michael Luttenberger Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Montag 16 Oktober, 2017 p.2 Was

Mehr

6. Vorlesung. Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell. Kompression des Web-Graphen

6. Vorlesung. Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell. Kompression des Web-Graphen 6. Vorlesung Web Struktur I Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell Kompression des Web-Graphen Seite 146 Beobachtete Phänomene Wenige Multi-Milliardäre,

Mehr

TITELMASTERFORMAT DURCH KLICKEN BEARBEITEN

TITELMASTERFORMAT DURCH KLICKEN BEARBEITEN TITELMASTERFORMAT DURCH KLICKEN BEARBEITEN PROSEMINAR SOZIOLOGISCHE FORSCHUNG Vorlesung Wirtschaftssoziologie VL 3: Sind wir alle Egoisten? - Exemplarische Anwendungen zum Kapitel ältere Klassiker der

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Motivation Kenngrößen von Graphen Modelle. Small Worlds. in Vorlesung Semantische Suche in P2P-Netzwerken. Florian Holz

Motivation Kenngrößen von Graphen Modelle. Small Worlds. in Vorlesung Semantische Suche in P2P-Netzwerken. Florian Holz Small Worlds in Vorlesung Florian Holz 14.06.2005 in Vorlesung Small Worlds Florian Holz bekannte Arten der Vernetzung zur Zusammenarbeit (Graphen) regelmäßige, z.b. parallele Hardwarestrukturen vollständige

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Mathematische Modellierung Lösungen zum 3. Übungsblatt

Mathematische Modellierung Lösungen zum 3. Übungsblatt Mathematische Modellierung Lösungen zum Klaus G. Blümel Lars Hoegen 12. November 25 Aufgabe 1 (a) Die Schadstoffkonzentration zum Zeitpunkt t = beträgt s =, 8% = 8 =, 8. Es werden pro Monat 5% der jeweiligen

Mehr

von Dennis Aumiller Proseminar Technische Informatik Sommersemester 2014 Datum:

von Dennis Aumiller Proseminar Technische Informatik Sommersemester 2014 Datum: von Dennis Aumiller Proseminar Technische Informatik Sommersemester 2014 Datum:09.07.2014 Lehrstuhl für Automation Prof. Dr. sc. techn. Essameddin Badreddin Betreuer: Alexander Alexopoulos 1 1. Motivation

Mehr

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme Diskretes dynamisches Chaos. Einleitung: Diskrete dynamische Systeme Verschiedene Problemstellungen können zu zeitlich diskreten Systemen (Differenzengleichungen) führen: Zinseszinsrechnung: x(n+) = x(n)

Mehr

Graphische Spiele. M i (p) M i (p[i : p i]) M i (p) + ε M i (p[i : p i])

Graphische Spiele. M i (p) M i (p[i : p i]) M i (p) + ε M i (p[i : p i]) Seminar über Algorithmen 19. November 2013 Michael Brückner Graphische Spiele Wolfgang Mulzer, Yannik Stein 1 Einführung Da in Mehrspielerspielen mit einer hohen Anzahl n N an Spielern die Auszahlungsdarstellungen

Mehr

die Relevanz von Webseiten bestimmt Alexander Pohl

die Relevanz von Webseiten bestimmt Alexander Pohl Wie die Relevanz von Webseiten bestimmt Alexander Pohl Gliederung 1. Einleitung 2. Das Web als Graph 3. Das Random Surfer Modell 4. Gleichgewicht im Random Surfer Modell (?) 5. Vervollständigung des Modells:

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Programmierung 2 Studiengang MI / WI

Programmierung 2 Studiengang MI / WI Programmierung 2 Studiengang MI / WI Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 Fachbereich Automatisierung

Mehr

Geburtenratenselektion

Geburtenratenselektion Geburtenratenselektion Laura Kursatz 17.01.2012 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Inhaltsverzeichnis 1 Allgemeines

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Geistige Anforderungen im Studium

Geistige Anforderungen im Studium Geistige Anforderungen im Studium Einleitung Unter geistigen Anforderungen ist zu verstehen, wie viel Aufmerksamkeit, Konzentration, Präzision und Sorgfalt das gewählte Studium erfordert und ob mehrere

Mehr

8 Experimentelle Spieltheorie. 8.1 Einleitung. Literaturhinweise zu Kapitel 8:

8 Experimentelle Spieltheorie. 8.1 Einleitung. Literaturhinweise zu Kapitel 8: Spieltheorie (Winter 2008/09) 8-1 Prof. Dr. Klaus M. Schmidt 8 Experimentelle Spieltheorie Literaturhinweise zu Kapitel 8: Fehr, Ernst und Simon Gächter, Fehr, E. and Gaechter, S., Fairness and Retaliation:

Mehr

Bericht zur Mathematischen Eingangsprüfung im Mai 2008

Bericht zur Mathematischen Eingangsprüfung im Mai 2008 Bericht zur Mathematischen Eingangsprüfung im Mai 8 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 7. Mai 8 fand die Mathematische Eingangsprüfung nach der Prüfungsordnung 3. der DAV statt. Es waren

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein Seminar über Algorithmen 11.02.2014 Julian Ritter Evolutionäre Spiele Wolfgang Mulzer, Yannik Stein 1 Idee Motivation aus der Natur: Interesse der theoretischen Biologie an einer Bevölkerung, die um Ressourcen

Mehr

Zusatzmaterial zu Kapitel 6

Zusatzmaterial zu Kapitel 6 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG Zusatzmaterial zu Kapitel 6 Zu Kapitel 62: Methoden zur Stabilitätsprüfung Einleitung Bei der Feststellung der asymptotischen Stabilität (siehe Kapitel 63)

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

2.4 Gekoppelte lineare Differentialgleichungen

2.4 Gekoppelte lineare Differentialgleichungen 48 Kapitel 2 Lineare Algebra II 24 Gekoppelte lineare Differentialgleichungen Die Untersuchung der Normalformen von Matrizen soll nun auf die Lösung von gekoppelten Differentialgleichungen angewendet werden

Mehr

Seminarankündigung SS Lehrstuhlübergreifendes Seminar: Connections Netzwerke unter ökonomischen Aspekten

Seminarankündigung SS Lehrstuhlübergreifendes Seminar: Connections Netzwerke unter ökonomischen Aspekten Universität Karlsruhe (TH) Institut für Wirtschaftstheorie und Operations Research Lehrstuhl Prof. Dr. Siegfried Berninghaus Lehrstuhl Prof. Dr. Clemens Puppe Prof. Dr. S. K. Berninghaus Prof. Dr. C. Puppe

Mehr

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht Dynamische Spiele mit unvollständiger Information Perfektes Bayesianisches Gleichgewicht Spieltheorie University of Bonn Dezsö Szalay Dieser Teil basiert auf Kapitel 4 "Gibbons (1992), A primer in Game

Mehr

Bimatrix-Spiele. Sarah Hidlmayer

Bimatrix-Spiele. Sarah Hidlmayer Bimatrix-Spiele Sarah Hidlmayer 13.12.2011 Literatur: Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics (Ch. 11), Cambridge. Bimatrix-Spiele 1 Dynamik für Bimatrix-Spiele 2 Partnerschaftsspiele

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Algorithmische Spieltheorie. Martin Gairing

Algorithmische Spieltheorie. Martin Gairing Algorithmische Spieltheorie Martin Gairing Folien zur Vorlesung vom 26.04.2004 Organisatorisches: Vorlesung Montags, 14:15-15:45 Uhr Übungen Montags, 16:00-17:00 Uhr Folien zur Vorlesung unter http://www.upb.de/cs/ag-monien/lehre/ss04/spieltheo/

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 9. Vorlesung 26.06.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Inhalte Kurze Geschichte der

Mehr

Kantengraphen und Planare Graphen. Seminararbeit

Kantengraphen und Planare Graphen. Seminararbeit Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK 621.378 SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018 Inhaltsverzeichnis 1

Mehr

Dynamische Systeme in der Mikrobiologie

Dynamische Systeme in der Mikrobiologie Dynamische Systeme in der Mikrobiologie Gruppe G Mi: Severine Hurni, Esther Marty, Giulia Ranieri, Matthias Engesser, Nicole Konrad Betreuer: Roman Kälin 1. Einleitung Ein dynamisches System ist ein System,

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Taube und Falke. Czauderna Peter, Duerre Max. Taube und Falke p.1/15

Taube und Falke. Czauderna Peter, Duerre Max. Taube und Falke p.1/15 Taube und Falke Czauderna Peter, Duerre Max Taube und Falke p.1/15 Taube und Falke: Spielidee Das Tauben und Falken Modell ist ein symmetrisches -Personenspiel mit S 1 = S =. Motivation: In einer Population

Mehr

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 4 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 4 20. März 2008 1 / 64 Verfeinerungen des Nash GGs Das Perfekte Bayesianische

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Attached! Proseminar Netzwerkanalyse SS 2004 Thema: Biologie

Attached! Proseminar Netzwerkanalyse SS 2004 Thema: Biologie Rheinisch-Westfälischen Technischen Hochschule Aachen Lehr- und Forschungsgebiet Theoretische Informatik Prof. Rossmanith Attached! Proseminar Netzwerkanalyse SS 2004 Thema: Biologie Deniz Özmen Emmanuel

Mehr

Klassische Themen der Computerwissenschaft. Spieltheorie: Ein kleiner Ausflug zu NIM & Co Literatur:

Klassische Themen der Computerwissenschaft. Spieltheorie: Ein kleiner Ausflug zu NIM & Co Literatur: Klassische Themen der Computerwissenschaft Spieltheorie: Ein kleiner Ausflug zu NIM & Co Literatur: Winning Ways for Your Mathematical Plays E.R. Berlekamp, J.H. Conway and R.K. Guy: Second Edition 2001,

Mehr

Graphentheorie. Zufallsgraphen. Zufallsgraphen. Zufallsgraphen. Rainer Schrader. 23. Januar 2008

Graphentheorie. Zufallsgraphen. Zufallsgraphen. Zufallsgraphen. Rainer Schrader. 23. Januar 2008 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 3. Januar 008 1 / 45 / 45 Gliederung man könnte vermuten, dass ein Graph mit großer chromatischer Zahl einen dichten Teilgraphen enthalten

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Auslastungspiele Smoothness Dichte Spiele Intuition und Grenzen. Preis der Anarchie. Algorithmische Spieltheorie. Sommer 2017

Auslastungspiele Smoothness Dichte Spiele Intuition und Grenzen. Preis der Anarchie. Algorithmische Spieltheorie. Sommer 2017 Algorithmische Spieltheorie Sommer 2017 Erinnerung: für reine Nash-Gleichgewichte: Strategisches Spiel Γ, soziale Kosten cost(s) für Zustand s von Γ Betrachte Σ RNG als die Menge der reinen Nash-Gleichgewichte

Mehr

Spieltheorie. Yves Breitmoser, EUV Frankfurt (Oder)

Spieltheorie. Yves Breitmoser, EUV Frankfurt (Oder) Spieltheorie Yves Breitmoser, EUV Frankfurt (Oder) Was ist Spieltheorie? Was ist Spieltheorie? Analyse strategischer Interaktionen Was ist Spieltheorie? Analyse strategischer Interaktionen Das heißt insbesondere

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann

Mehr

Mathematische Modelle in den Naturwissenschaften Proseminar

Mathematische Modelle in den Naturwissenschaften Proseminar Mathematische Modelle in den Naturwissenschaften Proseminar Johannes Kepler Universität Linz Technische Mathematik Der Algorithmus von Ford und Fulkerson Ausgearbeitet von Julia Eder, Markus Eslitzbichler,

Mehr