Zusatzmaterial zu Kapitel 6

Größe: px
Ab Seite anzeigen:

Download "Zusatzmaterial zu Kapitel 6"

Transkript

1 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG Zusatzmaterial zu Kapitel 6 Zu Kapitel 62: Methoden zur Stabilitätsprüfung Einleitung Bei der Feststellung der asymptotischen Stabilität (siehe Kapitel 63) bzw der BIBO- Eigenschaft (siehe Kapitel 64) geht es prinzipiell darum, ob ein Polynom n-ten Grades mit reellen Koeffizienten, also n (s) :=a n s n + a n s n + a n 2 s n a s + a 0 () ausschliesslich Nullstellen in der offenen linken s-halbebene besitzt, und damit ein sogenanntes Hurwitz-Polynom ist Zur Erinnerung: Mit Hilfe des Routh-bzw Hurwitz-Kriteriums kann man ohne Ermittlung der Nullstellen des Polynoms n (s) entscheiden, ob n (s) ein Hurwitz-Polynom ist! Es handelt sich dabei um algebraische Tests, bezogen auf die Koeffizienten des vorliegenden Polynoms Die zu erfüllenden notwendigen und hinreichenden Bedingungen sind (ia nichtlineare) Ungleichungen bezüglich der Koeffizienten a i Zur Formulierung des Routh-bzw des Hurwitz-Kriteriums betrachtet man folgende zwei Polynome: : = a n s n + a n 2 s n 2 + a n 4 s n 4 + (2) δ n (s) : = a n s n + a n 3 s n 3 + a n 5 s n 5 + Sie enthalten jeweils die geraden bzw ungeraden Potenzen von s des Polynoms n (s) 2 Stabilitätsprüfung anhand einer Kettenbruch-Entwicklung Hierbei geht es um ein einprägsames und leicht durchzuführendes Verfahren, um zu entscheiden, ob n (s) ein Hurwitz-Polynom ist Ausgehend von den Polynomen und δ n (s) nach (2) bildet man den Quotienten δ n (s) Diesen entwickelt man nun in einen sogenannten Kettenbruch: δ n (s) = α s + α 2 s + α 3 s + + α ns (3) Das bedeutet, man ermittelt durch fortlaufende Division die n Kettenbruchfaktoren α i Es gelten folgende Aussagen:

2 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG 2 ) n (s) ist genau dann ein Hurwitz-Polynom, wenn alle Kettenbruchfaktoren α i positiv sind, dh α i > 0 für i =, 2,,n 2) Falls kein α i gleich Null ist, gibt die Anzahl der positiven Kettenbruchfaktoren die Anzahl der Nullstellen von n (s), die einen negativen Realteil besitzen an 2 Beispiel Wir betrachten folgendes Polynom 4 Grades Hieraus bilden wir die Polynome nach (2): Für den Quotienten δ 4 (s) δ 3 (s) δ 4 (s) δ 3 (s) 4 (s) =2s 4 + s 3 +3s 2 + s +2 δ 4 (s) = 2s 4 +3s 2 +2 δ 3 (s) = s 3 + s ergibt sich dann folgende Kettenbruchentwicklung: = 2s4 +3s 2 +2 s 3 + s = 2s + s + s 2 +2 s =2s + s2 +2 s 3 + s =2s + s 3 + s s 2 +2 =2s + s + s + 05s Das heißt: α =2, α 2 =, α 3 = und α 4 = 05 Daraus folgt: 4 (s) ist kein Hurwitz-Polynom Es besitzt 2 Nullstellen in der linken offenen s-ebene, da 2 Koeffizienten α i positiv sind 22 Beispiel Wir betrachten das Polynom 3 Grades 3 (s) =s 3 4s 2 5s +6=(s 2)(s +)(s 3) Wir entwickeln den Quotienten δ 3 (s) δ 2 (s) := s3 5s 4s 2 +6 in einen Kettenbruch: s 3 5s 4s 2 +6 = 4 s + 65s 4s 2 +6 = 4 s + = 4s s s 3 s + 3/2s Das Polynom ist kein Hurwitz-Polynom und besitzt Nullstelle in der linken offenen s-ebene

3 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG 3 23 Zwei Hinweise Die Ermittlung der Koeffizienten α i entspricht der Auswertung zweireihiger Determinanten und ist äquivalent der Vorgehensweise bei der Erstellung des Routh-Tableaus Die entwickelte Form des Quotienten nach (3) entspricht der Reaktanzzweipolfunktion einer Schaltung in der sogenannten Cauer-Form Bei positiven Faktoren α i δ n (s) liegen aufgrund des Reaktanzsatzes von Cambell und Foster die Null- und Polstellen der Übertragungsfunktion auf der imaginären Achse Ferner liegen diese δ n (s) symmetrisch zum Nullpunkt und wechseln sich gegenseitig ab 3 Eine Stabilitäts-Normalform Die sogenannte Schwarz-Matrix besitzt die Form β S := 0 β β n 2 β n, (4) wobei β i reelle Parameter sind Man beachte, dass jede nichtderogatorische (n, n)-matrix mittels einer regulären Transformation in diese Form gebracht werden kann Zur Erinnerung: eine (n, n)-matrix heisst nichtderogatorisch, wenn deren Minimalpolynom den Grad n hat Ein Beispiel hierfür ist eine Matrix in Begleitform Es gilt folgender Satz: Unter der Voraussetzung, dass alle Parameter verschieden von Null sind, dh β i 6=0 i =0,, n gilt, ist die Anzahl der Eigenwerte von S, die einen negativen Realteil besitzen, gleich der Anzahl der positiven Werte der Zahlenfolge β n, β n β n 2, β n β n 2 β n 3,, β n β n 2 β n 3 β 0 (5) Es leuchtet dann ein, dass das charakteristische Polynom det(se S) der Matrix S genau dann ein Hurwitz-Polynom ist, wenn die Ungleichungen gelten! β i > 0 i =0,, n Zur Erinnerung: eine (n, n)-matrix heisst nichtderogatorisch, wenn deren Minimalpolynom den Grad n hat Ein Beispiel hierfür ist eine Matrix in Begleitform

4 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG 4 Wird demnach ein System durch dx dt = Sx beschrieben, so kann aufgrund des Vorzeichens der Parameter auf asymptotische Stabilität, bzw Instabilität geschlossen werden Man beachte, dass - im Gegensatz (!) zur Diagonalform - keine Voraussetzungen bezüglich der Vielfachheit der Eigenwerte der Systemmatrix nötig sind 3 Bemerkungen Die nachfolgenden Ausführungen sollen dem Verständnis des oben formulierten Satzes dienen und existierende Verbindungen zum klassischen Hurwitz- Stabilitätskriterium aufzeigen Es wird nun angenommen, dass beim Polynom n (s) nach Gleichung () der Koeffizient a n der Potenz s n gleich Eins ist Dies stellt zweifellos keine Einschränkung der Allgemeinheit dar Damit erhalten wir nach (2) die Polynome: : = s n + a n 2 s n 2 + a n 4 s n 4 + δ n (s) : = a n s n + a n 3 s n 3 + a n 5 s n 5 + Zur Erinnerung: Bei der Formulierung des Hurwitz-Kriteriums benutzt man die Polynome δ n (s) und und bildet folgende quadratische (n, n)-matrix H: a n a n 3 a n 5 a n 7 a n 2 a n 4 a n 6 H := 0 a n a n 3 a n 5 0 a n 2 a n 4 mit a n i =0für n i<0 0 a 0 Man betrachtet nun alle n nordwestlichen Unterdeterminanten H 3 := H := a n, H 2 := an a n 3 a n 2, a n a n 3 a n 5 a n 2 a n 4 0 a n a n 3,,H n := det(h) Nach dem Hurwitz-Kriterium ist n (s) genau dann ein Hurwitz-Polynom, wenn alle n nordwestlichen Unterdeterminanten H,H 2,H 3,,H n positiv sind Unter der Voraussetzung, dass H, H 2,,H n verschieden von Null sind, bildet man n reelle Zahlen β i (i =0,,n ) nach folgender Vorschrift: β n := H ; β n 2 := H 2 ; β H n 3 := H 3 (6) H H 2 β n ν = H ν 3H ν ν =4,,n H ν 2 H ν

5 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG 5 Mit deren Hilfe erzeugt man folgende (n, n)-matrix β S := 0 β β n 2 β n Es gilt dann: Die Matrix S besitzt n (s) als charakteristisches Polynom, dh det(se S) = n (s) (7) Aufgrund der Beziehung (7) leuchtet folgender Satz ein: Das charakteristische Polynom der Matrix S ist genau dann ein Hurwitz-Polynom, wenn gilt! β i > 0 Beispiel: Wir betrachten das Polynom 4 Grades 4 (s) =s s s2 + 2 s + und konstruieren die zugehörige Schwarz-Matrix S Hierzu bilden wir die zugehörigen Hurwitz-Determinanten: H := 05, H 2 := = 4, und H 3 := H 4:= = = 8, =H 3 = 8 Nachdem H 3 negativ ist, ist das betrachtete Polynom kein Hurwitz-Polynom Wir wollen nun die Schwarz-Matrix berechnen: hierzu bilden wir die reellen Zahlen β i (i =0,,3) nach der Vorschrift (6): β 3 := H = 2 ; β 2 := H 2 H = 2 ; β := H 3 H H 2 = β 0 = H H 4 H 2 H 3 =2

6 LITERATUR 6 Die Schwarz sche Matrix lautet dann nach (4): S = Bilden wir die Folge nach (5), so ergeben sich die Elemente β 3 = 2, β 3β 2 = 4, β 3β 2 β = 4, und β 3β 2 β β 0 = 2 Daraus folgern wir - nachdem 2 der gebildeten Elemente positiv sind - dass 2 Eigenwerte von S, dh2 Nullstellen von 4 (s), einen negativen Realteil aufweisen Literatur [] Schwarz HR: Eine Methode zur Bestimmung der Stabilität von Matrix- Differentialgleichungen Zeitschrift für Angewandte Mathematische Physik, vol 7, 956, S [2] Rupprecht W: Netzwerksynthese; Entwurfstheorie linearer passiver und aktiver Zweipole und Vierpole Springer-Verlag Berlin, Heidelberg, New York 972

Zusatzmaterial zu Kapitel 4

Zusatzmaterial zu Kapitel 4 1 ERMITTLUNG DER TRANSITIONSMATRIX MIT DER SYLVESTER-FORMEL 1 Zusatzmaterial zu Kapitel 4 1 Ermittlung der Transitionsmatrix mit der Sylvester- Formel Wir nehmen an, dass das Zustandsmodell eines linearen

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am TU Graz, Institut für Regelungs- und Automatisierungstechni Schriftliche Prüfung aus Systemtechni am 29.0.206 Name / Vorname(n): Matriel-Nummer: Aufgabe A A2 A3 A4 A5 A6 A7 A8 Summe erreichbare Punte 2

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

Kapitel 3 Der Fundamentalsatz der Algebra

Kapitel 3 Der Fundamentalsatz der Algebra Kapitel 3 Der Fundamentalsatz der Algebra Dieser berühmte Satz wurde erstmals von C.F. Gauß 1801 in seiner Disseration bewiesen. Satz 3.1. Jedes nichtkonstante, komplexe Polynom n-ten Grades p(z) = n a

Mehr

H.J. Oberle Differentialgleichungen I WiSe 2012/ Stabilität. Wir betrachten ein allgemeines DGL-System erster Ordnung:

H.J. Oberle Differentialgleichungen I WiSe 2012/ Stabilität. Wir betrachten ein allgemeines DGL-System erster Ordnung: H.J. Oberle Differentialgleichungen I WiSe 2012/13 A. Allgemeines. 8. Stabilität Wir betrachten ein allgemeines DGL-System erster Ordnung: y (t) = f(t, y(t)) (8.1) mit y(t) R n, hinreichend glatter rechter

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich!

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich! Aufgabe 1: Verständnisfragen (14 Punkte) Beantworten Sie die folgenden Fragen bitte kurz und präzise Es sind keine längeren Ausführungen erforderlich! Erläutern Sie die Begriffe Regelabweichung und Steuergröße

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

A1-1 Kubische Gleichung

A1-1 Kubische Gleichung A1-1 Kubische Gleichung Wir betrachten das kubische Polynom p(x) = x 3 + a 2 x 2 + a 1 x + a 0, x R bzw. die kubische Gleichung mit reellen Koeffizienten a 0, a 1 und a 2. x 3 + a 2 x 2 + a 1 x + a 0 =

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg. Übungsaufgaben 13. Übung: Woche vom 23. 1.-27. 1. 2017 (Lin.Alg. II): Heft Ü 3: 1.1.3; 1.1.7 (a,b); 1.1.8; 1.1.11; 3.4.3 (b); 1.3.3 (c); 1.2.3 (b,d); Hinweis 1: 3. Test (Integration, analyt. Geom.) ist

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Anwendungen in der Physik: Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors - Normalmoden

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 16: Interpretation der Übertragungsfunktion Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übertragungsfunktion Bedeutung der Nullstellen Bei der Interpretation

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :=

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B := Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 2. Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: 0 2 0 0 0 2 0 0 0 0 0 0 0

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale Peychyn Lai 10. Oktober 2007 1 Einleitung Wir haben im letzten Vortrag die Weierstrass sche -Funktion kennengelernt, die

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

L s K s z 1 s z 2 s z m s p 1 s p 2 s p n

L s K s z 1 s z 2 s z m s p 1 s p 2 s p n apitel 6 Das Wurzelortsverfahren Wie wir in apitel 3 gesehen haben, ist eine notwendige und hinreichende Bedingung für die Stabilität von linearen Eingrößensystemen, dass die Polstellen der Übertragungsfunktion

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Quadratische Funktion - Übungen

Quadratische Funktion - Übungen Quadratische Funktion - Übungen 1a) "Verständnisfragen" zu "Scheitel und Allgemeine Form" - mit Tipps. Teilweise: Trotz der Tipps nicht immer einfach! Wir haben die Formeln: Allgemeine Form: y = a x 2

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

1. Aufgabe 11 Punkte. Musterlösung DGL f. Ing., 10. April Aus

1. Aufgabe 11 Punkte. Musterlösung DGL f. Ing., 10. April Aus Musterlösung DGL f. Ing., 0. April 204. Aufgabe Punkte Aus 2 λ 0 λ 0 = 0 2 λ = 0 = (2 λ)( λ) 2 ( λ)( ) = (2 λ)λ 2 λ = λ((2 λ)λ ) = λ(2λ λ 2 ) = λ( 2λ+λ 2 +) = λ(λ ) 2 ergeben sich der der einfache Eigenwert

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Geometrische Form des Additionstheorems

Geometrische Form des Additionstheorems Geometrische Form des Additionstheorems Jae Hee Lee 29. Mai 2006 Zusammenfassung Der Additionstheorem lässt sich mithilfe des Abelschen Theorems elegant beweisen. Dieser Beweis und die Isomorphie zwischen

Mehr

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen.

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen. 9 Lineare Algebra (SS 009) 49 Das charakteristische Polynom sei Produkt von linearen Polynomen 49 Das charakteristische Polynom sei Potenz eines linearen Polynoms Wir betrachten nun eine Matrix A, sodass

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 4.3.11 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform:

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform: 1. Aufgabe (9 Punkte) In dieser Aufgabe müssen Sie Ihre Antwort nicht begründen. Es zählt nur das Ergebnis. Tragen Sie nur das Ergebnis auf diesem Blatt im jeweiligen Feld ein. 0 1 3 a) Berechnen Sie die

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

Matrizentheorie. von F. R. Gantmacher. Mit 11 Abbildungen

Matrizentheorie. von F. R. Gantmacher. Mit 11 Abbildungen Matrizentheorie von F. R. Gantmacher Mit 11 Abbildungen 0 w VEB Deutscher Verlag der Wissenschaften Berlin 1986 Inhalt Erster Teil: Allgemeine Theorie Matrizen und Matrizenoperationen Definition der Matrix.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit KAPITEL 3 Grenzwerte und Stetigkeit 3.1 Grenzwerte..................................... 49 3.2 Stetigkeit....................................... 57 Lernziele 3 Grenzwerte ε-δ-definition des Grenzwerts,

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

Floquet Theorie II. 1 Einführung

Floquet Theorie II. 1 Einführung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 18.10.2011 Sebastian Monschang 1 Einführung Auf den Ergebnissen des ersten Vortrags basierend werden wir in diesem Vortrag gewöhnliche lineare Differentialgleichungssysteme

Mehr

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Vorlesung+ Übung: Mo/Mi/Fr. 8:15-9:45Uhr, SR 1, INF 205 Termin

Mehr