Lösungen 11. Aufgabenblatt

Größe: px
Ab Seite anzeigen:

Download "Lösungen 11. Aufgabenblatt"

Transkript

1 hr.elius: raphentheorie ( 2018/19) 1 ösungen 11. Aufgabenblatt 41. Aufgabe: und um den eihnachtsstern ir interpretieren den eihnachtsstern auf der ersten eite dieses Aufgabenblattes als einen raphen, dessen Ecken durch die ternchen dargestellt sind. ie arbe der anten soll im folgenden keine olle spielen. eantworte die folgenden ragen (natürlich mit egründung!): a) ässt sich der eihnachtsstern in einem ug und ohne iederholung zeichnen? ei einer positiven Antwort ist eine urchführung nicht erforderlich! raphentheoretisches roblem: ibt es eine Euler undtour bzw. eine Euler our in? A! ist offensichtlich zusammenhängend, und jede Ecke von ist gerade. olglich ist ein Euler raph nach (9.9), so dass es eine Euler undtour in gibt. b) ibt es einen undflug durch die ternenwelt des eihnachtssterns, bei dem jedes ternchen genau einmal überflogen wird? raphentheoretisches roblem: ibt es einen amilton reis in? EI! ie grün gezeichneten anten sind inzident zu Ecken vom rade 2 und gehören daher nach egel 1 (10.9) zu jedem amilton reis. a sie schon einen reis bilden, der nicht durch alle Ecken von verläuft, kann es nach egel (10.9) keinen amilton reis in geben. c) assen sich die ternchen des eihnachtssterns so mit den beiden arben gold und silbern färben, dass adjazente ternchen immer unterschiedlich gefärbt sind? raphentheoretisches roblem: ibt es eine 2 ärbung der Ecken von? Oder äquivalent dazu: Ist der raph bipartit? (8.) EI! In gibt es reiecke (jeweils zwei inzidente schwarze anten und eine rote ante). ach (8.7c) ist daher nicht bipartit. 42. Aufgabe: Eine eise um die elt ie Ecken des odekaeder raphen(eltkarte!) seien wie auf der Internet eite Ein amilton reis im odekaeder raphen der orlesung bezeichnet. ie uchstaben sind die Anfangsbuchstaben der amen von tädten, die zur eit von amilton eine edeutung für das britische Empire hatten. a) inde zwei verschiedene undreisen, die durch jede tadt genau einmal führen und die mit beginnen. eichne sie in zwei verschiedene ilder des odekaeder raphen ein. raphentheoretisches roblem: inde zwei amilton reise in dem odekaeder raphen, die als eilweg enthalten.

2 hr.elius: raphentheorie ( 2018/19), ösungen 11. Aufgabenblatt 2 b) egründe, dass es außer den in a) gefundenen keine weiteren undreisen gibt, die die angegebenen edingungen erfüllen. rundlage der Argumentation sind die egeln aus(10.9). ie grün gestrichelten anten, und können nach egel 2 gestrichen werden. ie blau gezeichneten anten müssen nach egel 1 zu jedem amilton reis gehören, die blau gestrichelten anten müssen gelöscht werden. olglich ist der Anfangsweg eines jeden amilton reises. on der Ecke aus gibt es zwei öglichkeiten: man kann nach oder nach gehen. 1. all: on aus gibt es unter erücksichtigung der egeln nur eine öglichkeit, einen amilton reis zu schließen. ies müsste aber noch etwas ausführlicher erklärt werden!

3 hr.elius: raphentheorie ( 2018/19), ösungen 11. Aufgabenblatt 2. all: on aus gibt es unter erücksichtigung der egeln nur eine öglichkeit, einen amilton reis zu schließen. ies müsste aber noch etwas ausführlicher erklärt werden! c) inde heraus, für welche tadt der uchstabe steht. Eine Internet echerche ergibt: steht für ienna (ien).

4 hr.elius: raphentheorie ( 2018/19), ösungen 11. Aufgabenblatt 4 4. Aufgabe: Euler Original iese Aufgabe bezieht sich auf die Originalarbeit von.euler, zu der es einen ink auf der omepage der eranstaltung gibt. Es soll das rückenproblem für eine andere tadt gelöst werden. a) eichne ig. auf der zweiten eite der Originalarbeit als einen raphen mit den Ecken A bis (tadtteile) und den anten a bis p (rücken, der uchstabe j fehlt). enutze dabei die ezeichnungsweise der ig.. l E i h g k e m A d n p c b o a f

5 hr.elius: raphentheorie ( 2018/19), ösungen 11. Aufgabenblatt b) Untersuche, ob es einen undweg durch die tadt gibt, bei dem jede rücke genau einmal überquert wird. egründe deine Antwort! raphentheoretisches roblem: ibt es eine Euler undtour in dem raphen? Γ() = (,4,4,,6,8) a zusammenhängend ist und ungerade Ecken hat, gibt es nach (9.6) keine Euler undtour in. c) enn es in b) keinen undweg gibt, gibt es dann wenigstens einen pazierweg, der über jede rücke genau einmal führt? enn ja, begründe und gib einen solchen pazierweg explizit an. raphentheoretisches roblem: ibt es eine Euler our in dem raphen? a zusammenhängend ist und genau 2 ungerade Ecken hat, gibt es nach (9.11) eine Euler our zwischen den beiden ungeraden Ecken und E, die mit ilfe des leury Algorithmus gefunden werden kann. ie änge einer jeden Euler our ist () = Aufgabe: Eine escherungstour ie in jedem ahr hat der eihnachtsmann am eiligabend einen ganz engen erminplan. Er hat noch genau 49 inuten nicht verplant. a bekommt er ganz unerwartet eine Anfrage, ob er noch weitere inder bescheren kann. iese inder wohnen in den Orten v 1,...,v, sein eschenkelager befindet sich in v 6. ie eiten (in inuten), die er mit seinem chlitten braucht, um von einem Ort zu einem anderen Ort zu kommen, sind in dem folgenden gewichteten raphen angegeben: v v 6 v v v 4 v 4

6 hr.elius: raphentheorie ( 2018/19), ösungen 11. Aufgabenblatt 6 a) önnte der eihnachtsmann die escherungstour, bei der er in v 6 startet, jeden Ort genau einmal besucht, jeweils inuten für eine escherung benötigt und nach v 6 zurückkehrt, noch in seinem erminplan unterbringen? a der eihnachtsmann an Orten jeweils inuten für die escherung benötigt, bleiben für die reine ahrtzeit 49 = 24 inuten übrig. aher ist das folgende roblem zu untersuchen: raphentheoretisches roblem: ibt es in dem raphen einen amilton reis vom esamtgewicht 24? ie benutzen den atz (11.11), um eine untere chranke für das minimale esamtgewicht eines amilton reises in zu bestimmen. azu müssen wir als erstes zeigen, dass überhaupt ein amilton raph ist: 1) ist der gewichtete vollständige raph 6 und daher nach (10.c) ein amilton raph. 2) ir bestimmen mit dem reedy Algorithmus für eine Ecke v i einen aufspannenden aum i minimalen esamtgewichts in dem Untergraphen v i. Um eine untere chranke zu erhalten, addieren wir zu g( i ) die ewichte zweier anten α 1 und α 2, die unter allen zu v i inzidenten anten ein möglichst kleines ewicht haben. i g( i ) g(α 1 ) +g(α 2 ) untere chranke ist also eine untere chranke für das esamtgewicht eines jeden amilton reises in. olglich kann es keinen amilton reis mit einem esamtgewicht 24 geben, und der eihnachtsmann schafft die escherungstour nicht in 49 inuten. emerkung: ür die ösung der Aufgabe ist es nicht erforderlich, mit ilfe jeder der Ecken eine untere chranke zu bestimmen. Es reicht aus, für eine Ecke die untere chranke 2 gefunden zu haben. b) enn die Antwort in a) nein lautet: annst u dem eihnachtsmann wenigstens eine escherungstour von höchstens inuten auer vorschlagen? ib die our als olge der durchlaufenen Ecken mit Angabe der ewichte der anten und des esamtgewichts an. er amilton reis hat das esamtgewicht v 6 v2 v4 v v v1 6 v = 27, sodass die escherungstour = 2 inuten dauern würde. emerkung: 27 ist das minimale esamtgewicht eines amilton reises in (ohne eweis!). Es gibt also keinen amilton reis mit einem esamtgewicht < 27.

9: Gewichtete Graphen

9: Gewichtete Graphen Chr.Nelius: Graphentheorie (WS 06/7) 9 9: Gewichtete Graphen Beispiel: Eine Straßenkarte mit Entfernungsangaben zwischen den Orten ist ein Beispiel für einen gewichteten Graphen. (9.) DEF: Ein Graph G

Mehr

Übersicht Datenstrukturen und Algorithmen. Übersicht. Probleme auf kantengewichteten Graphen. Vorlesung 14: Minimale Spannbäume

Übersicht Datenstrukturen und Algorithmen. Übersicht. Probleme auf kantengewichteten Graphen. Vorlesung 14: Minimale Spannbäume Übersicht atenstrukturen und lgorithmen Vorlesung : Prof. r. rika Ábrahám Theorie ybrider Systeme Informatik http://ths.rwth-aachen.de/teaching/ss-/ datenstrukturen-und-algorithmen/ 1 reedy lgorithmen

Mehr

Beispiellösungen zu Blatt 3

Beispiellösungen zu Blatt 3 µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.

Mehr

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat.

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat. Chr.Nelius: Graphentheorie (WS 2018/19) 8 Bipartite Graphen 26 8: Bipartite Graphen In einer Schulklasse mit 24 Schülern s 1,s 2,s 3,...,s 24 wurde eine Mathe Arbeit geschrieben. Um das Ergebnis bildlich

Mehr

10. Übungsblatt zu Algorithmen I im SoSe 2016

10. Übungsblatt zu Algorithmen I im SoSe 2016 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. r. ennis ofheinz Lukas arth, Lisa Kohl 0. Übungsblatt zu lgorithmen I im SoSe 0 https://crypto.iti.kit.edu/index.php?id=algo-sose

Mehr

Beispiellösungen zu Blatt 107

Beispiellösungen zu Blatt 107 µ κ Mathematisches Institut eorg-ugust-universität öttingen ufgabe 1 eispiellösungen zu latt 107 onstruiere eine Menge M aus 107 positiven ganzen Zahlen mit der folgenden igenschaft: eine zwei der Werte

Mehr

Wege, Pfade und Kreise

Wege, Pfade und Kreise Wege, Pfade und Kreise ef.: in Weg ist eine olge von Knoten (v 1, v2,..., vk), so dass {vi,vi+1} für alle 1 i

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge.

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge. Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 7, 8 ufgabe 1 (3+7+10 Punkte). Gegeben seien die Zahlenfolgen: n n-te Zahlenfolge 1 1 2 1, 2, 2, 3 3 1, 2, 2, 3, 3, 3, 4, 4, 5

Mehr

STAATLICHE ABSCHLUSSPRÜFUNG DER UNTERSTUFE GESAMTSTAATLICHE PRÜFUNGSARBEIT ERSATZTERMIN AM 22. JUNI 2017

STAATLICHE ABSCHLUSSPRÜFUNG DER UNTERSTUFE GESAMTSTAATLICHE PRÜFUNGSARBEIT ERSATZTERMIN AM 22. JUNI 2017 ozen, 22.06.2017 earbeitet von: Klaus Niederstätter Tel. 0471 417253 klaus.niederstaetter@schule.suedtirol.it n die Präsidentinnen und Präsidenten der staatlichen bschlussprüfung der Unterstufe n die Kommissionsmitglieder

Mehr

Graphen: Rundwege, Kodierung von Bäumen

Graphen: Rundwege, Kodierung von Bäumen TH Mittelhessen, Wintersemester 2013/2014 Lösungen zu Übungsblatt 11 Fachbereich MNI, Diskrete Mathematik 4./5./6. Februar 2014 Prof. Dr. Hans-Rudolf Metz Graphen: Rundwege, Kodierung von Bäumen Aufgabe

Mehr

Grundbegri e der Graphentheorie: Eckengrad, Wege und Kreise, Zusammenhang

Grundbegri e der Graphentheorie: Eckengrad, Wege und Kreise, Zusammenhang raphen- und Berechenbarkeitstheorie rundbegri e der raphentheorie: Eckengrad, Wege und Kreise, Zusammenhang 0.1 raphen Ein raph ist ein aar = (V, E) disjunkter Mengen mit E [V ]2, wobei [V ]2 die Menge

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε ϕ α o 26,57 Lösung: δ = 90 α = 45 ε = 26,86 ϕ = 63,43 ψ = 8,86 2. Gegeben ist

Mehr

Hilberts Drittes Problem

Hilberts Drittes Problem Hilberts rittes Problem Oliver Fortmeier Auf dem internationalen Kongress für Mathematiker 1900 in Paris formulierte Hilbert sein rittes Problem: Zwei Tetraeder mit gleicher Grundfläche und von gleicher

Mehr

MATHEMATIK-WETTBEWERB 1995/96 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1995/96 DES LANDES HESSEN MTMTIK-TTR 1995/96 DS DS SS DR RPP P I C T 1. Käse besteht aus asser und Trockenmasse. Die Trockenmasse enthält ett und Sonstiges. a) in Stück Käse besteht zu 64 % aus Trockenmasse. Das sind 320 g. Davon

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen?

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen? Kapitel 7 Graphentheorie Verständnisfragen Sachfragen 1. Was ist ein ungerichteter Graph? 2. Erläutern Sie den Begriff Adjazenz! 3. Erläutern Sie den Eckengrad in einem Graphen! 4. Welchen Zusammenhang

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Kap. IV: Färbungen von Graphen

Kap. IV: Färbungen von Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 46 Kap. IV: Färbungen von Graphen 12. Eckenfärbungen Bereits im 6 ten Paragraphen haben wir Eckenfärbungen benutzt, um bipartite Graphen charakterisieren zu können.

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017 Landeswettbewerb Mathematik aden-württemberg Musterlösungen 2. Runde 206/207 ufgabe Paul soll fünf positive ganze Zahlen nebeneinander schreiben. abei muss er Folgendes beachten: ie erste Zahl ist so groß

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

9. Landeswettbewerb Mathematik Bayern

9. Landeswettbewerb Mathematik Bayern 9 Landeswettbewerb Mathematik aern ufgaben und Lösungsbeispiele Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt ür die ganze igur sind 6² 3² Streichhölzer

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Problem des Monats Februar 2019

Problem des Monats Februar 2019 Problem des Monats Februar 09 Bei welcher Lage ist die Fläche maximal? In ein regelmäßiges n-eck soll ein möglichst großes regelmäßiges m-eck gezeichnet werden. ie bbildungen zeigen die eingeschlossenen

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

C O M P A N Y P R E SE N T S DAS HANDBUCH H O W TO FIN D FÜR STUDENTEN SU C C E SS

C O M P A N Y P R E SE N T S DAS HANDBUCH H O W TO FIN D FÜR STUDENTEN SU C C E SS C O M P A N Y P R E SE N T S DAS H O W TO HANDBUCH FIN D FÜR STUDENTEN SU C C E SS IN TRO D U CTIO N W IR STELLEN U N S M A L V O R Willkom m en auf TUTORA: das erst e Nachhilfe- und Sprachport al in Südt

Mehr

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze.

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze. Umfangswinkelsatz 1 Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? egründe deine ntwort 5 anhand einer Skizze 108, Zusammenhang zwischen ittelpunkts- und Umfangwinkel 2 Gegeben ist die Strecke []

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Musterlösung Analysis 3 - Funktionentheorie

Musterlösung Analysis 3 - Funktionentheorie Musterlösung Analysis 3 - Funktionentheorie 3. Mär Aufgabe : Zum Aufwärmen (i) Betrachte ie Lauranterlegung von f : C C, f() = sin un eige mit Hilfe er Zerlegung, ass ie Singularität bei = hebbar ist.

Mehr

Name: Klasse: Bildungsgang: Vergleichsarbeit Mathematik Jahrgangsstufe 9 (Haupt- und Realschulen und Gymnasien)

Name: Klasse: Bildungsgang: Vergleichsarbeit Mathematik Jahrgangsstufe 9 (Haupt- und Realschulen und Gymnasien) Vergleichsarbeit 2002 Mathematik Jahrgangsstufe 9 Seite 1 Name: Klasse: ildungsgang: Vergleichsarbeit Mathematik Jahrgangsstufe 9 (Haupt- und Realschulen und Gymnasien) 1. ufgabe Welcher nteil der jeweiligen

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Grundbegriffe der ebenen Geometrie. 1. (a) Zeichne das Dreieck ABC mit A(0 0), B(3 1) und C( 1 3) in ein Koordinatensystem.

Grundbegriffe der ebenen Geometrie. 1. (a) Zeichne das Dreieck ABC mit A(0 0), B(3 1) und C( 1 3) in ein Koordinatensystem. Grundbegriffe der ebenen Geometrie 1. (a) Zeichne das reieck mit (0 0), (3 1) und ( 1 3) in ein Koordinatensystem. Platzbedarf: 5 x 5 und 3 y 5 (b) ezeichne den ittelpunkt der Strecke [] mit. (c) Zeichne

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 1996 Runde 1 ufgabe 1 Ein Rechteck mit den eitenlängen 5 cm und 9 cm wird in kleinere Rechtecke mit ganzzahligen eitenlängen, in Zentimeter gemessen, zerlegt.

Mehr

3. Vorlesung. Die Existenz des Pentagons. (*)

3. Vorlesung. Die Existenz des Pentagons. (*) 3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,

Mehr

Fächerübergreifendes Lerntraining für Grund- und Förderschulkinder

Fächerübergreifendes Lerntraining für Grund- und Förderschulkinder it reude lernen! ichael Junga ächerübergreifendes erntraining für rundund örderschulkinder Wörterkniffix () indest du zu jedem nfangs- und ndbuchstaben ein Wort mit vier uchstaben? otiere die eit, die

Mehr

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation Methodische Hinweise und nregungen zur rgänzung bzw. rweiterung der Power-Point-Präsentation ktivationen, die während der Präsentation angeboten werden n den nachfolgend beschriebenen Stellen wird der

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 204 athematik II usterlösung Prüfungsdauer: 50 inuten iese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht

Mehr

Statistik und Graphentheorie

Statistik und Graphentheorie Statistik und Graphentheorie Sommersemester 2014 24. März 2015 Teil Graphentheorie Matrikelnummer: 1 (12) 2 (12) 3 (12) 4 (12) 5 (12) (60) Aufgabe 1 (12 Punkte) Gegeben sei das folgende Netzwerk: (a) Berechnen

Mehr

Übungsaufgaben Graphentheorie, Wintersemester 2011/12

Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Frank Göring 25. Januar 2012 Zusammenfassung Übungsaufgaben zur Graphentheorievorlesung. 1 Bis 19.10.2011 1. Wir hatten einen Graphen G als zusammenhängend

Mehr

Liebe Lehrkräfte und pädagogische Mitarbeiter,

Liebe Lehrkräfte und pädagogische Mitarbeiter, abatz im auberwald reilichtspiele ad entheim e.. iebe ehrkräfte und pädagogische itarbeiter, anlässlich unserer diesjährigen ommerproduktion abatz im auberwald haben wir für ie und ihre lassen einige ätsel

Mehr

Hauptleistungsbeträge PG 1 PG 2 PG 3 PG 4 PG

Hauptleistungsbeträge PG 1 PG 2 PG 3 PG 4 PG Hauptleistungsbeträge PG 1 PG 2 PG 3 PG 4 PG 5 316 545 728 901 689 1.298 1.612 1.995 125 125 125 125 125 125 770 1.262 1.775 2.005 580 580 580 580 Das Pflegestärkungsgesetz I Die wichtigsten Leistungsverbesserungen

Mehr

M1 1a Ko Kommentar Achsenssymmetrie bis Buch I S. 9 / II S. 9 / III S. 9

M1 1a Ko Kommentar Achsenssymmetrie bis Buch I S. 9 / II S. 9 / III S. 9 M1 1a Ko Kommentar chsenssymmetrie bis uch I S. 9 / II S. 9 / III S. 9 itte beachten, dass der rucker so eingestellt ist, dass die Seiten in richtiger rösse (Titelbalken = 18. cm) ausgedruckt werden. (In

Mehr

Kongruenzsätze für Dreiecke, grundlegende Konstruktionen

Kongruenzsätze für Dreiecke, grundlegende Konstruktionen Kongruenzsätze für reiecke, grundlegende Konstruktionen 1. Von einem Viereck kennt man die Längen der eiten = = 4cm und = = 6cm. Warum sind die reiecke und kongruent? Lösung: reiecke und sind kongruent

Mehr

Winkel. Die Kreislinie k mit dem Mittelpunkt M berührt die Seiten des Dreeicks ABC in den Punkten F, P und Q.

Winkel. Die Kreislinie k mit dem Mittelpunkt M berührt die Seiten des Dreeicks ABC in den Punkten F, P und Q. Winkel 1. k Q F ie Kreislinie k mit dem ittelpunkt berührt die Seiten des reeicks in den unkten F, und Q. (a) Zeichne die Figur mit = 8cm und = 66. Zeichne die zwei Kreisradien ein, die zu den unkten und

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche 1. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε o 6,57 Lösung: δ = 90 = 45 ε = 16,86 = 63,43 ψ = 81,86. Gegeben ist ein Kreis

Mehr

Mit Freude lernen! K2-Verlag. Sehen - denken - gestalten. Zwölf fröhliche Frühlingsrätsel. Michael Junga. Für Grundschulkinder. in den Klassen 1 bis 4

Mit Freude lernen! K2-Verlag. Sehen - denken - gestalten. Zwölf fröhliche Frühlingsrätsel. Michael Junga. Für Grundschulkinder. in den Klassen 1 bis 4 ehen - denken - gestalten Michael unga ür rundschulkinder in den lassen 1 bis Mit reude lernen! Zwölf fröhliche rühlingsrätsel Zwölf fröhliche rühlingsrätsel Zielgruppe - rundschulkinder in lasse 1 bis

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 007 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes R nformatik Kurt Mehlhorn WiSe 0/ Übungen zu deen der nformatik https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter/ideen/ latt Abgabeschluss:..0 Aufgabe

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 00 Runde ufgabe Yannick besitzt gleichseitige reiecke, Quadrate sowie regelmäßige Sechs- und chtecke, die alle dieselbe Seitenlänge haben. Er legt damit ohne Lücken und Überlappungen regelmäßige Muster.

Mehr

MATHEMATIK-WETTBEWERB 1996/97 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1996/97 DES LANDES HESSEN MTMTIK-TTR 1996/97 DS DS SS P I C T DR RPP 1. estimme jeweils alle Zahlenpaare (x y), x, y Z mit 5 # x # 5 und 5 # y # 5, für die gilt: a) y + 2x = 4 und y $ x b) 4y x 2 = 0 c) x 2 + y 2 = 2xy d) 2y 2

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen u, w, y, z:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen u, w, y, z: Aufgabe 1.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (1, 2, 2, 2, 3, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (1, 2, 2, 2, 3, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, u, w, y:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, u, w, y: Aufgabe 3.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (2, 3, 3, 3, 3, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (2, 3, 3, 3, 3, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, p, w, y:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, p, w, y: Aufgabe 2.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (1, 1, 2, 2, 4, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (1, 1, 2, 2, 4, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Landeswettbewerb Mathematik Baden-Württemberg

Landeswettbewerb Mathematik Baden-Württemberg Landeswettbewerb athematik aden-württemberg Lösungsvorschläge für die ufgaben der Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt Für die ganze Figur sind

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

A Berlin, 10. April 2017

A Berlin, 10. April 2017 A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:

Mehr

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008 Graphentheorie Rainer Schrader Färbungen Zentrum für Angewandte Informatik Köln 28. Januar 2008 1 / 57 2 / 57 wir wollen versuchen, die Knoten eines Graphen zu färben dabei dürfen keine zwei benachbarten

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Königsberger Brückenproblem Gibt es in Königsberg einen Spaziergang, bei dem man

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2017S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2017S) Lösung Theoretische Informatik und Logik Übungsblatt 2 (2017) en Aufgabe 2.1 Geben ie jeweils eine kontextfreie Grammatik an, welche die folgenden prachen erzeugt, sowie eine Linksableitung und einen Ableitungsbaum

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) Blatt 8 SoSe 2011 - C. Curilla/ B. Janssens Präsenzaufgaben (P16)

Mehr

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Universität Siegen Lehrstuhl Theoretische Inormatik Carl Philipp Reh Daniel König Diskrete Mathematik ür Inormatiker WS 2016/2017 Übung 6 1. Beweisen Sie die olgenden Aussagen: a) χ(k n ) = n b) χ(k m,n

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1963/1964 ufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 10 ufgaben Hinweis: Der Lösungsweg mit egründungen

Mehr

Mein Indianerheft: Geometrie 1/2. Lösungen

Mein Indianerheft: Geometrie 1/2. Lösungen Mein Indianerheft: Geometrie 1/ Lösungen bt es? Spiegelsymmetrische Zehnerübergang mit Buchstaben MinusSpiegelsymmetrische Zehnerübergang mit Buchstaben Minus Spiegelsymmetrische Zehnerübergang mit Buchstaben

Mehr

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Inhalt: W.1 Grundlagen W.2 Das Königsberger Brückenproblem W.3 Bäume W.4 Planare Graphen W.5 Färbungen W.1 Grundlagen Ein Ein Graph besteht aus

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende

Mehr

3. Übung zur Vorlesung Planare Graphen

3. Übung zur Vorlesung Planare Graphen 3. Übung zur Vorlesung Planare Graphen Übung 20. Mai 14 Andreas Gemsa INSTITUTE OF THEORETICAL INFORMATICS PROF. DR. DOROTHEA WAGNER KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

Berechnung der Länge einer Quadratseite a:

Berechnung der Länge einer Quadratseite a: 2006 Pflichtbereich erechnung der Länge einer Quadratseite a: Zur erechnung der Quadratseite a benötigt man die ilfslinie ür die Quadratseite a gilt dann: a = + 57 erechnung der Strecke : Im reieck kann

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Anwendungen von Graphen

Anwendungen von Graphen Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke elektrische Schaltpläne Entity-Relationship Diagramme Beweisbäume endliche Automaten Syntaxbäume für Programmiersprachen Entscheidungsbäume

Mehr

Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze

Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke Elementare Definitionen Ein Graph besteht aus Knoten und Kanten, die die Knoten verbinden. elektrische Schaltpläne Entity-Relationship

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

das _ach D oder T das _iktat

das _ach D oder T das _iktat Setze o richtig ein. Schreibe Wörter mit Artikel in abelle. _afel das _ach _ag _eckel _ecke _anz o _ieb _asche _anne _elfin das _iktat _ante a f e l e d e l f i n v A a n z b f g e c k e l b k l m j k

Mehr

3.6 AVL-Bäume. (AVL = Adel son-velskii und Landis (1962)) . Seite 326/726

3.6 AVL-Bäume. (AVL = Adel son-velskii und Landis (1962)) . Seite 326/726 3.6 VL-Bäume (VL = del son-velskii und Landis (1962)) 2-3-Bäume... sind Basis der B-Bäume, sind gut auf eitere Operationen ereiterbar (SPLIT, CONCTENTE), haben Worstcase-Zeiten on O(log n), aber sie nuten

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie».

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie». 4 9 2 3 5 7 8 6 2 Magische Quadrate Magische Quadrate ie bbildung zeigt einen usschnitt aus lbrecht ürers Kupferstich «Melancholie». ei genauem Hinsehen erkennen Sie ein magisches Quadrat vierter Ordnung.

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Huffman-Kodierung. Prof. Dr. Margarita Esponda

Huffman-Kodierung. Prof. Dr. Margarita Esponda uffman-kodierung rof. r. argarita sponda otivation ir möchten achrichten komprimieren: - peicherplatzreduzierung => nergie und Zeit bei Übertragung sparen - ohne nformationsverlust - mit einer effizienten

Mehr

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16)

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) Berlin, 14. April 2016 Name:... Matr.-Nr.:... Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) 1 / 10 2 / 10 3 / 11 4 / 9 5 / 10 Σ / 50 Einlesezeit: Bearbeitungszeit:

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Geometrie für den fitten Denker Stoff aus Klasse 6- Niveau RS/Gym

Geometrie für den fitten Denker Stoff aus Klasse 6- Niveau RS/Gym Klasse 7 - Geometrie ebene Figuren - Grundlagenüberlegungen Klasse 7 - Geometrie ebene Figuren - Grundlagenüberlegungen Geometrie für den fitten enker Stoff aus Klasse 6- Niveau RS/Gym 1. (a) Zeichne das

Mehr