Lösung 2 : Logarithmen, Wurzeln & Komplexe Funktionen

Größe: px
Ab Seite anzeigen:

Download "Lösung 2 : Logarithmen, Wurzeln & Komplexe Funktionen"

Transkript

1 D-ITET FS 09 Meike Akveld Komplexe Analysis Lösung : Logarithmen, Wureln & Komplexe Funktionen Aufgabe..a) Berechnen Sie die folgenden Terme in der algebraischen Form. i) e i, ii) e i, iii) Log + i), i) Das Resultat ist e i, will man es in Polarform angeben. In der algebraischen Form erhält man cos + i sin. Dies entspricht näherungsweise i. ii) In Polarform ist das Resultat gegeben durch e e i. In der algebraischen Form erhält man e cos ei sin. Dies entspricht näherungsweise.3.47i. iii) Zuerst bemerken wir, dass + i umgerechnet in Polarform e πi 4 ergibt. Wenden wir den Hauptweig des Logarithmus an, so erhalten wir Log + i) = log + πi 4.b) Berechnen Sie die folgenden Terme approximativ: i) cos0i), ii) sin5 + 5i), iii) sin i). i) Man kann hier die Formel anwenden. Somit erhalten wir ii) Wir wenden die Formel an. Damit erhalten wir iii) Wir berechnen cos0i) = e 0 + e 0 cos = ei + e i i. = + e0 e sin = ei e i i sin5 + 5i) = e 5 e 5i e 5 e 5i i sin i) = e ei e e i i Aufgabe..a) Berechnen Sie die folgenden Grenwerte: i i.

2 i) lim n cosin), ii) lim n + ) n i n, iii) lim n n + πi) n /n n, iv) lim n Arg + ) n i n ), wobei in der letten Teilaufgabe der Hauptwert des Arguments gemeint ist. i) Ist n N, so gilt Ist n N, so gilt ebenfalls cosin) = e n + e n = + en e n. Daraus folgt, dass ii) Wir berechnen iii) Es gilt, dass Daher folgt, dass cosin) = e n + e n lim cosin) =. n = + e n e n. lim + n )n i n =. exp) = lim + n. n n) lim n + n πi)n /n n = lim + πi ) n = e πi =. n n iv) Der Hauptwert des Argumentes ist stetig auf { = re iφ r > 0, φ π, π)} und somit gilt lim Arg + ) n ) i n n = Arg) = 0..b) Berechnen Sie den Wert der Reihe n + πi)n. Wir teilen die Summe in ihre Einelteile und berechnen wobei wir die geometrische Reihe und die Exponentialreihe benutt haben. n + πi)n = n + q n =, q <, q n Aufgabe 3. In der Vorlesung hatten wir gesehen, dass exp + ) = exp ) exp ) πi) n = + e πi =, gilt, für alle, C. Benuten Sie diese Identität, um die Additionstheoreme des Sinus und Kosinus u beweisen. Zeigen Sie also, dass sinx ± y) = sin x cos y ± cos x sin y, cosx ± y) = cos x cos y sin x sin y,

3 für x, y R. Es gilt, dass für x R. Damit berechnen wir und sin x = Im e ix, cos x = Re e ix, sinx ± y) = Im e ix±y) = Im e ix e ±iy = Im e ix Re e ±iy + Re e ix Im e ±iy = sin x cos y ± cos x sin y, cosx ± y) = Re e ix±y) = Re e ix e ±iy = Re e ix Re e ±iy Im e ix Im e ±iy = cos x cos y sin x sin y. Aufgabe 4. 4.a) Berechnen Sie die Limites Grenwerte) der folgenden Funktionen an 0 = 0, sofern diese existieren: i) +, ii) cos), iii) sin). i) Der Limes Grenwert) von f) := + an 0 = 0 existiert nicht. Nimmt man per Widerspruch an, es gebe einen Grenwert, so müsste sich dieser finden lassen, indem man = x + iy aus irgendeiner Richtung gegen 0 = 0 gehen lässt. Betrachten wir aber x + x lim fx) = lim = x 0 x 0 x und iy y lim fiy) = lim =, y 0 y 0 iy so sehen wir, dass sowohl als auch der Grenwert von f sein müsste. Dies ist ein Widerspruch dau, dass der Grenwert eindeutig bestimmt ist. ii) Der Limes von f) := cos) an 0 = 0 existiert und ist. Man sieht dies indem man die Potenreihe des Kosinus betrachtet. Wir haben nämlich f) = ) ) n n = n)! ) n n ) n n = n)! n)! n= n= ) n+ n = n + )! und somit iii) Der Limes von lim f) = 0. f) := sin) an 0 = 0 existiert nicht. Nimmt man per Widerspruch an, es gebe einen Grenwert, so müsste sich dieser finden lassen, indem man = x + iy aus irgendeiner Richtung gegen 0 = 0 gehen lässt. Betrachten wir aber lim fx) = lim x 0 x 0 x ) n x n+ n + )! 3 = lim x 0 ) n x n n + )! =

4 und lim fiy) = lim y 0 y 0 iy ) n iy) n+ n + )! = lim y 0 ) n+ iy) n n + )! = so sehen wir, dass sowohl als auch der Grenwert von f sein müssten. Dies ist ein Widerspruch dau, dass der Grenwert eindeutig bestimmt ist. Aufgabe 5. Finden Sie wei komplexe Zahlen, C, so dass Log ) Log ) + Log ). Schreiben wir die komplexen Zahlen in Polarform, so erhalten wir und damit Log ) = Log = r e iφ, = r e iφ. r r e iφ+φ)) = log r r + iarg ) = log r + log r + iarg ). Also versuchen wir, C u finden mit der Eigenschaft, dass Arg ) Arg ) + Arg ) gilt. Betrachte r, r > 0, φ 0, π] und φ π φ, π] beliebig. Dann gilt und deswegen Arg ) = φ + φ π φ + φ = Arg ) + Arg ) Log ) Log ) + Log ). Es lassen sich in obiges Resultat auch leicht Zahlen einseten. Betrachten wir um Beispiel r = r = und φ = φ = π, so erhalten wir = = e iπ =. Ausserdem gilt Log ) = Log) = 0 iπ + iπ = Log ) + Log ) = Log ) + Log ). Bemerkung: Es ist auch möglich φ π, 0) und φ π, π φ ) beliebig u wählen und somit auf der unteren Seite des Intervals π, π] herausufallen. Aufgabe 6. Sei n Z. Beweisen Sie de Moivres Formel Benuten wir Eulers Formel cos φ + i sin φ) n = cos nφ + i sin nφ. e iφ = cos φ + i sin φ, so folgt diese Aussage schnell. Wir haben damit nämlich cos φ + i sin φ) n = e iφ) n = e inφ = cos nφ + i sin nφ. Aufgabe 7. 7.a) Schreiben Sie die Funktion f) := 3 ++ in der Form f) = ux, y)+ivx, y). Wir benuten = x + iy und rechnen f) = x + iy) 3 + x + iy) + = x 3 + 3ix y 3xy iy 3 + x + iy + Also gilt f) = ux, y) + ivx, y) mit = x 3 3xy + x + ) + i3x y y 3 + y). ux, y) := x 3 3xy + x +, vx, y) := 3x y y 3 + y. 7.b) Benuten Sie Ihre Lieblingsprogrammiersprache, um Re f), Im f) und f) auf dem Gebiet { = x + iy}x [, ], y [, ] u plotten. Wir benuten den Python3 Code in Abbildung für unsere Plots. Damit erhalten wir die Bilder in den Abbildungen, 3 und 4. 4

5 import numpy as np from mpl_toolkits import mplot3d import matplotlib. pyplot as plt def main ): # generate a grid to plot on [X,Y] = np. meshgrid np. linspace -.0,.0), np. linspace -.0,.0)) # compute real part, imaginary part and absolute value of f Re_f = X **3-3* np. multiply X, Y **) + X + Im_f = 3* np. multiply X**, Y) - Y **3 + Y Z = X + j*y Abs_f = np. abs Z **3 + Z + ) # plot and store the real part fig = plt. figure figsie =,9)) ax = plt. axes projection = 3d ) surf = ax. plot_surface X, Y, Re_f, cmap= viridis ) plt. savefig real. png, bbox_inches = tight ) # plot and store the imaginary part fig = plt. figure figsie =,9)) ax = plt. axes projection = 3d ) surf = ax. plot_surface X, Y, Im_f, cmap= viridis ) plt. savefig imag. png, bbox_inches = tight ) # plot and store the absolute value fig = plt. figure figsie =,9)) ax = plt. axes projection = 3d ) surf = ax. plot_surface X, Y, Abs_f, cmap= viridis ) plt. savefig abs. png, bbox_inches = tight ) if name == main : main ) Abbildung : Python3 Code ur Lösung der Aufgabe 7.b). Abbildung : Realteil der Funktion f. 5

6 Abbildung 3: Imaginärteil der Funktion f. Abbildung 4: Absolutbetrag der Funktion f. 6

Komplexe Analysis D-ITET. Serie 2

Komplexe Analysis D-ITET. Serie 2 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 018 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Hinweis: Auf diesem Aufgabenblatt gibt es ein paar Aufgaben, welche etwas schwieriger sind als

Mehr

Komplexe Analysis D-ITET. Serie 1

Komplexe Analysis D-ITET. Serie 1 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Aufgabe. echnen mit komplexen Zahlen (.a) Berechnen Sie die folgenden Terme: i) ( 4 + 7i) + (8

Mehr

Komplexe Analysis D-ITET. Serie 4

Komplexe Analysis D-ITET. Serie 4 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie 4 ETH Zürich D-MATH Aufgabe 4. Benutzen Sie Ihre Lieblingsprogrammiersprache, um die folgenden Vektorfelder zu

Mehr

Komplexe Analysis D-ITET. Serie 6

Komplexe Analysis D-ITET. Serie 6 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 208 Komplexe Analysis D-ITET Serie 6 ETH Zürich D-MATH Aufgabe 6. (6.a) um 0 = 0. Der Konvergenradius der Taylorreihe Berechnen Sie die ersten drei

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Komplexe Analysis D-ITET. Serie 5

Komplexe Analysis D-ITET. Serie 5 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 8 Komplexe Analysis D-ITET Serie 5 ETH Zürich D-MATH Aufgabe 5. Anwendung des Satzes von Cauchy I Sei die Parametrisierung entgegen des Uhrzeigersinns

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 4 MC-Aufgaben (Online-Abgabe) 1. Sei z := exp ( π 6 i) (5 + b i). Für welches b R ist z eine reelle Zahl? (a) 1 (b) (c) 1 5 (d) 5 (e)

Mehr

Komplexe Analysis D-ITET. Serie 3

Komplexe Analysis D-ITET. Serie 3 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 8 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Einschreibung in Echo Wichtig: Bitte schreiben Sie sich auf echo.ethz.ch in die Übungsste,

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt Karlsruher Institut für Technologie KIT) Institut für Analysis Priv.-Do. Dr. P. C. Kunstmann Dipl.-Math. D. Roth SS 0 5.07.0 Aufgabe 60 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Komplexe Analysis D-ITET. Serie 3

Komplexe Analysis D-ITET. Serie 3 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Die reellen Cauchy-Riemann Gleichungen Die Cauchy-Riemann Gleichung i f(x + iy = f(x + iy

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Abbildung 14: Winkel im Bogenmaß

Abbildung 14: Winkel im Bogenmaß Mathematik für Naturwissenschaftler I. (7) Trigonometrische Funktionen (in R): Trigonometrische Funktionen wie sin x und cos x stehen üblicherweise in Zusammenhang mit Winkeln. Während im Alltag Winkel

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

Weihnachts-Übungen zur Mathematik I für Physiker

Weihnachts-Übungen zur Mathematik I für Physiker MATHEMATISCHES INSTITUT WS 018/019 DER UNIVERSITÄT MÜNCHEN Weihnachts-Übungen zur Mathematik I für Physiker Prof. Dr. D.-A. Deckert Blatt 10 Hiermit möchten wir Ihnen ein paar Weihnachtsgeschichten mit

Mehr

Lösung: Serie 2 - Komplexe Zahlen I

Lösung: Serie 2 - Komplexe Zahlen I Dr. Meike Akveld HS 05. (Induktion) : Serie - Komplexe Zahlen I a) Zeigen Sie die Ungleichung von Bernoulli: Für alle x > und n N gilt: b) Zeigen Sie für alle n N: ( + x) n + nx. n n, wobei a b bedeutet,

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen A Komplexe Zahlen A.1 Definition Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 +z 2 (x 1,y 1 )+(x 2,y 2 ) := (x

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 018 Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt komplexe Funktionen, K.Rothe,

Mehr

3. VORLESUNG,

3. VORLESUNG, 1.3.9. Satz (Parametrisierung der Kreislinie). 3. VORLESUNG, 23.04.2009 (i) Die Abbildung p : R S 1, p(ϕ) = e iϕ = cosϕ+isinϕ ist ein Gruppenmorphismus der additiven Gruppe (R,+) auf die multiplikative

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

Der Kotangens und der Herglotz-Trick. Kapitel 23

Der Kotangens und der Herglotz-Trick. Kapitel 23 Der Kotangens und der Herglot-Trick Kapitel 3 Was ist die interessanteste Formel in der elementaren Funktionentheorie? In seinem wunderbaren Artikel [], dessen Darstellung wir folgen, schlägt Jürgen Elstrodt

Mehr

Höhere Mathematik Vorlesung 8

Höhere Mathematik Vorlesung 8 Höhere Mathematik Vorlesung 8 Mai 2017 ii In der Mathematik versteht man die Dinge nicht. Man gewöhnt sich nur an sie. John von Neumann 8 Funktionentheorie Komplexe Zahlen Jede komplexe Zahl besitzt eine

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Ferienkurs Analysis 1 1. März 010 Vorlesung: Natürliche Zahlen, Beweistechniken, Intervalle, Abbildungen und komplexe Zahlen Montag, 15.3.010 Marta Krawczyk, Andreas Schindewolf, Simon Filser Inhaltsverzeichnis

Mehr

Mathematik für Studierende der Biologie Wintersemester 2018/19. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2018/19. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 2018/19 Grundlagentutorium Lösungen Sebastian Groß Termin Mittwochs 15:5 17:5 Großer Hörsaal Biozentrum (B00.019) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 11

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 11 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Übungsblatt 11 1. In der Vorlesung haben Sie gesehen, dass es verschiedene Zweige des komplexen Logarithmus gibt. Dies bedingt, dass es

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen D-BAUG Analysis I HS 05 Dr. Meike Akveld Clicker Fragen Frage Der Satz: Dieser Satz ist falsch ist wahr ist richtig weiss ich nicht Es handelt hier um eine sogenannte Paradoxie. Die Paradoxie dieses Satzes

Mehr

Einführung in Python/Matplotlib

Einführung in Python/Matplotlib Einführung in Python/Matplotlib AP/FP-Softwarekurse Markus Ühlein Fachschaft Physik TU Kaiserslautern 19. Februar 2019 Übersicht Grundlagen Plotten Fitten Weiteres 2 / 20 Python starten Konsole Konsole

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg SoSe 009 Dr. Hanna Peywand Kiani Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Komplexe Zahlenebene, Elementare Funktionen Die

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

4.4 Die Potentialgleichung

4.4 Die Potentialgleichung Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche

Mehr

Blatt 23: Komplexe Zahlen (Teil 3) MLAE 1& 2

Blatt 23: Komplexe Zahlen (Teil 3) MLAE 1& 2 School of Engineering Winterthur Zürcher Hochschule für Angewandte Wissenschaften Blatt 3: Komplexe Zahlen (Teil 3) MLAE & Aufgabe : Lösen Sie die folgenden Gleichungen in C: (a) z = 0 (b) (z + 3) = 64

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r Funktionentheorie, Woche 8 Harmonische Funktionen 8. Folgen der Holomorphie Im letzten Kapitel sahen wir, dass der Realteil einer holomorphen Funktion harmonisch ist, und dass es zu jeder harmonischen

Mehr

Ferienkurs Analysis 1. Tag 2 - Komplexe Zahlen, Vollständige Induktion, Stetigkeit

Ferienkurs Analysis 1. Tag 2 - Komplexe Zahlen, Vollständige Induktion, Stetigkeit Ferienkurs Analysis 1 Tag - Komplexe Zahlen, Vollständige Induktion, Stetigkeit Pan Kessel 4.. 009 Inhaltsverzeichnis 1 Komplexe Zahlen 1.1 Grundlagen................................................ 1.1.1

Mehr

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $ Mathematik für Ingenieure I, WS 008/009 Dienstag 0. $Id: stetig.te,v.5 009/0/0 7:3:38 hk Ep $ $Id: diffb.te,v. 009/0/0 7:50: hk Ep hk $ III. Analysis 3 Stetige Funktionen 3.4 Umkehrfunktionen Zum Abschluss

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

Ferienkurs Analysis 3 für Physiker. Holomorphe Funktionen und wichtige Sätze der Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Holomorphe Funktionen und wichtige Sätze der Funktionentheorie Ferienkurs Analysis 3 für Physiker Holomorphe Funktionen und wichtige Sätze der Funktionentheorie Autor: Benjamin Rüth Stand: 7. März 24 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Was ist

Mehr

Exponentialfunktion (1)

Exponentialfunktion (1) Exponentialfunktion (1) Satz 3.37 Die Potenzreihe n=0 z n n! konvergiert für alle z C absolut (R = ). Beweis. Mit dem Quotienkriterium ergibt sich für alle z C z n+1 (n + 1)! n! z n = z 0. n + 1 Peter

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Fakultät für Mathematik PD Dr. Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Siebte Woche, 21.5.2014 4 Ringe und Körper (Fortsetzung) Satz: Es sei R ein Ring

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion. Die Exponentialfunktion ist exp z Wie in der reellen Analysis werden auch die trigonometrischen Funktionen

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

Funktionentheorie 1 - Übung SS 2015 Marcel Marohn

Funktionentheorie 1 - Übung SS 2015 Marcel Marohn Funktionentheorie 1 - Übung SS 2015 Marcel Marohn 7. April 2015 Inhaltsverzeichnis 1 Der topologische Raum C 3 1.1 Grundlagen über Komplexe Zahlen...................... 3 1.2 Topologische Grundbegriffe..........................

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. König Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Z7.1. Komposition stetiger Funktionen Mathematik für Physiker (Analysis 1) MA90 Wintersem. 017/18 Lösungsblatt

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl

Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan Prof. Dr. Johann Hartl Kapitel 1 Komplexe Zahlen Wozu brauchen wir komplexe Zahlen? 1 Für das Rechnen in

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Einführung komplexer Zahlen

Einführung komplexer Zahlen Kapitel 2 Einführung komplexer Zahlen 2.1 Historische Bemerkungen Für die quadratische Gleichung x(10 x) = 40, welche im reellen Zahlenbereich R nicht lösbar ist, gab im Jahre 1545 der italienische Mathematiker

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Strömungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204 200W/ Wintersemester

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) = Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende

Mehr

Ferienkurs Analysis 3 - Funktionentheorie

Ferienkurs Analysis 3 - Funktionentheorie Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius 12.08.2009 1 Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 13.1.016 Zwischenwertsatz und klassische Funktionen In diesem Abschnitt haben wir es mit Funktionen zu tun, die auf einem Intervall definiert sind. Eine Menge I R ist genau dann ein

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr