Anhang. = kg. = OK = -273,16 oe = 9,80665 m/s 2 8,3147 kj/kmol K. = 0,28704 kj/kg K. = 340,3 m/s. = 295 m/s = 1,286.

Größe: px
Ab Seite anzeigen:

Download "Anhang. = kg. = OK = -273,16 oe = 9,80665 m/s 2 8,3147 kj/kmol K. = 0,28704 kj/kg K. = 340,3 m/s. = 295 m/s = 1,286."

Transkript

1 391 A Anhang A.l Maßeinheiten Wichtige kohärente Einheiten für die Masse: für die Kraft: für den Druck: für die Energie: für die Leistung: Kilogramm Newton Pascal Joule Watt = kg = N = kg.m/s 2 = Pa = N /m 2 = kg/ms 2 = J = N m = kg m 2 /s 2 = W = J/s = kg m 2 /s 3 Umrechnung von Druckeinheiten I Einheit 11 Pa I bar I atm I Torr I Psi 1 Pa , , , bar , ,1 14,504 1 atm 1, , ,7 1 Torr 133,32 1, , , Psi , , ,72 1 Umrechnung von Energieeinheiten I Einheit 11 kj I kp m I kcal 1 kj ,239 1 kp m 9, , kcal 4, ,9 1 1 kw h 3, Btu 1, ,62 0,252 IkW h I Btu 2, ,9478 2, , , , , , Wichtige Konstanten und Standardwerte absoluter Temperatur-Nullpunkt: Erdbeschleunigung in Meereshöhe: universelle (molare) Gaskonstante: Gaskonstante für reine Luft: Standardtemperatur in Meereshöhe: Standarddruck in Meereshöhe: Standardschallgeschwindigkeit in Meereshöhe: Standardtemperatur in der Tropopause: Standardschallgeschwindigkeit in Tropopause: Standard-M-Zahl in der Tropopause: größte Standard-Massenstromdichte: T 9 R RL T p a T a M inl/a = OK = -273,16 oe = 9,80665 m/s 2 8,3147 kj/kmol K = 0,28704 kj/kg K = 288 K = 15 oe = 101,325 kpa = 1 atm = 340,3 m/s = 216,5 K = -56,5 oe = 295 m/s = 1,286 = 241,5 kg/m 2 s

2 392 A Anhang A.2 Internationale Standardatmosphäre Auszugsweise Darstellung oft benötigter Parameter der Erdatmosphäre zwischen den Niveaus des Meeresspiegels und 60 km Höhe mit dem Erkenntnisstand von Höhe Temperatur Druck Dichte Schall- kinematische Erdbegeschw. Zähigkeit schleunigung H T I t P {} a v 9 km K I oe kpa kg/m 3 m/s 10-5m2/s m/s 2 o ,150 I 15,000 I 101,325 I 1,22500 I 340,294 I 1,4607 I 9,8067 I 1 281,651 8,501 89,876 1, ,435 1,5813 9, ,154 2,004 79,501 1, ,532 1,7147 9, ,659-4,491 70,121 0, ,584 1,8628 9, ,166-10,984 61,660 0, ,589 2,0275 9, ,676-17,474 54,048 0, ,545 2,2110 9, ,187-23,963 47,218 0, ,452 2,4162 9, ,700-30,450 41,105 0, ,306 2,6461 9, ,215-36,935 35,651 0, ,105 2,9044 9, ,733-43,417 30,800 0, ,848 3,1957 9, ,252-49,898 26,499 0, ,532 3,5251 9, ,650 I -56,500 I 22,699 I 0,36480 I 295,069 I 3,8988 I 9,7728 I ,650-56,500 19,399 0, ,069 4,5574 9, ,650-56,500 16,580 0, ,069 5,3325 9, ,650-56,500 14,170 0, ,069 6,2391 9, ,650-56,500 12,112 0, ,069 7,2995 9, ,650-56,500 10,353 0, ,069 8,5397 9, ,650-56,500 8,850 0, ,069 9,9902 9, ,650-56,500 7,565 0, ,069 11,6860 9, ,650-56,500 6,467 0, ,069 13,6700 9, ,650 I -56,500 I 5,529 I 0,08891 I 295,069 I 15,9890 I 97452, I ,574-54,576 4,047 0, ,377 22,2010 9, ,560-52,590 2,972 0, ,720 30,7430 9, ,544-50,606 2,188 0, ,056 42,4390 9, ,527-48,623 1,616 0, ,386 58,4050 9, ,509 I -46,641 I 1, 197 I 0, I 301, 709 I I, ,513-36,637 0,574 0, , ,6300 9, ,350-22,800 0,287 0, , ,6700 9, ,650-2,500 0,080 0, , ,1000 9, ,020-26,130 0,022 0, , ,0000 9,6240, I Quelle: Drumm,H.: Grundlagen der Flugmechanik für Starrflügelflugzeuge. Militärverlag der DDR, Berlin, 1989

3 A.3 Tabellen der gasdynamischen Funktionen 393 A.3 Tabellen der gasdynamisehen Funktionen Überschlägige Berechnungen von Arbeitsprozessen und strömungsmechanischen Vorgängen werden oft vereinfacht mit Hilfe der gasdynamischen Funktionen durchgeführt. Thermodynamische Grundlage dazu sind die isentropen Zustandsänderungen. Sie beruhen auf diskreten konstanten Zahlenwerten des Isentropenexponenten fl" gestaffelt nach der kritischen M -Zahl. Wie in Kap.3.2 bereits ersichtlich, werden die Größen folgendermaßen berechnet: II 1- fl, -1 M*2 fl,+1 --"- TK-l _1_ TK.-l _1 (fl, + 1) K~l TK-1M* -- 2 f M Auf Grundlage dieser Beziehungen werden für die vier wichtigsten fl,-werte, welche sich eingeschränkt auf die am meisten vorkommenden Strömungsvorgänge beziehen, die Zahlenwerte tabellarisch (s.u.) dargestellt. Für deren Berechnung wurde ein kleines Software-Programm benutzt, dessen Inneres die oben aufgeführten Gleichungen (hier in der Notation der Programmiersprache C) enthält: double kappa=1.4; /* */ double Cl = (kappa-l.0)/(kappa+l.0); double C2 = l/(kappa-l); for (double Ms=O.O; Ms<=2.5; Ms+=O.Ol) { double C3 = Ms*Ms; double tau = 1.0-Cl*C3; double Pi = pov(tau,kappa/(kappa-l»; double eps = pov(tau,c2); double f = (1+C3)*pov(1-Cl*C3,C2); double alpha = eps*ms*pov«kappa+l)/2,c2); double M = sqrt(2*c3/«kappa+l)-(kappa-l)*c3»; } printf("y..2f Y..4f Y.'.4f Y.'.4f Y.'.4f Y.'.4f Y.'.4f\n",Ms,tau,Pi,eps,f,alpha,M); Dieses Programmfragment kann außerdem auch dazu benutzt werden, Berechnungen für beliebige fl,-werte durchzuführen. Im weiteren besteht die Möglichkeit, die Genauigkeit der gasdynamischen Funktionen, die in den ausgedruckten Tabellen ersichtlich sind, hinsichtlich der Anzahl ihrer Dezimalstellen zu variieren.

4 394 A Anhang Gasdynamische FUnktionen für,,=1.4. I Mol T I II I E I I I Q I M I I Mol T I II E I I Q M l l l l " l l l l l l

5 A.3 Tabellen der gasdynamischen Funktionen 395 I MO' T' II' I MO' T' II f' f 0: I M M* = M;;'az = V6 = 2,

6 396 A Anhang Gasdynamische Funktionen für 11':=1.33. I Mol T I II I E I I I CI I M I I Mol T I II E I I CI I M , , , , , , , , , , , , , , , , , , ,

7 A.3 Tabellen der gasdynamischen Funktionen 397 'MO' T' II' 'MO' T' II., f M* = M;"ax = V7,0606 = 2,

8 398 A Anhang Gasdynamische FUnktionen für 1\':=1.30. E 'MO' T I II I I er M lO lO I.lO lO

9 A.3 Tabellen der gasdynamischen Funktionen 399 Elf oe M* = M;'az = J7,6666 = 2, MI

10 400 A Anhang Gasdynamische FUnktionen für 11:=1.25. I Mol ~ I 11 I E I I I alm I I Mol ~ I 11 E I I alm

11 A.3 Tabellen der gasdynamischen Funktionen 401 I M*I T I 11 I E I I I Cl< I M I lO lO lO lO I M*I T I 11 E I I lO47 0.5lO OlO M* = M* = vi9 = 3 maz Cl< I MI

12 402 A Anhang A.4 Kennwerte von Triebwerken Kennwerte historischer Thrbinenluftstrahltriebwerke Typ Jahr %y %T d m n ml IIy T." F. b. I. m/f. Bemerkung I mm kg..jj- 5 man. K kn ~ e ~ HeS3B ilR IR ,0 2, , ,74 2 für He178 He S li1r IR ,0 2,7 7, ,54 30 in He280 DB / ,6 8, l.ztl-.i;!;ntw. Jumo 004B ,0 3, , ,85 Serie Me262 BMW 003A ,3 3, , ,78 Serie Ar234 NE ,0 3, , ,98 9 für jap. I8N BMW ,0 7,0 33,3 120 IProjekt W IR , , ,75 E28/39 Weiland 1943 IR ,5 3,5 7, ,54 Serie Meteor Derwent I 1944 IR ,0 4,0 8, ,65 Serie Meteor Nene I 1945 IR ,0 4, , ,39 Serie Meteor Ghost 1947 IR ,5 4,5 22, ,44 ISerie Vampire J30-WE ,5 3, , ,45 Projekt J31-GE IR ,0 3, , ,53 Lizenz von W1 J33-GE IR ,0 4, , ,49 Serie P88A J35 (GE) ,0 18,0 122 Serie Quelle: (49) und (96) Kennwerte von Thrbinenluftstrahltriebwerken in Einstrombauart (ETL) Typ Jahr zy ZT d m n ml IIy T.4 F. b. Is. m/f. Bemerkung mm kg..!.i- 5 mon. K kn ~ ~ ;/;& Nene RB IR ,0 4, , ,1 0,36 WK-1A 1949 IR ,2 4, , ,8 0,33 MiG-15,17 Jumo ,0 5,5 29, ,1 0,54 Projekt Pirna Ol4AO ,0 7, , ,9 0,34 Baade 152 Pirna 0l4A ,0 7, , ,7 0,32 Baade 152 Pirna ,0 10, , ,4 0,31 Projekt AM-3A ,0 85,9 55,7 0,35 TU-16 RD-3M ,0 6, , ,5 0,33 TU-104 J47-GE ,7 5, , ,1 0,53 J47-GE ,0 5,5 26, ,7 0,43 J57-P /7 1/ ,0 12,0 44, ,4 0,43 JT3C /7 1/ ,0 13,8 57, ,2 0, J85-GE ,3 6, , ,4 0,14 CJ61O ,0 6, , ,8 0,13 ATAR 101AO ,0 4, , ,42 Flugerpr. ATAR 101D ,0 4, , ,2 0,32 Mystere ATAR 8C ,0 5, ,1 99 0,26 Etendard ATAR 8K ,6 6, , ,0 0,21 S.-Etend. IAvon RA ,0 6,2 29, ,7 0,38 Avon RA29/ ,0 8,8 46, ,5 0,32 Viper ASV ,5 3, , ,7 0,29 lviper ,3 5,8 16, ,6 0,21 IOlympus /7 1/ ,0111, , ,4 0,34 IVulcan IOlympus /7 1/ ,0113, , ,1 0,22 IVulcan IOlympus /7 I/I ,0115, ,23 IConcorde Quelle: (89), (96) und (136)

Berechnung von Oberflächendrücken

Berechnung von Oberflächendrücken Berechnung von Oberflächendrücken Methode 1: Faustformel 1 (fixe, konstante Druckänderung) Es wird von einem fixen, konstanten Druckabfall von 0.1bar / 1000m Höhe (ü.m.) ausgegangen. p amb-surf (H) = p

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

ANHANG: Deutsche Maße und Gewichte APPENDIX: British and American Weights and Measures

ANHANG: Deutsche Maße und Gewichte APPENDIX: British and American Weights and Measures ANHANG: Deutsche Maße und Gewichte APPENDIX: British and American Weights and Measures Deutsche Maße und Gewichte 1. Längenmaße 1 mm Millimeter, millimeter (US), millimetre (GB) = 1/1000 meter, metre =

Mehr

Maßeinheiten der Mechanik

Maßeinheiten der Mechanik Maßeinheiten der Mechanik Einheiten der Masse m Kilogramm kg 1 kg ist die Masse des internationalen Kilogrammprototyps. (Gültig seit 1901) Statt Megagramm wird die allgemein gültige SI-fremde Einheit Tonne

Mehr

Tabellen und Grafiken zur Thermodynamik

Tabellen und Grafiken zur Thermodynamik 524 Anhang 2 Tabellen und Grafiken zur Thermodynamik Abbildung A 2-1. Mollier-Diagramm Abbildung A 2-2. Erklärung zum Mollier-Diagramm Abbildung A 2-3. Umrechnung des Drucktaupunktes Tabelle A 2-1. Tabelle

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN .6 EINHEITEN UND UMRECHNUNGSFAKTOREN Grundeinheiten des SI-Systems Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrischer Strom Ampere A Temperatur Kelvin K Lichtstärke Candela cd Umrechnungsfaktoren

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

Wie lässt sich aus Luftdruck die Höhe berechnen und umgekehrt?

Wie lässt sich aus Luftdruck die Höhe berechnen und umgekehrt? Wie lässt sich aus Luftdruck die Höhe berechnen und umgekehrt? Sandra Sebralla Großes Projekt: Sondierung mit unbemannten Luftfahrtsystemen Leitung: Dr. Andreas Philipp Datum: 14.12.2105 2 Atmosphäre und

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 20. August 2009 Bearbeitungszeit:

Mehr

3 Aerostatik Atmosphäre der Erde Die Erde als Wärmekraftmaschine Aufbau der Erdatmosphäre... 8

3 Aerostatik Atmosphäre der Erde Die Erde als Wärmekraftmaschine Aufbau der Erdatmosphäre... 8 3 erostatik... 2 3.1 tmosphäre der Erde... 2 3.1.1 Die Erde als Wärmekraftmaschine... 2 3.1.2 ufbau der Erdatmosphäre... 8 3.2 bhängigkeit des Luftdrucks von der Höhe... 10 3.2.1 Luftdruck... 10 3.2.2

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

( ) ( ) J =920. c Al. m s c. Ü 8.1 Freier Fall

( ) ( ) J =920. c Al. m s c. Ü 8.1 Freier Fall Ü 8. Freier Fall Ein Stück Aluminium fällt aus einer Höhe von z = 000 m auf den Erdboden (z = 0). Die Luftreibung wird vernachlässigt und es findet auch kein Energieaustausch mit der Umgebung statt. Beim

Mehr

Klausur Strömungsmaschinen I WiSe 2013/2014

Klausur Strömungsmaschinen I WiSe 2013/2014 Klausur Strömungsmaschinen I WiSe 2013/2014 4. März 2013, Beginn 14:00 Uhr Prüfungszeit: 90 Minutenn Zugelassene Hilfsmittell sind: Taschenrechner, Geodreieck, gestellte Formelsammlung Zeichenmaterial,

Mehr

ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE

ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE VON ING. WERNER BERTIES 16., verbesserte Auflage Mit 74 Bildern einem h,s-, h,x- und lg p,/i-diagramm sowie einer Zusammenstellung der Gleichungen Friedr. Vieweg & Sohn

Mehr

KERNFORSCHUNGSANLAGE JÜLICH

KERNFORSCHUNGSANLAGE JÜLICH Institut für Reaktorbauelemente KERNFORSCHUNGSANLAGE JÜLICH des Landes Nordrhein-Westfalen - e. V. Thermodynamische Stoffwerte von Luft, Kohlendioxyd und Stickstoff bei hohen Temperaturen und Drücken von

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Projekt Aufgabensammlung Thermodynamik

Projekt Aufgabensammlung Thermodynamik Projekt Aufgabensammlung Thermodynamik Nr. Quelle Lösungssicherheit Lösung durch abgetippt durch 1 Klausur 1 (1) OK Navid Matthes 2 Probekl. WS06 (1) / Kl.SS04 (1) 100% Prof. Seidel. (Nav.) Matthes (Nav)

Mehr

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik Kompressionsfaktor z,00 1,75 1,50 1,5 1,00 0,75 0,50 0,5 H CH 4 CO 0 0 0 40 60 80 Druck in MPa ideales Gas Nach dem idealen Gasgesetz gilt: pv nrt = pv m RT = 1 (z) Nennenswerte Abweichungen vom idealen

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Tutorium Physik 2. Fluide

Tutorium Physik 2. Fluide 1 Tutorium Physik. Fluide SS 16.Semester BSc. Oec. und BSc. CH Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 1. Radioaktivität 7. FLUIDE 7.1 Modellvorstellung Fluide: Lösung 5

Mehr

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG) Datei Alugefaess.docx Kapitel Thermodynamik ; thermische Ausdehnung Titel Aluminiumgefäß randvoll gefüllt Hinweise: Orear: Kap. 12.4, 12.5, Hering: Kap. 3.3.1 Dobrinski: Kap. 2.3 Alonso Finn: Kap. 13.7-9

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Übungsaufgaben Chemie Nr. 3

Übungsaufgaben Chemie Nr. 3 Übungsaufgaben Chemie Nr. 3 22) Wie hoch ist die Molarität der jeweiligen Lösungen, wenn die angegebene Substanzmenge in Wasser gelöst und auf 200 ml aufgefüllt wurde? a) 58.44g NaCl (Kochsalz) b) 100

Mehr

HTBL-Kapfenberg Die Lavaldüse Seite 1 von 6

HTBL-Kapfenberg Die Lavaldüse Seite 1 von 6 HTBL-Kapfenberg Die Lavaldüse Seite von 6 Herwig Schwarz herwig.schwarz@htl-kapfenberg.ac.at Die Lavaldüse Mathematische / Fachliche Inhalte in Stichworten: Energiesatz der Mechanik, thermodynamische Zustandsänderungen,

Mehr

Zusatztutorium PPH #1: Einheiten

Zusatztutorium PPH #1: Einheiten Zusatztutorium PPH #1: Einheiten Alle physikalischen Größen haben eine fest zugeordnete physikalische Einheit, z.b. Weg, Länge, Höhe : Meter (m) Zeit: Sekunde (s) Kraft: Newton (N) Im Allgemeinen werden

Mehr

Lösungsvorschlag Übung 1

Lösungsvorschlag Übung 1 Lösungsvorschlag Übung Aufgabe : Physikalische Einheiten a) Es existieren insgesamt sieben Basisgrössen im SI-System. Diese sind mit der zugehörigen physikalischen Einheit und dem Einheitenzeichen in der

Mehr

Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch. Musterlösung Thermodynamik I SS Aachen, den 6. Oktober 2014.

Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch. Musterlösung Thermodynamik I SS Aachen, den 6. Oktober 2014. Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch Musterlösung Thermodynamik I SS 014 Aachen, den 6. Oktober 014 Bachelorprüfung Thermodynamik I SS 014 1/10 1 Aufgabe (5 Punkte) a) Die

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

Thermodynamik I - Übung 1. Nicolas Lanzetti

Thermodynamik I - Übung 1. Nicolas Lanzetti Thermodynamik I - Übung 1 Nicolas Lanzetti Nicolas Lanzetti 02.10.2015 1 Hinweise zu der Übung Name: Nicolas Lanzetti; 5. Semester Maschinenbau; Mail: Raum: CHN C14; Zeit: Freitag, 8:15-10:00; Alle Unterlagen:

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

HTW Chur Ingenieurbau/Architektur, Physik 1, T. Borer

HTW Chur Ingenieurbau/Architektur, Physik 1, T. Borer Am Anfang der Zivilisation stand die Messkunst. Unsere Vorfahren lernten die Messtechnik anzuwenden, als sie sesshaft wurden, Häuser bauten und Felder bestellten. Die ersten Masseinheiten waren Naturmasse

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Probeklausur zur Vorlesung Einführung in die Physikalische Chemie

Probeklausur zur Vorlesung Einführung in die Physikalische Chemie Name: Probeklausur zur Vorlesung Einführung in die Physikalische Chemie Fr. 19. Dezember 2008, 10 15-12 15 Vorbemerkungen - Von den 6 Aufgaben sind 5 zu lösen. - Schreiben Sie die Lösungen auf die Aufgabenblätter.

Mehr

x mm 400 1) 400 1) 400 1) 400 1) α / β 6,5/6,5 6,5/6,5 6,5/6,5 6,5/6,5 h3 mm 3000 2) 3000 2) 3000 2) 3000 2)

x mm 400 1) 400 1) 400 1) 400 1) α / β 6,5/6,5 6,5/6,5 6,5/6,5 6,5/6,5 h3 mm 3000 2) 3000 2) 3000 2) 3000 2) Technische Daten Reihe ME 1,5 bis 3 tonnen Elektro Gabelstapler MANITOU MANITOU MANITOU MANITOU ME315 ME316 ME318 ME320 Q t 1,5 1,6 1,8 2,0 c mm 500 500 500 500 x mm 400 1) 400 1) 400 1) 400 1) y mm 1250

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Thermodynamik I PVK - Tag 1. Nicolas Lanzetti

Thermodynamik I PVK - Tag 1. Nicolas Lanzetti Thermodynamik I PVK - Tag 1 Nicolas Lanzetti Nicolas Lanzetti 04.01.2016 1 Hinweise zu dem PVK Name: Nicolas Lanzetti; 5. Semester Maschinenbau; Mail: lnicolas@student.ethz.ch; Raum: ML F34; Zeit: Montag-Mittwoch,

Mehr

Bestimmung des Spannungskoeffizienten eines Gases

Bestimmung des Spannungskoeffizienten eines Gases Bestimmung des Spannungskoeffizienten eines Gases Einleitung Bei diesem Experiment wollen wir den Spannungskoeffizienten α eines Gases möglichst genau bestimmen und in Folge mit dem Spannungskoeffizienten

Mehr

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Um physikalische Aussagen über das Verhältnis von Messgrößen zu erhalten, ist es notwendig die Größen exakt und nachvollziehbar

Mehr

1. Was ist Dampf? Die physikalischen Grundlagen

1. Was ist Dampf? Die physikalischen Grundlagen 1 Was ist Dampf? 1. Was ist Dampf? Die physikalischen Grundlagen Wir alle wissen was geschieht, wenn in der Küche im Teekessel das Wasser zu kochen beginnt: Dampf tritt aus der Tülle und wenn der Deckel

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Druck, Kompressibilität, Schweredruck

Druck, Kompressibilität, Schweredruck Aufgaben 6 Statik der Fluide Druck, Kompressibilität, Schweredruck Lernziele - einen Druck bzw. eine Druckkraft berechnen können. - wissen, ob eine Flüssigkeit bzw. ein Gas kompressibel ist oder nicht.

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen:

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Größen mit Formelzeichen, Einheiten und Umrechnungen: Bsp.: 520 mm : 10 = 52 cm Bsp.: 120 h : 24 = 5 d 6 Weg FZ: s Einheiten: mm; cm;

Mehr

Gase. Eigenschaften, Gasgesetze, techn. Anwendungen & wichtige Gase. Mag. Gerald Trutschl

Gase. Eigenschaften, Gasgesetze, techn. Anwendungen & wichtige Gase. Mag. Gerald Trutschl Gase Eigenschaften, Gasgesetze, techn. Anwendungen & wichtige Gase Mag. Gerald Trutschl 1 Inhalt 1. Aggregatzustande 2. Eigenschaften der Gasteilchen 3. Atmosphäre 4. Gasgesetze 5. Joule Thomson Effekt

Mehr

Druck, Kompressibilität, Schweredruck

Druck, Kompressibilität, Schweredruck Aufgaben 9 Statik der Fluide Druck, Kompressibilität, Schweredruck Lernziele - einen Druck bzw. eine Druckkraft berechnen können. - wissen, ob eine Flüssigkeit bzw. ein Gas kompressibel ist oder nicht.

Mehr

Übersicht über die systematischen Hauptgruppen

Übersicht über die systematischen Hauptgruppen Ü ü H 1-9: A G 1 B 2 N 3 F 4 A T 5 I I A (D, M, H) 6 W Z 7 Z ( S), Z 10-19: W W 10 S G W 11 G G, G 12 G G G, 13 G G G, N, Lä 14 G G G, N, Lä 15 O G 16 B, A M 17 G Pä / G U / L S G 1 20-29: U E 20 D W öß

Mehr

Der Temperatur-Glide von Kältemitteln und. die rechte Grenzkurve Nassdampfgebiet die linke Grenzkurve Siedepunkt. Mitteltemperatur

Der Temperatur-Glide von Kältemitteln und. die rechte Grenzkurve Nassdampfgebiet die linke Grenzkurve Siedepunkt. Mitteltemperatur Falsche Schlussfolgerung, der Temperatur ist kein Druckabfall zugeorndet. Erstellt 12.05.2016 Information für den Kälte-, Klima- und Wärmepumpenbauer, Nr. 40, 16.05.2016 Seite 1 von 2 Berufsgruppe Kälte

Mehr

PC-Übung Nr.1 vom

PC-Übung Nr.1 vom PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in

Mehr

Aufgabe 1 ( = 80)

Aufgabe 1 ( = 80) Aufgabe 1 (4 + 42 + 4 + 30 80) Ein rechtslaufender, reversibler, geschlossener Kreisprozess (KP) mit Luft ( 1.4, J 287 ) besteht aus folgenden Zustandsänderungen: K 1-2 Isentrope, wobei im Zustand 1 der

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Klausur Strömungsmaschinen I SS 2011

Klausur Strömungsmaschinen I SS 2011 Klausur Strömungsmaschinen I SS 2011 17. August 2011, Beginn 13:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen) und zugehörige

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Chlorierung von Phosphotrichlorid a) Von 1 mol ursprünglichem PCl 3 und Cl 2 wären 0.515 mol zu PCl 5 reagiert und 0.485 mol verblieben. Mit x i = n i ergeben sich die Molenbrüche

Mehr

1 Messung eines konstanten Volumenstroms mit konstanter Dichte

1 Messung eines konstanten Volumenstroms mit konstanter Dichte INHALTE I Inhalte 1 Konstanter Volumenstrom 1 1.1 Auswertung der Messwerte........................ 1 1.2 Berechnung des Volumenstroms...................... 1 1.3 Fehlerbetrachtung.............................

Mehr

Allgemeine Chemie / Lösungsvorschläge Aufgaben

Allgemeine Chemie / Lösungsvorschläge Aufgaben Allgemeine Chemie / Lösungsvorschläge Aufgaben 1) offene Systeme >>> Erlenmeyerkolben ohne Stopfen geschlossene Systeme >>>> Luftballon abgeschlossen>>>> Thermoskanne 2) M(Ausgangsstoff) = 404 g/mol n(fe

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 1. Einleitende Fragen

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 1. Einleitende Fragen Einleitende Fragen 1. Was versteht man unter Thermodynamik? Thermodynamik ist die Lehre von den Energieumwandlungen und den Zusammenhängen zwischen den Eigenschaften der Stoffe. 2. Erklären Sie folgende

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Physik

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Physik Orientierungstest für angehende Industriemeister Vorbereitungskurs Physik Weiterbildung Technologie Erlaubte Hilfsmittel: Formelsammlung Taschenrechner Maximale Bearbeitungszeit: 1 Stunde Provadis Partner

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Chemische Grundgesetze

Chemische Grundgesetze Björn Schulz Berlin,.10.001 p.1 Cheische Grundgesetze Gesetz von der Erhaltung der Masse (Lavoisier 1785) Abbrennen einer Kerze Massenverlust geschlossenes Syste Eisennagel rostet Massenzunahe konstante

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Bioenergetik www.icbm.de/pmbio Energieformen Von Lebewesen verwertete Energieformen o Energie ist etwas, das Arbeit ermöglicht. o Lebewesen nutzen nur zwei Formen: -- Licht --

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

0tto-von-Guericke-Universität Magdeburg

0tto-von-Guericke-Universität Magdeburg 0tto-von-Guericke-Universität Magdeburg Institut für Strömungstechnik und Thermodynamik, Lehrstuhl Strömungsmechanik und Strömungstechnik Übungsaufgaben Fluidenergiemaschinen Aufgabe 1.01 In einer Bewässerungsanlage

Mehr

Synthetisches Kältemaschinenöl auf Polyolester-Basis (POE) für HFKW/FKW- und HFO- bzw. HFO/HFKWKältemittel. mm /s 2

Synthetisches Kältemaschinenöl auf Polyolester-Basis (POE) für HFKW/FKW- und HFO- bzw. HFO/HFKWKältemittel. mm /s 2 Typische Kennwerte: Produktname Eigenschaften Einheit Dichte bei 15 C kg/m³ 14 DIN 51757 Flammpunkt C 25 DIN ISO 2592 Farbe -,5 DIN ISO 249 Kinematische Viskosität bei 4 C bei 1 C mm /s 2 mm /s 32 6,1

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Schallgeschwindigkeit in Gasen ******

Schallgeschwindigkeit in Gasen ****** V050510 5.5.10 ****** 1 Motivation Mittels Oszilloskop wird die Zeit gemessen, die ein Schallwellenimpuls nach seiner Erzeugung m Lautsprecher bis zum Empfänger (Mikrofon) braucht. 2 Experiment Abbildung

Mehr

Hand - Druckmessgerät PCE-P15 / 30 / 50 Druckmessgerät mit RS232- Schnittstelle und Software, für Überdruck, Unterdruck, Differenzdruck, geeignet für Luft und nicht explosive Gase, 3 Modelle im Angebot

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2005

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2005 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2005 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Ergänzung im Web www.thermodynamik-formelsammlung.de

Ergänzung im Web www.thermodynamik-formelsammlung.de Ergänzung im Web www.thermodynamik-formelsammlung.de Kapitel 13 Ideale Gasgemische Anhang B Zustandsdiagramme B5 B6 lg p,h-diagramm für Propan h 1+x,x w -Diagramm für feuchte Luft (farbig) AnhangC Stoffwert-Bibliotheken

Mehr

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 )

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 ) 3 Lösung zu 83. Lösungen ( C C = T ( = T ( ( ( 2 van-der-waals Gas: ( ( b + a 2 = T = T b a 2 Man beachte das dies nur eine andere Formulierung der van-der-waals Gleichung ist als auf dem letzten Aufgabenzettel.

Mehr

den 10 m hohen Rand in den Tank gepumpt. Die zur

den 10 m hohen Rand in den Tank gepumpt. Die zur Druck, Tankreinigung Ein Tank soll gereinigt und anschließend mit einem flüssigem Lebensmittel befüllt werden. Für die Reinigung wird ein Schlauch über den Rand des Tanks gehängt. An der Pumpe, mit der

Mehr

Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc.

Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc. Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc. Angaben zur Person: (bitte leserlich und in Druckbuchstaben) Name, Vorname: Geburtsdatum und ort: Matrikelnummer: Studienfach,

Mehr

03 Sensoren Genauigkeiten

03 Sensoren Genauigkeiten 03 Sensoren Genauigkeiten Emery, W.J. and R.E. Thomson (2001) Data Analysis Methods in Physical Oceanography. Chapter 1: Data Acquisition and Recording. ELSEVIER, Amsterdam. Bergmann, Schaefer (1998) Lehrbuch

Mehr

Anhang: Tabelle der Einfachen Einkommenssteuer

Anhang: Tabelle der Einfachen Einkommenssteuer Anhang: Tabelle der n ssteuer (Stand 2011) bares 11600 11700 11800 2. 0,0169 11900 4. 0,0336 12000 6. 0,0500 12100 8. 0,0661 12200 10. 0,0820 12300 12. 0,0976 12400 14. 0,1129 12500 16. 0,1280 12600 18.

Mehr

Kamin. Saugzug. Luvo. Kessel. Luft Frischlüfter. Kohle. Berechnungen

Kamin. Saugzug. Luvo. Kessel. Luft Frischlüfter. Kohle. Berechnungen 1 Berechnungen Bei dem zu berechnenden Kraftwerk handelt es sich um ein konventionelles überkritisches Kohlekraftwerk. In einem Kessel wird Steinkohle verbrannt und damit heißes Rauchgas erzeugt, welches

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Naturwissenschaften Teil 1

Naturwissenschaften Teil 1 Naturwissenschaften Teil Auswertung von Messreihen Grafische Darstellung Die nachfolgende Tabelle enthält die Messwerte zur Aufnahme einer Abkühlungskurve für reines Zinn. Stelle die Messwerte in einem

Mehr

B3: CHANNEL/SEARCH Taste B4: AL ON/OFF Taste B5: ALERT Taste B6: MAX/MIN Taste B7: RESET Taste

B3: CHANNEL/SEARCH Taste B4: AL ON/OFF Taste B5: ALERT Taste B6: MAX/MIN Taste B7: RESET Taste WS 9005 Merkmale: 433MHz Funk Frequenz. 3-Kanal-Auswahl kabelloser Thermo-Sender Übertragungsreichweite: 30 Meter ( Freifeld ) Messbereiche: Innentemperatur : 0 C ~ +50 C Wasser Temperatur : -20 C ~ +50

Mehr

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Urs Wyder, 4057 Basel U.Wyder@ksh.ch Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Hinweis: Verwenden Sie in Formeln immer die SI-Einheiten Meter, Kilogramm und Sekunden resp. Quadrat- und Kubikmeter!

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II NAME, Vorname Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 14. 03. 2019 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Fragen

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

Analyse Auftriebs KKKraftwerk Fa Gaja 1 Erstellt am e.r.

Analyse Auftriebs KKKraftwerk Fa Gaja 1 Erstellt am e.r. Analyse Auftriebs KKKraftwerk Fa Gaja 1 Funktionsprinzip des Auftriebskraftwerks In einem mit Wasser gefüllten Tank befinden sich Behälter in Form eines halbierten Zylinders, die mit einem Kettentrieb

Mehr

Anhang 5. Radionuklid A 1. in Bq. Ac-225 (a) Ac-227 (a) Ac Ag Ag-108m (a) Ag-110m (a)

Anhang 5. Radionuklid A 1. in Bq. Ac-225 (a) Ac-227 (a) Ac Ag Ag-108m (a) Ag-110m (a) 1 Anhang 5 Auszug aus der Tabelle 2.2.7.7.2.1 der Anlage zur 15. Verordnung zur Änderung der Anlagen A und B zum ADR-Übereinkommen vom 15. Juni 2001 (BGBl. II Nr. 20 S. 654), getrennter Anlagenband zum

Mehr