HTBL-Kapfenberg Die Lavaldüse Seite 1 von 6

Größe: px
Ab Seite anzeigen:

Download "HTBL-Kapfenberg Die Lavaldüse Seite 1 von 6"

Transkript

1 HTBL-Kapfenberg Die Lavaldüse Seite von 6 Herwig Schwarz herwig.schwarz@htl-kapfenberg.ac.at Die Lavaldüse Mathematische / Fachliche Inhalte in Stichworten: Energiesatz der Mechanik, thermodynamische Zustandsänderungen, Ausflussfunktion (y - Funktion) der Thermodynamik, nummerisches Gleichungslösen Kurzzusammenfassung Bestimmung der Strömungsverhältnisse der Lavaldüse und anschließende Visualisierung des Druck- und Geschwindigkeitsverlaufes in Abhängigkeit der Geometrie. Lehrplanbezug (bzw. Gegenstand / Abteilung / Jahrgang): Strömungsmaschinen & Mechanik, 4. & 5.Jahrgang, Maschinenbau Mathcad-Version: Mathcad 00 Allgemeine Ableitung Zustand im Eintritt: p i, T i, v i Zustand im Austritt: p a, T a, v a Zustand im Inneren: p, T, v Bild Energiegleichung Enthalpie + kin. Energie konstant (*) w i w a h i + h a + (Gl. ) (*) Die pot. Energie ist verhältnissmäßig klein und kann vernachläßigt werden. Da die Geschwindigkeit am Eintritt im Verhältnis zu der Austrittsgeschwindigkeit sehr klein ist, kannn (Gl. ) auch wie folgt geschrieben werden. w a h i h a h s Für die Isentrope Zustandsänderung ist uns der Zusammenhang p a h s c p T i Herwig Schwarz 00

2 HTBL-Kapfenberg Die Lavaldüse Seite von 6 bekannt. Es kann also geschrieben werden. w a Die Austrittsgeschwindigkeit "w a " lautet somit: p a c p T i w a Führt man nun die folgenden Substitutionen durch, c p p a T i erhalten wir nun die gewünschte Form: cr v p tesla R p v ρ w a p i ρ i p a (Gl. ) Massenstrom m p amp w v (Gl. 3) Für Isentrope Zustandsänderungen gilt: p i v i p a v a p i p a v a v i p i v a v i p a ρ i p i p a In (Gl. 3) eingesetzt ergibt sich: m p A a w a p i ρ i p a (Gl. 4) Flechtet man auch noch (Gl. ) mit ein, so erhält man für den Massenstrom: m p A a p i p a ρ i p a ρ i p i m p A a p i ρ i p a + p a p i Herwig Schwarz 00

3 HTBL-Kapfenberg Die Lavaldüse Seite 3 von 6 Definiert man nun die Ausflußgleichung mit ψ p a + p a p i (Gl. 5) so kann geschrieben werden: m p A a ψ p i ρ i (Gl. 6) Angaben für ein Beispiel: Isentropenexponent für Luft :.4 Einheitendefinitionen: Gaskonstante R 87 joule : bar 0 5 newton : kg K m Druck beim Eintritt p i : 6bar Druck beim Austritt p a : bar Temperatur beim Eintritt T i : 300K Massenstrom m p 0.5 kg : sec Erweiterungswinkel β : 3deg (β ist die Hälfte des Winkels α aus Bild 3) Fragestellung: Kleinste Querschnitt: Gesucht wird der Druck- bzw. Geschwindigkeitsverlauf innerhalb der Lavaldüse, in Abhängigkeit von der Geometrie (vom Durchmesser). Es sind auch noch folgende konkreten Werte zu berechen: - kleinste Querschnitt d min - Austrittsquerschnitt d a - kritische Geschwindigkeit w krit - Austrittsgeschwindigkeit w a Ausflußgleichung ψ ( p v ) + : p v p v p v : 0, ψ( p v ) ψ d( p v ) p tmp : 0.5 d : ψ p v dp v (, p tmp ) p tmp : root ψ d p tmp ψ max : ψ ( p tmp ) p v Bild ψ max Herwig Schwarz 00

4 HTBL-Kapfenberg Die Lavaldüse Seite 4 von 6 Dichte der Luft beim Eintritt (aus Gasgleichung) ρ i : p i R T i ρ i kg m 3 Kleinste Querschnitt aus (Gl. 6) A min : ψ max m p.p i ρ i d min : 4 A min π Austrittsquerschnitt: Wert der Ausflußfunktion am Austritt d min.679 mm p a ψ a : ψ p i ψ a 0.39 Austrittsquerschnitt laut (Gl. 6) A min ψ max A a ψ a A a A ψ max : min ψ a d a : 4 A a π d a 4.6 mm Druck- und Geschwindigkeitsverlauf: Um im Vorhinein ein unnötige Fehlerquelle zu eliminieren, wird in diesem Teilabschnitt ohne Dimensionen gerechnet. d min d min : mm m p a : p a newton d a : d a mm A a A a : m m p : sec m p kg m p i : p i newton m 3 ρ i : ρ i kg Abrundungsradius (divergierender Düsenteil) r ab : d min Offsets des Abrundungsradiuses o x : r ab o y : 3 d min Herwig Schwarz 00

5 HTBL-Kapfenberg Die Lavaldüse Seite 5 von 6 Teilfunktion: divergierender Düsenteil r( x) : r ab x o x + o y Schnittpunkt der beiden Teilfunktionen x : Given d dx r( x) tan( β) x s : find( x) x s.9 Gesamtlänge der Düse Bild 3 ll : d a r( x s ) tan( β ) + x s Teilfunktion: erweiteter Düsenteil r( x) : d a ll tan( β) + tan( β) x Gesamte Durchmesserfunktion r( x) : if x x s, r( x), r( x) Ausflußfunktion abhängig vom Durchmesser (Gl. 6) Druckfunktion: divergierender Düsenteil ψ dm( x) : p tmp : 0.6 m p π ( r( x) 0 3 ) 4 p i ρ i Given ψ dm( x) ψ p tmp p( x) : find( p tmp ) p i 0 5 Druckfunktion: erweiteter Düsenteil p tmp : 0. Given ψ dm( x) ψ p tmp p( x) : find( p tmp ) p i 0 5 Gesamte Druckfunktion p( x) : if x d min, p( x), p( x) Herwig Schwarz 00

6 HTBL-Kapfenberg Die Lavaldüse Seite 6 von 6 Geschwindigkeitsfunktion (Gl. ) w( x) p i : ρ i p( x) 0 5 p i Druck- und Geschwindigkeitsverlauf ll x : 0,.. ll 00 krit : r( x) 5 0 p( x) 0 w( x) 50 krit x, x, x, x, o x Geometrie der Lavaldüse im Halbschnitt [mm] Mittellinie der Lavaldüse Druckverlauf p(x) [bar] Geschwindigkeitsverlauf w(x) (M :50) [m/s] Kritischer Punkt Bild 4 m p Austrittsgeschwindigkeit aus (Gl. 4) [m/s]: w a : A a ρ i p i p a w a Austrittsgeschwindigkeit aus w(x) [m/s]: w( ll) Kritische Geschwindigkeit [m/s]: w( o x ) Herwig Schwarz 00

Kennlinie einer 2-stufigen Kreiselpumpe

Kennlinie einer 2-stufigen Kreiselpumpe HTBL Wien 1 Kennlinie einer -stuf. Kreiselpumpe Seite 1 von 1 DI Dr. techn. Klaus LEEB Kennlinie einer -stufigen Kreiselpumpe Mathematische / Fachliche Inhalte in Stichworten: Ermitteln einer Kennlinie.

Mehr

Klausur. Strömungsmechanik

Klausur. Strömungsmechanik Strömungsmechanik Klausur Strömungsmechanik. Juli 007 Name, Vorname: Matrikelnummer: Fachrichtung: Unterschrift: Bewertung: Aufgabe : Aufgabe : Aufgabe 3: Aufgabe 4: Gesamtpunktzahl: Klausur Strömungsmechanik

Mehr

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II 1) Wie stellt sich der Druck p E im Austrittsquerschnitt beim Austritt eines Gases aus einem Kessel durch eine stetig konvergente Mündung,

Mehr

Statisch unbestimmtes System

Statisch unbestimmtes System HT-Kapfenberg Statisch unbestimmtes System Seite von 8 Franz Hubert Kainz franz.kainz@htl-kapfenberg.ac.at Statisch unbestimmtes System Mathematische / Fachliche Inhalte in Stichworten: Grundlagen der

Mehr

Klausur Strömungsmaschinen I SoSe 2008

Klausur Strömungsmaschinen I SoSe 2008 Klausur Strömungsmaschinen I SoSe 2008 9 August 2008, Beginn 3:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

11.6 Laval - Düse Grundlagen

11.6 Laval - Düse Grundlagen 11.6-1 11.6 Laval - Düse 11.6.1 Grundlagen Beim Ausströmen eines gas- oder dampfförmigen Mediums aus einem Druckbehälter kann die Austrittsgeschwindigkeit höchstens den Wert der Schallgeschwindigkeit annehmen.

Mehr

Kinematik des Viergelenk-Koppelgetriebes

Kinematik des Viergelenk-Koppelgetriebes HTL-LiTec Viergelenk - Koppelgetriebe Seite 1 von 7 Dipl.-Ing. Paul MOHR email: p.mohr@eduhi.at Kinematik des Viergelenk-Koppelgetriebes Mathematische / Fachliche Inhalte in Stichworten: Kinematik; Getriebelehre;

Mehr

Fachwerksberechnung mit FEM II

Fachwerksberechnung mit FEM II HTBL-Kapfenberg Fachwerksberechnung mit FEM Seite 1 Florian Grabner fi.do@gmx.net Fachwerksberechnung mit FEM II Mathematische / Fachliche Inhalte in Stichworten: Finite Elemente Methode Kurzzusammenfassung

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

Klausur Strömungsmaschinen I SoSe 2013

Klausur Strömungsmaschinen I SoSe 2013 Klausur Strömungsmaschinen I SoSe 013 14. August 013, Beginn 13:00 Uhr Prüfungszeit: 90 Minutenn Zugelassene Hilfsmittel sind: nichtprogrammierbarer Taschenrechner, Geodreieck, Zeichenmaterial Andere Hilfsmittel,

Mehr

HTL Niet Fullerene, Fußball Seite 1 von 8. Vektorrechnung in 3D: Skalarprodukt, Vektorprodukt, Gerade, Schnittpunkt...

HTL Niet Fullerene, Fußball Seite 1 von 8. Vektorrechnung in 3D: Skalarprodukt, Vektorprodukt, Gerade, Schnittpunkt... HTL Niet Fullerene, Fußball Seite von 8 Name und e-mail-adresse Nietrost Bernhard, bernhard.nietrost@htl-steyr.ac.at Fullerene, Fußball Mathematische / Fachliche Inhalte in Stichworten: Vektorrechnung

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 bernhard.nietrost@htl-steyr.ac.at Seite 1 von 9 ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 Mathematische / Fachliche Inhalte in Stichworten: allgemeine Sinusfunktion, Winkelfunktionen im schiefwinkeligen

Mehr

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden bernhard.nietrost@htl-steyr.ac.at Seite 1 von 17 Kettenlinie Mathematische / Fachliche Inhalte in Stichworten: Differentialgleichungen (1. und 2. Ordnung, direkt integrierbar, Substitution, Trennen der

Mehr

DI Dr. techn. Klaus LEEB "Hydrovar" - Hauswasserversorgung

DI Dr. techn. Klaus LEEB Hydrovar - Hauswasserversorgung HTBL Wien 1 "Hydrovar" - drehzahlgeregelte Pumpe Seite 1 von 7 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at "Hydrovar" - Hauswasserversorgung Mathematische / Fachliche Inhalte in Stichworten: Ermitteln

Mehr

0tto-von-Guericke-Universität Magdeburg

0tto-von-Guericke-Universität Magdeburg 0tto-von-Guericke-Universität Magdeburg Institut für Strömungstechnik und Thermodynamik, Lehrstuhl Strömungsmechanik und Strömungstechnik Übungsaufgaben Fluidenergiemaschinen Aufgabe 1.01 In einer Bewässerungsanlage

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 003 Strömungsmechanik I Bearbeitungsdauer: PO 000 : 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

Bremsung einer Lokomotive

Bremsung einer Lokomotive bernhard.nietrost@htl-steyr.ac.at Seite 1 von 13 Bremsung einer Lokomotive Mathematische / Fachliche Inhalte in Stichworten: Modellierung von Einflussgrößen (Kräften) stückweise stetige Funktionen Regression

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Klausur Strömungsmaschinen I WiSe 2008/09

Klausur Strömungsmaschinen I WiSe 2008/09 Klausur Strömungsmaschinen I WiSe 008/09 7 Februar 009, Beginn 4:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

Druckfeder - kaltgeformt

Druckfeder - kaltgeformt HTL Kapfenberg Druckfeder - kaltgeformt Seite von 8 Franz Hubert Kainz franz.kainz@htl-kapfenberg.ac.at Druckfeder - kaltgeformt Mathematische / Fachliche Inhalte in Stichworten: Maschinenelemente, Grundlagen

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

HTL Kapfenberg SPLINE Interpolation Seite 1 von 7.

HTL Kapfenberg SPLINE Interpolation Seite 1 von 7. HTL Kapfenberg SPLINE Interpolation Seite von 7 Roland Pichler roland.pichler@htl-kapfenberg.ac.at SPLINE Interpolation Mathematische / Fachliche Inhalte in Stichworten: Polynome, Gleichungssysteme, Differenzialrechnung

Mehr

Klausur Strömungsmaschinen WS 2005/ 2006

Klausur Strömungsmaschinen WS 2005/ 2006 Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J. Seume Klausur Strömungsmaschinen WS 2005/ 2006 28. Februar 2006, Beginn 14:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

HTL Steyr KAUSTIK Seite 1 von 11. Kaustik. Winkelfunktionen, Einheitskreis, Summensätze, Grenzübergänge (LIMES), Parameterdarstellung einer Funktion

HTL Steyr KAUSTIK Seite 1 von 11. Kaustik. Winkelfunktionen, Einheitskreis, Summensätze, Grenzübergänge (LIMES), Parameterdarstellung einer Funktion HTL Steyr KAUSTIK Seite von Nietrost Bernhard, Kaustik bernhard.nietrost@htl-steyr.ac.at Mathematische / Fachliche Inhalte in Stichworten: Winkelfunktionen, Einheitskreis, Summensätze, Grenzübergänge (LIMES,

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Windrad 2MW:Der Energieertrag (Windverteilung - cp-wert)

Windrad 2MW:Der Energieertrag (Windverteilung - cp-wert) HTL Wien Windrad - Energieertrag Seite von 6 DI Dr. techn. Klaus LEEB Windrad MW:Der Energieertrag (Windverteilung - cp-wert) Mathematische / Fachliche Inhalte in Stichworten: Analyse eines Windradstandortes.

Mehr

Kennlinien eines 4-Takt Dieselmotors

Kennlinien eines 4-Takt Dieselmotors HTBL Wien 1 Kennlinien eines Dieselmotors Seite 1 von 5 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at Kennlinien eines 4-Takt Dieselmotors Didaktische Inhalte: Kennfeld und Kennlinien eines Dieselmotors;

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Nach Prüfungsordnung 1989

Nach Prüfungsordnung 1989 Fachprüfung: Prüfer: Kolben und Strömungsmaschinen Hauptstudium II Prof. Dr. Ing. H. Simon Prof. Dr. Ing. P. Roth Tag der Prüfung: 10.08.2001 Nach Prüfungsordnung 1989 Vorgesehene Punkteverteilung: Strömungsmaschinen:

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Baehr, H. D. Thermodynamik, 3. Auflage, Berlin Auflage, Berlin Technische Thermodynamik, 2. Auflage, Bonn 1993

Baehr, H. D. Thermodynamik, 3. Auflage, Berlin Auflage, Berlin Technische Thermodynamik, 2. Auflage, Bonn 1993 Literaturverzeichnis Baehr, H. D. Thermodynamik,. Auflage, Berlin 197 Cerbe, G./ Hoffmann, H.-J. Doering, E./ Schedwill, H. Elsner, N. Hahne, E. Langeheinecke, K. (Hrsg.)/ Jany, P./ Sapper, E. Einführung

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 20. August 2009 Bearbeitungszeit:

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 2002 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

Biegelinie eines Trägers

Biegelinie eines Trägers HTBL Graz (Ortweinschule Biegelinie eines Trägers Seite von Heinz Slepcevic slep@htlortwein-graz.ac.at Biegelinie eines Trägers Mathematische / Fachliche Inhalte in Stichworten: Biegelinie, Differentialgleichung,

Mehr

ÜTA: B - Tragwerk für Cluster 1 und 3

ÜTA: B - Tragwerk für Cluster 1 und 3 bernhard.nietrost@htl-steyr.ac.at Seite von 5 ÜTA: B - Tragwerk für Cluster und 3 Mathematische / Fachliche Inhalte in Stichworten: Winkelfunktionen im schiefwinkeligen Dreieck; lineare Regression; bestimmtes

Mehr

Technische Strömungsmechanik für Studium und Praxis

Technische Strömungsmechanik für Studium und Praxis Albert Jogwich Martin Jogwich Technische Strömungsmechanik für Studium und Praxis 2. Auflage

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 17. August 2012

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 17. August 2012 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 17. August 2012 Bearbeitungszeit:

Mehr

HTL Saalfelden Taylorreihen Seite 1 von 13. Wilfried Rohm

HTL Saalfelden Taylorreihen Seite 1 von 13. Wilfried Rohm HTL Saalfelden Taylorreihen Seite von 3 Wilfried Rohm wrohm@aon.at Taylorreihen Mathematische / Fachliche Inhalte in Stichworten: Approximation von Funktionen durch Taylorpolynome, Integration durch Reihentwicklung,

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

"Wankelmotor" - Animation der Kolbendrehung

Wankelmotor - Animation der Kolbendrehung HTBL Wien 10 Wankelmotor - Animation der Seite 1 von 5 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at "Wankelmotor" - Animation der Kolbendrehung Mathematische / Fachliche Inhalte in Stichworten: Grafische

Mehr

Das Wechselstromparadoxon

Das Wechselstromparadoxon HTL Saalfelden Das Wechselstromparadoxon Seite von 6 Wilfried Rohm wrohm@aon.at Das Wechselstromparadoxon Mathematische / Fachliche Inhalte in Stichworten: Ortskurven, Komplexe Widerstände, Differentialrechnung

Mehr

4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen

4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen 4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen 4.1.4-1 konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes

Mehr

Klausur Fluidenergiemaschinen Fragen H Lösung:

Klausur Fluidenergiemaschinen Fragen H Lösung: Klausur Fluidenergiemaschinen (mit Lösungen).0.00 Fragen. Wasser soll mit einer Pumpe von einem unteren Becken in ein oberes Becken gefördert werden. Beide Becken sind offen. a) Stellen Sie qualitativ

Mehr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr Klausur Strömungsmechanik Herbst 203 3. August 203, Beginn 5:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar TFD-Formelsammlung (ohne handschriftliche

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

Klausur Strömungsmaschinen I SS 2011

Klausur Strömungsmaschinen I SS 2011 Klausur Strömungsmaschinen I SS 2011 17. August 2011, Beginn 13:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen) und zugehörige

Mehr

( ) Resultate. β = = KURZLÖSUNGEN MATURA Aufgabe 1. a) Das Dreieck ist rechtwinklig mit ( CBA) 90. c) M ( 5 / 1.5 / 7)

( ) Resultate. β = = KURZLÖSUNGEN MATURA Aufgabe 1. a) Das Dreieck ist rechtwinklig mit ( CBA) 90. c) M ( 5 / 1.5 / 7) KURZLÖSUNGEN MATURA 0 SERIE A Resultate Aufgabe a) Das Dreieck ist rechtwinklig mit ( CBA) 90 β = = b) ϕ 6.7 c) D( 8/ 9/) M ( 5 /.5 / 7) d) V ( Pyramide ) = 97 Pyramidenhöhe h = 8 8 E ( ABC ) : 8x + y

Mehr

Thermodynamik 1 Klausur 06. März 2015

Thermodynamik 1 Klausur 06. März 2015 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 06. März 2015 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

Numerische Untersuchungen zu Labyrinthdichtungen

Numerische Untersuchungen zu Labyrinthdichtungen Numerische Untersuchungen zu Labyrinthdichtungen Andreas Matthias Institut für Thermodynamik und Energiewandlung TU Wien 9. Dezember 2005 1. Einleitung Die Labyrinthdichtung gehört auf dem Gebiet der thermischen

Mehr

Klausur Strömungsmechanik 1 Herbst 2012

Klausur Strömungsmechanik 1 Herbst 2012 Klausur Strömungsmechanik 1 Herbst 2012 21. August 2012, Beginn 15:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

6.Übung Strömungslehre für die Mechatronik

6.Übung Strömungslehre für die Mechatronik 6.Übung Strömungslehre für die Mechatronik Prof. Dr.-Ing Peter Pelz Dipl.-Ing. Thomas Bedar 18. Juli 2009 Inhaltsverzeichnis 1 Hinweise 1 2 Korrektur zur Vorlesung vom 14.07.2009 2 3 laminare Schichtenströmung

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Seite 1 von 5 Übungsbeispiel zur Vorbereitung auf die srdp in AM im clusterübergreifenden Teil A

Seite 1 von 5 Übungsbeispiel zur Vorbereitung auf die srdp in AM im clusterübergreifenden Teil A bernhard.nietrost@htl-steyr.ac.at Seite 1 von 5 ÜTA: A - Werbedruck Mathematische / Fachliche Inhalte in Stichworten: Flächenberechnung mit Integral, quadratische und lineare Funktionen, elementare Wahrscheinlichkeit,

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Energie- und Kältetechnik Klausur SS 2008

Energie- und Kältetechnik Klausur SS 2008 Prof. Dr. G. Wilhelms Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

"Hydrodynamik - Leistung einer Pumpe"

Hydrodynamik - Leistung einer Pumpe HTBL Wien 10 "Hydrodynamik" - Bernoulli-Gleichun Seite 1 von 6 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at "Hydrodynamik - Leistun einer Pumpe" Mathematische / Fachliche Inhalte in Stichworten: Lösen

Mehr

Dimensionieren eines Säulendrehkrans

Dimensionieren eines Säulendrehkrans HTB Wien 1 Dimensionieren eines Seite 1 von 5 DI Dr. techn. Klaus EEB klaus.leeb@surfeu.at Dimensionieren eines Säulendrehkrans Mathematische / Fachliche Inhalte in Stichworten: Numerische Integration,

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Kraft- und Arbeitsmaschinen. Klausur, 18. August 2014

Kraft- und Arbeitsmaschinen. Klausur, 18. August 2014 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur, 18. August 2014 Bearbeitungszeit: 120 Minuten

Mehr

Prüfungsordnung 2002

Prüfungsordnung 2002 Universität Duisburg-Essen Fachbereich für Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Fluiddynamik/Strömungsmaschinen Prüfer: Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel Datum der

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Lösungen Aufgabenblatt 6

Lösungen Aufgabenblatt 6 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 6 Übungen E Mechanik WS 07/08 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. September 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Prüfung: Thermodynamik II (Prof. Adam)

Prüfung: Thermodynamik II (Prof. Adam) Prüfung: Thermodynamik II (Prof. Adam) 18.09.2008 Erreichbare Gesamtpunktzahl: 48 Punkte Aufgabe 1 (30 Punkte): In einem Heizkraftwerk (siehe Skizze) wird dem Arbeitsmedium Wasser im Dampferzeuger 75 MW

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

SRDP 1. Nebentermin 2017, alle Aufgaben aus dem Aufgabenteil B

SRDP 1. Nebentermin 2017, alle Aufgaben aus dem Aufgabenteil B HTL Kapfenberg SRDP 1.NT 2017 Aufgaben Teil B Seite 1 von 22 Roland Pichler roland.pichler@htl-kapfenberg.ac.at SRDP 1. Nebentermin 2017, alle Aufgaben aus dem Aufgabenteil B Hier werden die Lösungen der

Mehr

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Aufgabe 1.3-1 Ein Heizgerät verbraucht 5 m³/h Leuchtgas (H u = 21018 kj/m³) und erwärmt 850 dm³/h Wasser um 30 C. Die Wärmekapazitä t des Wassers

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

11. Gasdynamik Aufgabe 11.1 [2]

11. Gasdynamik Aufgabe 11.1 [2] 11-1 11. Gasdynamik Aufgabe 11.1 [2] Ein punktförmiges Masseteilchen bewegt sich um die Erde auf einem Durchmesser von 13,3. 10 3 km mit 1 500 km/h. Welche Zeit benötigt ein Schallimpuls, der von dem Masseteilchen

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik WS 06/7 Lösung 3 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe : Stahlseil (a)

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Vergleich Auslaufbecher und Rotationsviskosimeter

Vergleich Auslaufbecher und Rotationsviskosimeter Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik

Lehrstuhl für Fluiddynamik und Strömungstechnik Lehstuhl fü Fluiddynamik und Stömungstechnik Pof. D.-Ing. W. Fank Lösungen zu dem Aufgabenblatt Aufgabe 1 Gegeben: p =,981 ba (Duck fü z = ), T = 83 K (Tempeatu fü z = ), α = 6 1-3 K m -1, m = 9 kg/ kmol

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Aufgabenblatt zum Seminar 02 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 02 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS7057 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmarmarti@uni-ulmde) 9 04 009 Aufgaben Berechnen Sie

Mehr

Biegebemessung im Stahlbetonbau

Biegebemessung im Stahlbetonbau HTBL Pinkafeld Biegebemessung im Stahlbetonbau lt. Ö B4700 Seite 1 von 6 Andreas Höhenberger, hoehenberger@aon.at Biegebemessung im Stahlbetonbau Mathematische / Fachliche Inhalte in Stichworten: Analytische

Mehr