3 Schnellkurs in MATLAB
|
|
|
- Timo Holst
- vor 9 Jahren
- Abrufe
Transkript
1 3 Schnellkurs in MATLAB 3.1 Einführung MATLAB (= Matrix laboratory) Softwarepaket für numerische Berechnungen und Visualisierungen 1980 ( Cleve Moler; ) Ursprung in LINPACK und EISPACK ohne symbolische Berechnungen Bezeichnungen im Folgen Ausgabe <... > ist durch... zu ersetzen < enter > Eingabetaste drücken (wird im Allgemeinen weggelassen) 3.2 Allgemeines MATLAB ist case sensitive. Prompt Zeichen : >> Kommentar : % < Text > Zeichenkette : zwischen Hochkommata... Zuweisung : Variablenname = < Ausdruck > Zuweisung ohne Ausgabe : Variablenname = < Ausdruck >; % Semikolon! Befehlsauswertung : < Befehl > < enter > % (Befehl Anweisung) Ergebnis steht in der Variablen ans (= answer) Zeilenverkettung:... % Zeilentrenner für lange Befehle Standardausgabe : Festpunktformat mit 5 Stellen Hilfe : help < Anweisung > 1
2 3.3 Zahlen IEEE double Darstellung : 8 Byte = 64 Bit : Mantissenvorzeichen : 1 Bit Exponent : 11 Bit, Mantisse : 52 Bit + 1 hidden Bit Maschinengenauigkeit : eps = kleinste pos. normal. Maschinenzahl : realmin = größte positive Maschinenzahl : realmax = ( ) komplexe Zahlen : a + b i 3.4 Vektoren, Matrizen Zeilenvektoren : x = [ ] % oder x = [10,20,30] % Indizierung beginnt bei 1! % d.h. hier: x(1) = Matrizen : A = [1 2; 3 4; 5 6] % Ergebnis: A = % Das Semikolon ist hier Zeilentrenner! Indexoperator : A(:,1) % erzeugt die 1. Spalte von A A(1,:) % erzeugt die 1. Zeile von A Teilmatrix : B = A(1:2,1:2) % bedeutet B = Transponierte A T : A m n Nullmatrix : zeros(m,n) Nullvektor (m Komp.) : zeros(m,1) m n Einsmatrix : ones(m,n) n n Einheitsmatrix : eye(n) n n Diagonalmatrix : diag(x) % x ist Vektor Determinante : det(a) ( Größenbestimmung : length(x) % 3 size(a) % 3, 2 (3 Zeilen, 2 Spalten) ) 2
3 3.5 Arithmetische Operationen, Standardfunktionen Operationen : +, -, *, /, ^ Bei Matrizen gilt : A\b löst Ax = b B/A löst XA = B 5 + A berechnet die Matrix (5 + a ij ) Elementweise Operationen :.+,.-,.*,./,.^ mit zusätzlichem Punkt! Beispiel : A.*B berechnet die Matrix (a ij b ij ) (Hadamard Produkt!) Relationen : <, <=, >, >=, ==, ~= % existiert neben ~= auch als ~(... ==...) Logische Operatoren : & und oder ~ Negation xor entweder oder ( Syntax: xor(a,b) ) wahr / falsch : 1 = true, 0 = false Konstante : pi bezeichnet die Kreiszahl π Über und unterbestimmte lineare Gleichungssysteme werden nach der Methode der kleinsten Quadrate gelöst. Standardfunktionen (Argumente in runden Klammern!) sin, cos, tan, atan, exp, log, log2, log10, sqrt, nthroot nthroot(z,n) = n z max, sum, mean, abs sum(x) abs(x) Vektoren als Argument! = n i=1 x i = ( x i ) R n Eigene Funktionen kann man in sogenannten M Files definieren (s.u.). 3.6 M Files Zum Schreiben eigener Funktionen; einzige Möglichkeit, Funktionen oder Prozeduren mit Variablen einzuführen. M Files erzeugt man mit File New M-File function y = name(x) y = exp(-x); Abspeichern in name.m (Dateiname wie in function!) 3
4 Aufrufen durch name(5.3) (z.b.) Ist x ein Vektor, gibt name(x) den Vektor (name(x i )) zurück. 3.7 Kontrollstrukturen Verzweigungen a) Einfachverzweigung if < Bedingung > elseif < Bedingung > else < letzter Anweisungsblock > b) Mehrfachverweigung switch < Zähler > case < Zählerwert > case < Zählerwert >. case < Zählerwert > otherwise Schleifen a) for Schleife (= Zählschleife) for i = < Anfangswert > : < Endwert > % Zählererhöhung um 1 4
5 for i = < Anfangswert > : < Zählererhöhung > : < Endwert > % Zählererhöhung gemäß Angabe b) while Schleife while < Bedingung > Abbruch continue break return % aktiviert in einer Schleife den nächsten Schleifurchgang % Abbruch einer Schleife % Abbruch mit Rückkehr zur aufrufen Funktion 3.8 Graphik Zweidimensional: u, v, x, y bezeichnen Vektoren. x = 0:0.1:8 erzeugt den Vektor x = (0, 0.1, 0.2,..., 7.9, 8). plot(x) zeichnet x i über dem Index i und verbindet die Punkte geradlinig plot(x,y) zeichnet y i über x i und verbindet die Punkte geradlinig plot(u,v, o,x,y, --g ) zeichnet Punktepaare (u i, v i ) mit sowie (x i, y i ), verbunden durch grüne ( g = green) gestrichelte Geradenstücke. hold leitet die nachfolgen Zeichnungen in dasselbe Bildfenster oder hebt dies auf (Schalterwirkung!) title( <Text> ) Graphiküberschrift text(x,y, <Text> ) schreibt einen Text an den Punkt (x, y) des Koordinatensystems 5
6 Dreidimensional: Gittererzeugung z.b. durch [X,Y] = meshgrid(-2:0.1:2, -3:0.1:4) % Gitter der Maschenweite 0.1 im Bereich [ 2, 2] [ 3, 4] Z = X.*sin(X.^2 + Y.^2) % wertet f(x, y) = x sin(x 2 + y 2 ) auf dem Gitter aus mesh(x,y,z) zeichnet die Punkte (x i, y j, f(x i, y j )) und interpoliert zu einem Drahtgitter. surf(x,y,z) zeichnet die Punkte (x i, y j, f(x i, y j )) und interpoliert zu einer Fläche. Abspeicherung mit print name.ps in die Postscript Datei name.ps. 3.9 Daten einlesen/ausgeben save datei.dat x,y save datei.dat x,y -ascii load datei.dat x = datei(1,:); % speichert x, y binär in datei.dat % speichert x, y in lesbarer Form in datei.dat % öffnet die Datei datei.dat zum Lesen % liest die erste Zeile von datei.dat % in den Zeilenvektor x. disp(<text>,<variable>) % display(...); % Bildschirmausgabe von <Text> und <Variable>. 6
7 3.10 Formatierung fprintf( x = %f, y = %22.15e\n, x,y) %f : Platzhalter für eine Zahl in Festpunktdarstellung %6.2f : Platzhalter für eine Zahl in Festpunktdarstellung mit 2 Nachkommastellen bei einer Gesamtschreibbreite von 6 Zeichen %e : Platzhalter für eine Dezimalzahl in Gleitpunktdarstellung %22.15e : Platzhalter für eine Zahl in Gleitpunktdarstellung mit 15 Nachkommastellen bei einer Gesamtschreibbreite von 22 Zeichen %d : Platzhalter für eine ganze Zahl / Dezimalzahl %10.3d : Platzhalter für eine Zahl in Gleitpunktdarstellung mit 3 Nachkommastellen bei einer Gesamtschreibbreite von 10 Zeichen; ganze Zahlen werden ohne Nachkommastellen ausgegegeben \n : Zeilenumbruch Bilschirmausgabe format short : format long : format long e : format hex : format Standardausgabe mit 5 Stellen im Festpunktformat Langzahlausgabe mit 15 Stellen im Festpunktformat Langzahlausgabe mit 15 Stellen im Gleitpunktformat Hexadezimalausgabe Umschaltung auf Standardausgabe 3.11 Weitere Befehle clear clf tic; toc löscht alle Variablen löscht Graphikfenster Stoppuhr 7
8 3.12 Standardalgorithmen der Linearen Algebra a) LU Zerlegung einer regulären Matrix A [L,U,P] = lu(a) Berechnet mit dem Gaußschen Algorithmus mit Zeilenvertauschungen gemäß Spaltenpivotsuche eine Permutationsmatrix P, eine untere Dreiecksmatrix L (= lower) mit Einsen in der Diagonalen und eine obere Dreiecksmatrix U (= upper) so, dass P A = LU gilt. ( LU Zerlegung von A mit Spaltenpivotsuche ) Hieraus folgt Ax = b P Ax = P b L(Ux) = P b Ly = P b, Ux = y Auflösung der beiden gestaffelten Systeme (= lineare Gleichungssysteme mit Dreiecksmatrizen als Koeffizientenmatrizen) durch y = L\(P*b); x = U\y; Beachte: Mit P wie oben existieren L und U und sind eindeutig. b) Cholesky Zerlegung einer symmetrischen, positiv definiten Matrix Sei A R n n symmetrisch (d.h. A = A T ) und positiv definit (d.h. x T Ax > 0 für alle x R n, x 0). C = chol(a) Berechnet mit dem Cholesky Verfahren eine obere Dreiecksmatrix C mit positiven Diagonalelementen, so dass A = C T C gilt. ( Cholesky Zerlegung von A ) Hieraus folgt Ax = b C T (Cx) = b C T y = b, Cx = y Auflösung der beiden gestaffelten Systeme durch y = C \b; x = C\y; Beachte: Unter den genannten Voraussetzungen existiert C und ist eindeutig. c) QR Zerlegung einer reellen quadratischen Matrix A [Q,R] = qr(a) Berechnet eine orthogonale Matrix Q (d.h. Q T = Q 1 ) und eine obere Dreiecksmatrix R so, dass A = QR gilt. ( QR Zerlegung von A ) Hieraus folgt Ax = b Q(Rx) = b Rx = Q T b Auflösung des gestaffelten Systems durch x = R\(Q * b);. Ist A singulär, so auch R. In diesem Fall wird x durch x = R\(Q * b); nach der Methode der kleinsten Quadrate berechnet. 8
9 Beachte: Q und R existieren immer, sind jedoch nicht eindeutig bestimmt. Für reguläre Matrizen A R n n sind Q R n n und R R n n eindeutig bis auf eine Rechts- bzw. Linksmultiplikation mit einer Signaturmatrix (= Diagonalmatrix mit Diagonalelementen ±1), d.h. gilt A = QR = Q R mit orthogonalen Matrizen Q, Q und oberen Dreiecksmatrizen R, R, so gibt es eine Signaturmatrix Σ mit Q = QΣ und R = ΣR. In diesem Fall wird die QR Zerlegung eindeutig, wenn man z.b. positive Diagonalelemente für R fordert. d) Eigenwert und Eigenvektorberechnung einer Matrix A d = eig(a) % Vektor d enthält die Eigenwerte von A als Komponenten [V,D] = eig(a) % Spalten von V sind Eigenvektoren, D = diag(eigenwerte) e) Singulärwertzerlegung einer m n Matrix A s = svd(a) % Vektor s enthält die singulären Werte von A als Komponenten [U,S,V] = svd(a) % berechnet die Singulärwertzerlegung A = USV H 9
Einführung in MATLAB
Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB
Erwin Grüner 09.02.2006
FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten
Übung 4: Einführung in die Programmierung mit MATLAB
Übung 4: Einführung in die Programmierung mit MATLAB AUFGABE 1 Was bewirkt der Strichpunkt? - Der Strichpunkt (Semikola) unterdrück die Anzeige der (Zwischen-) Resultate. Welche Rolle spielt ans? - Wenn
LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.
Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
Einführung in die Programmierung
: Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte
Informationsverarbeitung im Bauwesen
V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30
Kurze Einführung in Octave
Kurze Einführung in Octave Numerische Mathematik I Wintersemester 2009/2010, Universität Tübingen Starten von Octave in einer Konsole octave eintippen (unter Linux) Octave als Taschenrechner Beispiele:
10 Lesen und Schreiben von Dateien
10 Lesen und Schreiben von Dateien 10 Lesen und Schreiben von Dateien 135 10.1 Mit load und save Binäre Dateien Mit save können Variableninhalte binär im Matlab-Format abgespeichert werden. Syntax: save
Einführung in Matlab Was ist MATLAB? Hilfe Variablen
Einführung in Matlab Was ist MATLAB? MATLAB (Matrix Laboratory) ist eine interaktive Interpreter-Sprache, die einen einfachen Zugang zu grundlegenden numerischen Verfahren - wie beispielsweise der Lösung
R-Tutorial. R bietet zahlreiche Hilfe-Funktionen an. Informiere Dich über die Funktion log():
Statistik für Bioinformatiker SoSe 2005 R-Tutorial Aufgabe 1: Hilfe. Logge Dich ein. Username und Passwort stehen auf dem Aufkleber am jeweiligen Bildschirm. Öffne eine Shell und starte R mit dem Befehl
Einführung in die C++ Programmierung für Ingenieure
Einführung in die C++ Programmierung für Ingenieure MATTHIAS WALTER / JENS KLUNKER Universität Rostock, Lehrstuhl für Modellierung und Simulation 14. November 2012 c 2012 UNIVERSITÄT ROSTOCK FACULTY OF
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:
VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt
Computerarithmetik ( )
Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur
1.9 Eigenwerte und Eigenvektoren
.9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..
Java-Programmierung mit NetBeans
Java-Programmierung mit NetBeans Steuerstrukturen Dr. Henry Herper Otto-von-Guericke-Universität Magdeburg - WS 2012/13 Steuerstrukturen Steuerstrukturen Verzweigungen Alternativen abweisende nichtabweisende
Einführung in die Programmierung
: Inhalt Einführung in die Programmierung Wintersemester 2010/11 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund Wiederholungen - while - do-while - for
Die Programmiersprache C
Die Programmiersprache C höhere Programmiersprache (mit einigen Assembler-ähnlichen Konstrukten) gut verständliche Kommandos muss von Compiler in maschinenlesbaren Code (Binärdatei) übersetzt werden universell,
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Mathematische Computer-Software
Mathematische Computer-Software Kommerzielle Computeralgebrasysteme (CAS) Beispiele: Mathematica, Maple, Numerisches und symbolisches Verarbeiten von Gleichungen: Grundrechenarten Ableitung und Integration
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
VisualBasic - Variablen
Typisch für alle Basic-Dialekte ist die Eigenschaft, dass Variablen eigentlich nicht deklariert werden müssen. Sobald Sie einen Bezeichner schreiben, der bisher nicht bekannt war, wird er automatisch angelegt
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache
Agenda für heute, 4. März, 2010 Zusammengesetzte if-then-else-anweisungen Datentypen Pascal ist eine streng typisierte Programmiersprache Für jeden Speicherplatz muss ein Datentyp t (Datenformat) t) definiert
INTELLIGENTE DATENANALYSE IN MATLAB
INTELLIGENTE DATENANALYSE IN MATLAB Einführung in MATLAB Überblick Was ist MATLAB? Abkürzung für matrix laboratory. Reines Numerikprogramm für das Rechnen mit großen Zahlenfeldern (arrays) bzw. Matrizen.
Programmiervorkurs WS 2012/2013. Schleifen und Methoden
Programmiervorkurs WS 2012/2013 Schleifen und Methoden Ein Befehl soll mehrfach ausgeführt werden, z.b.: public class MyCounter { System.out.println(1); Ein Befehl soll mehrfach ausgeführt werden, z.b.:
5 Eigenwerte und die Jordansche Normalform
Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen!
Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen! Grundstrukturen: Sub [name]([übergabe]) End Sub [Übergabe] ist
C-Probeklausur (Informatik 1; Umfang: C, Teil 1; SS07)
C-Probeklausur (Informatik 1; Umfang: C, Teil 1; SS07) 1. Aufgabe 6 Punkte Geben Sie Definitionen an für: float var; 1 a) eine float-variable var: b) einen Zeiger pvar, der float *pvar = &var; 1 auf die
Druckerscriptsprache
Druckerscriptsprache Die Druckerscriptsprache stellt Ihnen ein mächtiges Werkzeug zur Erstellung und Automatisierung von komplexen Druckvorgängen zur Verfügung. Vom Folgedruck bis zum Archivfunktion ist
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Grundlagen der Programmiersprache C++
/ TU Braunschweig Grundlagen der Programmiersprache C++ Um den Studierenden den Einstieg in die FE-Programmierung zu erleichtern werden die wesentlichen Elemente eines C-Programmes beschrieben, soweit
Eine Einführung zum numerischen Programmieren mit Matlab
Eine Einführung zum numerischen Programmieren mit Matlab Bastian Gross Universität Trier 11. April 2011 Bastian Gross Matlab Kurs 1/31 Inhaltsverzeichnis 1 Beginn und erste Schritte Matlab-Umgebung 2 Variablen
Diana Lange. Generative Gestaltung Operatoren
Diana Lange Generative Gestaltung Operatoren Begriffserklärung Verknüpfungsvorschrift im Rahmen logischer Kalküle. Quelle: google Operatoren sind Zeichen, die mit einer bestimmten Bedeutung versehen sind.
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
Verbesserungsdetails: PTC Mathcad Prime 3.0. Copyright 2013 Parametric Technology Corporation. weiter Infos unter www.mcg-service.
: PTC Mathcad Prime 3.0 Copyright 2013 Parametric Technology Corporation PTC Mathcad Angepasste Funktionen Sie können eigene Funktionen, die in C++ oder anderen Sprachen geschrieben sind, in die PTC Mathcad
Java 7. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Dezember 2011 JAV7
Java 7 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Dezember 2011 JAV7 5 Java 7 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen
Modellierung und Programmierung 1
Modellierung und Programmierung 1 Prof. Dr. Sonja Prohaska Computational EvoDevo Group Institut für Informatik Universität Leipzig 19. November 2015 Gültigkeitsbereich (Scope) von Variablen { int m; {
Übersicht Programmablaufsteuerung
Übersicht Programmablaufsteuerung Konditionale Verzweigung: if - else switch-anweisung Schleifenkonstrukte: while, do - while for Schleife Sprung-Anweisungen: break, continue, goto, return Anweisungen
Fallunterscheidung: if-statement
Fallunterscheidung: if-statement A E 1 E 2 V 1 V 2 Syntax: if ( ausdruck ) Semantik: else anweisungsfolge_1 anweisungsfolge_2 1. Der ausdruck wird bewertet 2. Ergibt die Bewertung einen Wert ungleich 0
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Kapitel MK:IV. IV. Modellieren mit Constraints
Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren
Kontrollstrukturen und Funktionen in C
Kontrollstrukturen und Funktionen in C Lernziele: Vertiefen der Kenntnisse über Operatoren, Kontrollstrukturen und die Verwendung von Funktionen. Aufgabe 1: Quickies: Datentypen in C a) Was sind die elementaren
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Matlab: eine kurze Einführung
Matlab: eine kurze Einführung Marcus J. Grote Christoph Kirsch Mathematisches Institut Universität Basel 4. April 2 In dieser Einführung zu Matlab sind die im Praktikum I erworbenen Kenntnisse zusammengefasst.
Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder
Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder Hinweise zur Übung Benötigter Vorlesungsstoff Ab diesem Übungskomplex wird die Kenntnis und praktische Beherrschung der Konzepte
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
Kapitel 15. Lösung linearer Gleichungssysteme
Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Einführung in die C++ Programmierung für Ingenieure
Einführung in die C++ Programmierung für Ingenieure MATTHIAS WALTER / JENS KLUNKER Universität Rostock, Lehrstuhl für Modellierung und Simulation 15. November 2012 c 2012 UNIVERSITÄT ROSTOCK FACULTY OF
Numerische Behandlung des Eigenwertproblems
Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden
PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54
PHP 5.4 Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012 Grundlagen zur Erstellung dynamischer Webseiten ISBN 978-3-86249-327-2 GPHP54 5 PHP 5.4 - Grundlagen zur Erstellung dynamischer Webseiten
der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.
Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Einführung in die Programmierung (EPR)
Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main Einführung in die Programmierung (EPR) (Übung, Wintersemester 2014/2015) Dr. S. Reiter, M. Rupp, Dr. A. Vogel, Dr. K.
Lineare Algebra und analytische Geometrie II (Unterrichtsfach)
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00
Das erste Programm soll einen Text zum Bildschirm schicken. Es kann mit jedem beliebigen Texteditor erstellt werden.
Einfache Ein- und Ausgabe mit Java 1. Hallo-Welt! Das erste Programm soll einen Text zum Bildschirm schicken. Es kann mit jedem beliebigen Texteditor erstellt werden. /** Die Klasse hello sendet einen
u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.
Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume
Objektorientierte Programmierung
Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Lua Grundlagen Einführung in die Lua Programmiersprache
Lua Grundlagen Einführung in die Lua Programmiersprache 05.05.2014 Ingo Berg [email protected] Automatisierungstechnik Voigt GmbH Die Lua Programmiersprache Was ist Lua? freie Programmiersprache speziell
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Grundlagen der Informatik I Informationsdarstellung
Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung
Schritt 1. Schritt 1. Schritt 3. - Analysieren des Problems und Spezifizierung einer Lösung.
I. Programmierung ================================================================== Programmierung ist die Planung einer Abfolge von Schritten (Instruktionen), nach denen ein Computer handeln soll. Schritt
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Projektverwaltung Problem Lösung: Modulare Programmierung
Projektverwaltung Problem Der Sourcecode ür ein Programm wird immer länger und unübersichtlicher Eine Funktion, die in einem alten Projekt verwendet wurde, soll auch in einem neuen Projekt verwendet werden
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel
Schmitt, Günter (1996): Fortran 90 Kurs technisch orientiert, R. Oldenbourg Verlag, München
MANUEL KALLWEIT & FABIAN KINDERMANN Literaturempfehlung: Vorlesungsskript von Heidrun Kolinsky zu FORTRAN 90/95: http://www.rz.uni-bayreuth.de/lehre/fortran90/vorlesung/index.html Schmitt, Günter (1996):
Grundlagen der Programmierung Prof. H. Mössenböck. 3. Verzweigungen
Grundlagen der Programmierung Prof. H. Mössenböck 3. Verzweigungen If-Anweisung n > 0? j n if (n > 0) x = x / n; ohne else-zweig x x / n j max x x > y? n max y if (x > y) max = x; else max = y; mit else-zweig
Statistisches Programmieren
Statistisches Programmieren Session 1 1 Was ist R R ist eine interaktive, flexible Software-Umgebung in der statistische Analysen durchgeführt werden können. Zahlreiche statistische Funktionen und Prozeduren
Logische Verknüpfungen. while-schleifen. Zahlendarstellung auf dem Computer. Formatierung von Zahlen in MATLAB.
Logische Verknüpfungen. while-schleifen. Zahlarstellung auf dem Computer. Formatierung von Zahlen in MATLAB. Logische Verknüpfungen In der letzten Sitzung haben wir kennengelernt, wie wir Zahlen mit Operationen
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
www.mathe-aufgaben.com
Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie
5 DATEN. 5.1. Variablen. Variablen können beliebige Werte zugewiesen und im Gegensatz zu
Daten Makro + VBA effektiv 5 DATEN 5.1. Variablen Variablen können beliebige Werte zugewiesen und im Gegensatz zu Konstanten jederzeit im Programm verändert werden. Als Variablen können beliebige Zeichenketten
FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG
FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG 1 FORMELN EINGEBEN FORMELFELD ÖFFNEN UND SCHLIEßEN Um eine Formel eingeben zu können öffnen Sie den Formeleditor mit EINFÜGEN / FORMEL
Termin 4: Programmieren in MATLAB
Termin 4: Programmieren in MATLAB Währ dieses Termins werden Sie die Gelegenheit haben, sich am PC in die Grundlagen der Programmierung in MATLAB einzuarbeiten. Sie werden zwei mögliche Programmformen
Übung Grundlagen der Programmierung. Übung 03: Schleifen. Testplan Testergebnisse
Übung 03: Schleifen Abgabetermin: xx.xx.xxxx Name: Matrikelnummer: Gruppe: G1 (Prähofer) G2 (Prähofer) G3 (Wolfinger) Aufgabe Punkte gelöst abzugeben schriftlich abzugeben elektronisch Aufgabe 03.1 12
Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2015/2016 Wirtschaftsingenieur Bachelor 5. Aufgabe Datenstruktur, Dateieingabe und -ausgabe
Aufgabenstellung Für eine Hausverwaltung sollen für maximal 500 Wohnungen Informationen gespeichert werden, die alle nach der gleichen Weise wie folgt strukturiert sind: Art Baujahr Wohnung Whnginfo Nebenkosten
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Eine Kurzanleitung zu Mathematica
MOSES Projekt, GL, Juni 2003 Eine Kurzanleitung zu Mathematica Wir geben im Folgenden eine sehr kurze Einführung in die Möglichkeiten, die das Computer Algebra System Mathematica bietet. Diese Datei selbst
Historical Viewer. zu ETC5000 Benutzerhandbuch 312/15
Historical Viewer zu ETC5000 Benutzerhandbuch 312/15 Inhaltsverzeichnis 1 Allgemeine Hinweise... 3 1.1 Dokumentation...3 2 Installation... 3 3 Exportieren der Logdatei aus dem ETC 5000... 3 4 Anlegen eines
Klausur in Programmieren
Studiengang Sensorik/Sensorsystemtechnik Note / normierte Punkte Klausur in Programmieren Wintersemester 2010/11, 17. Februar 2011 Dauer: 1,5h Hilfsmittel: Keine (Wörterbücher sind auf Nachfrage erlaubt)
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
Kevin Caldwell. 18.April 2012
im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
MATLAB: Kapitel 2 Grafiken
MTLB: Kapitel Grafiken MTLB verfügt über eine nahezu unüberschaubare nzahl von Möglichkeiten Grafiken zu erzeugen formatieren oder animieren. In diesem Kapitel werden wir die grundlegenden Werkzeuge für
Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben
Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren
4.2 Selbstdefinierte Matlab-Funktionen 1. Teil
4.2 Selbstdefinierte Matlab-Funktionen 1. Teil 37 Ein m-file mit Namen Funktionsname.m und einer ersten Zeile der folgen Form: function Funktionsname(input1,input2,...,inputn) oder function output1=funktionsname(input1,input2,...,inputn)
FB Informatik. Fehler. Testplan
Fehler #include int i,n,summe; int summe (int); cout 0) cin>n; i=summme(n); cout
