Software Engineering in der Praxis
|
|
|
- Dieter Schäfer
- vor 9 Jahren
- Abrufe
Transkript
1 Software Engineering in der Praxis Praktische Übungen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 26
2 Software-Metriken Josef Adersberger Marc Spisländer Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 2 / 26
3 1 Inhalt 2 Nachlese Objektorientiertes Design 3 Software-Metriken Definition Allgemeine Betrachtungen zum Messen 4 Software-Metriken mit Together Lines of Code Halstead-Metrik McCabe-Metrik Messen mit Together 5 Zusatz: Findbugs als Codeanalyse-Werkzeug Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 3 / 26
4 Objektorientiertes Design Modellieren, wie Probleme gelöst werden Nah an der Implementierung Modellierungssprache UML: Komponentendiagramm Klassendiagramm Objektdiagramm Sequenzdiagramm Zustandsautomat Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 4 / 26
5 Ab heute betrachten wir eine tiefere Abstraktionsstufe: Code bzw. Implementierung Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 5 / 26
6 Software-Metriken Definition»Eine Softwarequalitätsmetrik ist eine Funktion, die eine Software-Einheit in einen Zahlenwert abbildet. Dieser berechnete Wert ist interpretierbar als der Erfüllungsgrad einer Qualitätseigenschaft der Software-Einheit.«(IEEE Standard 1061, 1992) Zweck Software messen, um sie vergleichbar zu machen, um: Qualität zu erhöhen Aufwand/Kosten abzuschätzen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 6 / 26
7 Software-Metriken Definition»Eine Softwarequalitätsmetrik ist eine Funktion, die eine Software-Einheit in einen Zahlenwert abbildet. Dieser berechnete Wert ist interpretierbar als der Erfüllungsgrad einer Qualitätseigenschaft der Software-Einheit.«(IEEE Standard 1061, 1992) Zweck Software messen, um sie vergleichbar zu machen, um: Qualität zu erhöhen Aufwand/Kosten abzuschätzen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 6 / 26
8 Allgemeine Betrachtungen zum Messen Kontext: Reale Welt Menge von Objekten Jedes Objekt verfügt über gewisse Attribute Zum Beispiel: Menge von Menschen mit Attributsfunktion»Alter«Menge von Software mit Attributsfunktion»Lines of Code«Menge von Software mit Attributsfunktion»Qualität«Menge von Software mit Attributsfunktion»Komplexität«Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 7 / 26
9 Allgemeine Betrachtungen zum Messen Kontext: Reale Welt Menge von Objekten Jedes Objekt verfügt über gewisse Attribute Zum Beispiel: Menge von Menschen mit Attributsfunktion»Alter«Menge von Software mit Attributsfunktion»Lines of Code«Menge von Software mit Attributsfunktion»Qualität«Menge von Software mit Attributsfunktion»Komplexität«Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 7 / 26
10 Allgemeine Betrachtungen zum Messen Kontext: Reale Welt Menge von Objekten Jedes Objekt verfügt über gewisse Attribute Zum Beispiel: Menge von Menschen mit Attributsfunktion»Alter«Menge von Software mit Attributsfunktion»Lines of Code«Menge von Software mit Attributsfunktion»Qualität«Menge von Software mit Attributsfunktion»Komplexität«Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 7 / 26
11 Messen Messen bedeutet die experimentelle Bestimmung von Attributwerten. Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 8 / 26
12 Modell der realen Welt Zur systematischen, wissenschaftlichen Untersuchung: Abbildung der realen Objekte auf mathematische Objekte (Mengen, Funktionen, Relationen,... ). Kontext: Mathematische Welt Menge M von Objekten Attributsfunktion A : M W A Messfunktion m A : M W A (Modelliert das Messverfahren und die Messergebnisse) Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 9 / 26
13 Korrekte Messung Frage Wird das Richtige gemessen, d. h. ist die Messung korrekt? Bzw. gilt A = m A? Oder abgeschwächter: Korrelieren A und m A? Schwierigkeit Oft kein Konsens über die Definition der Attributsfunktion Beispiele: Qualität oder Komplexität von Software, Intelligenzquotient,... Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 10 / 26
14 Korrekte Messung Frage Wird das Richtige gemessen, d. h. ist die Messung korrekt? Bzw. gilt A = m A? Oder abgeschwächter: Korrelieren A und m A? Schwierigkeit Oft kein Konsens über die Definition der Attributsfunktion Beispiele: Qualität oder Komplexität von Software, Intelligenzquotient,... Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 10 / 26
15 Korrekte Messung Frage Wird das Richtige gemessen, d. h. ist die Messung korrekt? Bzw. gilt A = m A? Oder abgeschwächter: Korrelieren A und m A? Schwierigkeit Oft kein Konsens über die Definition der Attributsfunktion Beispiele: Qualität oder Komplexität von Software, Intelligenzquotient,... Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 10 / 26
16 Korrekte Messung Frage Wird das Richtige gemessen, d. h. ist die Messung korrekt? Bzw. gilt A = m A? Oder abgeschwächter: Korrelieren A und m A? Schwierigkeit Oft kein Konsens über die Definition der Attributsfunktion Beispiele: Qualität oder Komplexität von Software, Intelligenzquotient,... Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 10 / 26
17 Korrekte Messung Frage Wird das Richtige gemessen, d. h. ist die Messung korrekt? Bzw. gilt A = m A? Oder abgeschwächter: Korrelieren A und m A? Schwierigkeit Oft kein Konsens über die Definition der Attributsfunktion Beispiele: Qualität oder Komplexität von Software, Intelligenzquotient,... Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 10 / 26
18 Definition von Attributsfunktionen Mögliche Auswege Definiere Attributsfunktion A durch Messfunktion m A : A := m A Korrektheit der Messung per Definition gegeben Postuliere Korrelation zwischen A und m A : Unterstelle jedem Menschen eine intuitive Vorstellung von A Definiere m A Prüfe durch statistischen Tests, ob m A und die»intuitive Funktion«A korrelieren Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 11 / 26
19 Definition von Attributsfunktionen Mögliche Auswege Definiere Attributsfunktion A durch Messfunktion m A : A := m A Korrektheit der Messung per Definition gegeben Postuliere Korrelation zwischen A und m A : Unterstelle jedem Menschen eine intuitive Vorstellung von A Definiere m A Prüfe durch statistischen Tests, ob m A und die»intuitive Funktion«A korrelieren Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 11 / 26
20 Beispiel Lines of Code Definition der Attributsfunktion Für alle Programme p: A(p) :=»Anzahl der Zeilen von p«definition der Messfunktion Definition der Messfunktion m A durch Algorithmus: Eingabe: Programm p Berechnung: Zählen der Zeilenendmarkierungen in p Ausgabe: Anzahl der Zeilen in p Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 12 / 26
21 Beispiel Lines of Code Definition der Attributsfunktion Für alle Programme p: A(p) :=»Anzahl der Zeilen von p«definition der Messfunktion Definition der Messfunktion m A durch Algorithmus: Eingabe: Programm p Berechnung: Zählen der Zeilenendmarkierungen in p Ausgabe: Anzahl der Zeilen in p Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 12 / 26
22 Beispiel Lines of Code Korrektheit der Messung Durch mathematischen Beweis folgerbar: A = m a Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 13 / 26
23 Beispiel Software-Komplexität Problem Keine allgemein anerkannte, genaue Definition der Attributsfunktion Software-Komplexität. Hoffnung Intuitive Vorstellung der Attributsfunktion Software-Komplexität korreliert mit einer Messfunktion (z. B. Lines of Code) Nur durch statistischen Tests (Experiment) feststellbar Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 14 / 26
24 Beispiel Software-Komplexität Problem Keine allgemein anerkannte, genaue Definition der Attributsfunktion Software-Komplexität. Hoffnung Intuitive Vorstellung der Attributsfunktion Software-Komplexität korreliert mit einer Messfunktion (z. B. Lines of Code) Nur durch statistischen Tests (Experiment) feststellbar Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 14 / 26
25 Beispiel Software-Komplexität Problem Keine allgemein anerkannte, genaue Definition der Attributsfunktion Software-Komplexität. Hoffnung Intuitive Vorstellung der Attributsfunktion Software-Komplexität korreliert mit einer Messfunktion (z. B. Lines of Code) Nur durch statistischen Tests (Experiment) feststellbar Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 14 / 26
26 Software-Metriken mit Together Das Werkzeug Together bietet verschiedene Metriken an, um Software zu messen. Für das Praktikum wichtig: Lines of Code (LOC) Halstead Program Length (HPLen) Halstead Program Volume (HPVol) Cyclomatic Complexity nach McCabe (CC) Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 15 / 26
27 LOC (Anzahl der Code-Zeilen) Vorteile Einfach zu berechnen Einfach nachzuvollziehen Nachteile Keine hohe Aussagekraft Abhängig vom Programmierstil Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 16 / 26
28 LOC (Anzahl der Code-Zeilen) Vorteile Einfach zu berechnen Einfach nachzuvollziehen Nachteile Keine hohe Aussagekraft Abhängig vom Programmierstil Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 16 / 26
29 Halstead-Metrik Betrache Programm als Wort über zwei disjunkte Alphabete: Σ 1 Operatoren-Alphabet (Schlüsselwörter, +,, Funktionenbezeichner,... ) Σ 2 Operanden-Alphabet (Variablen, Literale) Definiere dann: N 1 :=»Gesamtanzahl der vorkommenden Operatoren«N 2 :=»Gesamtanzahl der vorkommenden Operanden«N := N 1 + N 2 (Programmlänge HPLen) n := Σ 1 + Σ 2 (Programmwortschatz HPVoc) V := N log n (Programmvolumen HPVol) Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 17 / 26
30 Halstead-Metrik Betrache Programm als Wort über zwei disjunkte Alphabete: Σ 1 Operatoren-Alphabet (Schlüsselwörter, +,, Funktionenbezeichner,... ) Σ 2 Operanden-Alphabet (Variablen, Literale) Definiere dann: N 1 :=»Gesamtanzahl der vorkommenden Operatoren«N 2 :=»Gesamtanzahl der vorkommenden Operanden«N := N 1 + N 2 (Programmlänge HPLen) n := Σ 1 + Σ 2 (Programmwortschatz HPVoc) V := N log n (Programmvolumen HPVol) Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 17 / 26
31 Halstead-Metrik (Fortsetzung) Vorteile Einfach zu berechnen Indikator für Fehleranfälligkeit und Wartungsaufwand Robust in der Wahl der Programmiersprache Nachteile Nur auf vollständigen Code anwendbar Weiterführende Halstead-Metriken, wie Mentaler Aufwand fragwürdig Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 18 / 26
32 Halstead-Metrik (Fortsetzung) Vorteile Einfach zu berechnen Indikator für Fehleranfälligkeit und Wartungsaufwand Robust in der Wahl der Programmiersprache Nachteile Nur auf vollständigen Code anwendbar Weiterführende Halstead-Metriken, wie Mentaler Aufwand fragwürdig Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 18 / 26
33 McCabe-Metrik Annahme: Programm hat genau einen Eintritts- und genau einen Austrittspunkt (erfüllt beim strukturellen Programmieren) Aufbau des Kontrollflussgraphen G Anzahl der Kanten: e Anzahl der Knoten: n Zyklomatische Komplexität: ν[g] = e n + 2 (CC) Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 19 / 26
34 McCabe-Metrik Annahme: Programm hat genau einen Eintritts- und genau einen Austrittspunkt (erfüllt beim strukturellen Programmieren) Aufbau des Kontrollflussgraphen G Anzahl der Kanten: e Anzahl der Knoten: n Zyklomatische Komplexität: ν[g] = e n + 2 (CC) Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 19 / 26
35 McCabe-Metrik Annahme: Programm hat genau einen Eintritts- und genau einen Austrittspunkt (erfüllt beim strukturellen Programmieren) Aufbau des Kontrollflussgraphen G Anzahl der Kanten: e Anzahl der Knoten: n Zyklomatische Komplexität: ν[g] = e n + 2 (CC) Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 19 / 26
36 McCabe-Metrik (Fortsetzung) Eigenschaften ν[g] ist die maximale Anzahl linear unabhängiger Zyklen im erweiterten Kontrollflussgraphen (= Kontrollflussgraph + Kante vom Austrittspunkt zum Eintrittspunkt). Verfeinfachung unter folgender Annahme: Nur vier Klassen von Knoten im Kontrollflussgraphen: x Funktionsknoten Knoten, die Berechnung ausführen y Sammelknoten Knoten, die Verzweigung zusammenführen z Prädikatenknoten Knoten mit 2 Ausgangskanten 2 Zusatzknoten Eingangs- bzw. Ausgangsknoten Dann gilt: ν[g] = e n + 2 = (1 + x + y + 2z) (x + y + z + 2) + 2 = z + 1 Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 20 / 26
37 McCabe-Metrik (Fortsetzung) Eigenschaften ν[g] ist die maximale Anzahl linear unabhängiger Zyklen im erweiterten Kontrollflussgraphen (= Kontrollflussgraph + Kante vom Austrittspunkt zum Eintrittspunkt). Verfeinfachung unter folgender Annahme: Nur vier Klassen von Knoten im Kontrollflussgraphen: x Funktionsknoten Knoten, die Berechnung ausführen y Sammelknoten Knoten, die Verzweigung zusammenführen z Prädikatenknoten Knoten mit 2 Ausgangskanten 2 Zusatzknoten Eingangs- bzw. Ausgangsknoten Dann gilt: ν[g] = e n + 2 = (1 + x + y + 2z) (x + y + z + 2) + 2 = z + 1 Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 20 / 26
38 McCabe-Metrik (Fortsetzung) Eigenschaften ν[g] ist die maximale Anzahl linear unabhängiger Zyklen im erweiterten Kontrollflussgraphen (= Kontrollflussgraph + Kante vom Austrittspunkt zum Eintrittspunkt). Verfeinfachung unter folgender Annahme: Nur vier Klassen von Knoten im Kontrollflussgraphen: x Funktionsknoten Knoten, die Berechnung ausführen y Sammelknoten Knoten, die Verzweigung zusammenführen z Prädikatenknoten Knoten mit 2 Ausgangskanten 2 Zusatzknoten Eingangs- bzw. Ausgangsknoten Dann gilt: ν[g] = e n + 2 = (1 + x + y + 2z) (x + y + z + 2) + 2 = z + 1 Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 20 / 26
39 McCabe-Metrik (Fortsetzung) Vorteile Indikator für Wartungsaufwand Anhaltspunkt für die Zahl benötigter unabhängiger Testfälle für Kontrollflussabdeckung Früh in der Entwicklung einsetzbar Nachteile Keine Datenkomplexität Gleiche Gewichtung geschachtelter wie ungeschachtelter Schleifen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 21 / 26
40 McCabe-Metrik (Fortsetzung) Vorteile Indikator für Wartungsaufwand Anhaltspunkt für die Zahl benötigter unabhängiger Testfälle für Kontrollflussabdeckung Früh in der Entwicklung einsetzbar Nachteile Keine Datenkomplexität Gleiche Gewichtung geschachtelter wie ungeschachtelter Schleifen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 21 / 26
41 Auswertungsmöglichkeiten Zunächst eine Tabelle... Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 22 / 26
42 Auswertungsmöglichkeiten (Fortsetzung) Farbliche Kennzeichnung der Ergebnisse: blau: Wert liegt unter einer gegebenen unteren Schranke rot: Wert liegt über einer gegebenen oberen Schranke schwarz: Wert liegt zwischen den Schranken Aggregation der Werte Zur Klasse Zum Package Kiviat-Diagramme Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 23 / 26
43 Kiviat-Diagramme Mehrere Werte werden sternförmig aufgetragen: Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 24 / 26
44 Kiviat-Diagramme (Fortsetzung) Richtwerte bestimmen Vom Tool vorgeschlagen Einstellbar Maximum und Minimum Maßzahlen normieren Im Graphen eintragen Richtwerte als Kreise Metriken als Strahlen Werte des Betrachteten Moduls als Polygon Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 25 / 26
45 Findbugs als Codeanalyse-Werkzeug Zusätzlich zu herkömmlichen Metriken erlaubt das Werkzeug Findbugs die Suche nach Bugpattern Nützlich, um nach bestimmen Kriterien die Qualität des Codes zu erhöhen Zum Beispiel: Einhalten von Codingstandards, Streams nach dem Öffnen schließen,... Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 26 / 26
Inhalt Software-Metriken Software-Metriken mit Together FindBugs. Software-Metriken. Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer
Lill, Meitner, Föhrweiser, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 24 Software-Metriken Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer Lehrstuhl für Software Engineering Friedrich-Alexander-Universität
Software-Metriken. Dipl.-Ing.(BA) Henning Sievert <[email protected]> Seminar Software-Entwurf WS 2004/05
Software-Metriken Dipl.-Ing.(BA) Henning Sievert Seminar Software-Entwurf WS 2004/05 Gliederung Einordnung in den Seminar-Kontext Grundlegende Definitionen Klassifikation von
Comparison of Software Products using Software Engineering Metrics
Comparison of Software Products using Software Engineering Metrics Alexander Bätz Fakultät EIM Universität Paderborn 23. Juli 2009 1 / 28 Motivation Qualitätsbewertung von Software Vergleichbarkeit von
Software Engineering in der Praxis
Inhalt Nachlese Aufgaben Literatur Software Engineering in der Praxis Praktische Übungen Inhalt Nachlese Aufgaben Literatur Marc Spisländer Dirk Wischermann Lehrstuhl für Software Engineering Friedrich-Alexander-Universität
Software Engineering in der Praxis
Software Engineering in der Praxis Praktische Übungen Meitner, Spisländer FAU Erlangen-Nürnberg Objektorientiertes Design 1 / 16 Objektorientiertes Design Matthias Meitner Marc Spisländer Lehrstuhl für
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Algorithmische Mathematik
Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN
PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN Karlsruhe, April 2015 Verwendung dichte-basierter Teilrouten Stellen Sie sich vor, in einem belebten Gebäude,
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
QM: Prüfen -1- KN16.08.2010
QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Übung Theoretische Grundlagen
Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory
SEQUENZDIAGRAMM. Christoph Süsens
SEQUENZDIAGRAMM Christoph Süsens DEFINITION Das Sequenzdiagramm gibt Auskunft darüber: Welche Methoden für die Kommunikation zwischen ausgewählten Objekten zuständig sind. Wie der zeitliche Ablauf von
Empirische Softwaretechnik Kosten und Nutzen von UML in der Wartung Dr. Victor Pankratius Andreas Höfer Wintersemester 2009/2010
Empirische Softwaretechnik Dr. Victor Pankratius Andreas Höfer Wintersemester 2009/2010 IPD Tichy, Fakultät für Informatik Pflichtlektüre hierzu: Dzidek, Arisholm, Briand, A Realistic Empirical Evaluation
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Werkzeuggestützte Softwareprüfungen Statische Analyse und Metriken
Werkzeuggestützte Softwareprüfungen Statische Analyse und Metriken Dennis Hardt 21.06.2006 Gliederung Statische Analyse Definition, Arbeitsweise, Werkzeuge Angewandt auf ein Projekt Statische Analyse selbst
Leica 3D Disto CAD-Werkzeuge
Leica 3D Disto CAD-Werkzeuge Wann werden sie benötigt? um Fenster, Türen und andere Wanddetails zu messen um verdeckte Punkte zu messen 90 um Ecken von genau 90.000 zu erzeugen 45 um Sollmaße zu erzeugen
Künstliche Intelligenz Maschinelles Lernen
Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen
Vorankündigung Die Verlagsleitung und der Erfolgsautor der Blauen Business-Reihe ist auf der Frankfurter Buchmesse 2007 vertreten.
Pressenotiz vom 10. 09. 2007 Vorankündigung Die Verlagsleitung und der Erfolgsautor der Blauen Business-Reihe ist auf der Frankfurter Buchmesse 2007 vertreten. Einen schönen guten Tag die Verlagsleitung
SS 2005 FAU Erlangen 20.6.2005. Eine Wegeplanungs-Strategie. Jeremy Constantin, Michael Horn, Björn Gmeiner
SS 2005 FAU Erlangen 20.6.2005 Voronoi Diagramm Eine Wegeplanungs-Strategie Jeremy Constantin, Michael Horn, Björn Gmeiner Grundseminar: Umgebungsexploration und Wegefindung mit Robotern am Beispiel "Katz
Station Strahlensätze Teil 3
Station Strahlensätze Teil 3 Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Station Strahlensätze Teil 3 Liebe Schülerinnen und Schüler! Arbeitet bitte die folgenden Aufgaben der Reihe nach durch
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
8. Grammatikentwicklung und kognitive Entwicklung- Die kognitive Entwicklung des Kleinkindes II. Domänenspezifische Fähigkeiten
8. Grammatikentwicklung und kognitive Entwicklung- Die kognitive Entwicklung des Kleinkindes II Domänenspezifische Fähigkeiten Die kognitive Entwicklung des Kleinkindes II: Domänenspezifische Fähigkeiten
Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter.
Stundenverwaltung Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter. Dieses Programm zeichnet sich aus durch einfachste
Mächtigkeit von WHILE-Programmen
Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Erstellen von x-y-diagrammen in OpenOffice.calc
Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei
Was bringt TDD wirklich?
Was bringt TDD wirklich? Wissensspritze vom 6..2009, Christian Federspiel Catalysts GmbH McCabe Metrik CCN Die Cyclomatic Complexity Number, misst die Anzahl der möglichen Pfade durch einen Code. Die Metrik
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Drei Fragen zum Datenschutz im. Nico Reiners
Drei Fragen zum Datenschutz im Geoinformationswesen Nico Reiners 1. Frage Welche Geoinformationen sind personenbezogen? Personenbezug? Personenbezogene Daten sind Einzelangaben über persönliche oder sachliche
Datenbanken. Erstellen des Semantischen Modells. Manuel Friedrich. Schiller-Gymnasium Hof
Datenbanken Erstellen des Semantischen Modells Die Objektorientierte Sichtweise! Die Objektorientierte Sichtweise! Alles ist ein Objekt! Mensch Lehrgang Produkt Kunde Lieferant Beispiel Kreis Linienfarbe
sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit
sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit liegen, an Bedeutung verlieren. Die Mannschaften haben sich verändert. Spieler
Wasserfall-Ansätze zur Bildsegmentierung
Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz
Messung und Aufwandsschätzung bei der Entwicklung von Web Applikationen. Frederik Kramer // Folie 1 von 14
Messung und Aufwandsschätzung bei der Entwicklung von Web Applikationen Frederik Kramer // Folie 1 von 14 Warum das ganze? Entwicklungskosten spielen eine immer wichtigere Rolle Messmethoden erlauben diese
1.3 Die Beurteilung von Testleistungen
1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Praktikant / Abschlussarbeit im Bereich Softwareentwicklung / Mechatronik (m/w)
Praktikant / Abschlussarbeit im Bereich Softwareentwicklung / Mechatronik (m/w) Automatisiertes Erstellen von Berichten in EasyConfig V4 EasyConfig ist eine bei der entwickelte Software zur Auslegung und
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Teambildung. 1 Einleitung. 2 Messen der Produktivität
1 Einleitung Teambildung In der Entwicklung, speziell bei hohem Softwareanteil, stellen Personalkosten den primären Kostenanteil dar. Daher ist es wichtig, den Personalbedarf optimal zu bestimmen. You
Verwendung von OO-Metriken zur Vorhersage
Verwendung von OO-Metriken zur Vorhersage Tobias Angermayr Übersicht 1. Definitionen 2. Gründe, Anforderungen, Ziele 3. Die CK-Metriken 4. Beobachtungen 5. Studie 6. Zusammenfassung Folie 2 Definitionen
Graphic Coding. Klausur. 9. Februar 2007. Kurs A
Graphic Coding Klausur 9. Februar 2007 Kurs A Name: Matrikelnummer: Hinweise - Es sind keine Hilfsmaterialien erlaubt. (Keine Bücher, Taschenrechner, Handys) - Sie haben zwei Stunden Zeit. - Insgesamt
Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer
Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Glaube an die Existenz von Regeln für Vergleiche und Kenntnis der Regeln
Glaube an die Existenz von Regeln für Vergleiche und Kenntnis der Regeln Regeln ja Regeln nein Kenntnis Regeln ja Kenntnis Regeln nein 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % Glauben Sie, dass
Darstellungsformen einer Funktion
http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
BROTTEIG. Um Brotteig zu machen, mischt ein Bäcker Mehl, Wasser, Salz und Hefe. Nach dem
UNIT BROTTEIG BROTTEIG Um Brotteig zu machen, mischt ein Bäcker Mehl, Wasser, Salz und Hefe. Nach dem Mischen wird der Teig für mehrere Stunden in einen Behälter gegeben, um den Gärungsprozess zu ermöglichen.
RUP Analyse und Design: Überblick
Inhaltsverzeichnis Übersicht [, 2, 8] 3. Vorgehensweise............................... 5 2 Planungsmethoden 37 2. Definitionsphase.............................. 6 3 Rational Unified Process [5, 6] und
Software-Metriken. Wolfgang Globke. Seminar Moderne Softwareentwicklung SS 2005. Software-Metriken. Wolfgang Globke. Metriken und Qualitätsmodelle
Software- und smodelle Software- Klassische Objektorientierte Seminar Moderne Softwareentwicklung SS 2005 Gliederung Software- und smodelle 1 und smodelle Klassische Objektorientierte 2 Klassische Objektorientierte
Standard XPersonenstand - Version 1.4.3 - Verbindliche Handlungsanweisungen
Standard XPersonenstand - Version 1.4.3 - Verbindliche Handlungsanweisungen Stand: 19. September 2013 1 Mit diesem Dokument werden verbindliche Handlungsanweisungen für die Implementierung des Standards
Die aktuelle Entwicklung des GeoService-Portals. Analyse- und Auswertefunktionen
Die aktuelle Entwicklung des GeoService-Portals Analyse- und Auswertefunktionen Referent Herr Karl-Heinz Gerl RDE Regionale Dienstleistung Energie Folie 1 2004 RDE Objektmengenlehre Nachbarn Info Auswertung
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011
Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 ([email protected]) ([email protected]) Betreuerin: Wir bestätigen hiermit, dass wir das
Aufgabenheft. Fakultät für Wirtschaftswissenschaft. Modul 32701 - Business/IT-Alignment. 26.09.2014, 09:00 11:00 Uhr. Univ.-Prof. Dr. U.
Fakultät für Wirtschaftswissenschaft Aufgabenheft : Termin: Prüfer: Modul 32701 - Business/IT-Alignment 26.09.2014, 09:00 11:00 Uhr Univ.-Prof. Dr. U. Baumöl Aufbau und Bewertung der Aufgabe 1 2 3 4 Summe
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
5. Übung: PHP-Grundlagen
5.1. Erstes PHP-Programm 1. Schreiben Sie PHP-Programm innerhalb einer Webseite, d.h. innerhalb eines HTML-Dokument. Ihr PHP-Programm soll einen kurzen Text ausgeben und Komentare enthalten. Speichern
Funktionaler Zusammenhang. Lehrplan Realschule
Funktionaler Bildungsstandards Lehrplan Realschule Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, erkennen und beschreiben funktionale Zusammenhänge
AM 53/2012. Amtliche Mitteilungen 53/2012
AM 53/2012 Amtliche Mitteilungen 53/2012 Dritte Ordnung zur Änderung der Prüfungsordnung für den Bachelor-Studiengang Wirtschaftsmathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Universität
Software Engineering. Zur Architektur der Applikation Data Repository. Franz-Josef Elmer, Universität Basel, HS 2015
Software Engineering Zur Architektur der Applikation Data Repository Franz-Josef Elmer, Universität Basel, HS 2015 Software Engineering: Mit acht bewährten Praktiken zu gutem Code 2 Schichtarchitektur
Das Vermögen der privaten Haushalte in Nordrhein-Westfalen ein Überblick auf der Basis der Einkommens- und Verbrauchsstichprobe
Sozialberichterstattung NRW. Kurzanalyse 02/2010 09.07.2010 12.07.2010 Das Vermögen der privaten Haushalte in Nordrhein-Westfalen ein Überblick auf der Basis der Einkommens- und Verbrauchsstichprobe 2008
Michelson-Interferometer. Jannik Ehlert, Marko Nonho
Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...
Versand Etiketten / Endlosdruck
Versand Etiketten / Endlosdruck Dieser Etikettendruck ist nur der Druck mit einem Matrix-Druckern möglich. Bei dem Drucker muss der automatische Zeilenvorschub ausgeschaltet sein (siehe Druckerhandbuch).
Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer
Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,
Strom - Spannungscharakteristiken
Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.
Anwendungshinweise zur Anwendung der Soziometrie
Anwendungshinweise zur Anwendung der Soziometrie Einführung Die Soziometrie ist ein Verfahren, welches sich besonders gut dafür eignet, Beziehungen zwischen Mitgliedern einer Gruppe darzustellen. Das Verfahren
Datenexport aus JS - Software
Datenexport aus JS - Software Diese Programm-Option benötigen Sie um Kundendaten aus der JS-Software in andere Programme wie Word, Works oder Excel zu exportieren. Wählen Sie aus dem Programm-Menu unter
Übung 4. Musterlösungen
Informatik für Ökonomen II HS 2010 Übung 4 Ausgabe: 18.11.2010 Abgabe: 25.11.2010 Musterlösungen Schreiben Sie Ihre Namen und Ihre Matrikelnummern in die vorgesehenen Felder auf dem Deckblatt. Formen Sie
Formelsammlung zur Kreisgleichung
zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Unified Modeling Language (UML)
Kirsten Berkenkötter Was ist ein Modell? Warum Modellieren? Warum UML? Viele, viele Diagramme UML am Beispiel Was ist ein Modell? Ein Modell: ist eine abstrakte Repräsentation eines Systems, bzw. ist eine
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
11. Anhang Häufigkeitsverteilungen Ich bin häufig unsicher, wie ich mich gegenüber Behinderten verhalten soll. (N=1289; I=2,71) 7 19,2 34 39,8 Wenn ich Behinderte auf der Straße sehe, versuche ich, ihnen
Softwareentwicklungsprozess im Praktikum. 23. April 2015
Softwareentwicklungsprozess im Praktikum 23. April 2015 Agile Softwareentwicklung Eine agile Methodik stellt die beteiligten Menschen in den Mittelpunkt und versucht die Kommunikation und Zusammenarbeit
Ein Blick voraus. des Autors von C++: Bjarne Stroustrup. 04.06.2005 Conrad Kobsch
Ein Blick voraus des Autors von C++: Bjarne Stroustrup 04.06.2005 Conrad Kobsch Inhalt Einleitung Rückblick Nur eine Übergangslösung? Was würde C++ effektiver machen? Quelle 2 Einleitung Wo steht C++,
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II
1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume
P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK
P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die
AUTOMATISIERTE HANDELSSYSTEME
UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie
Objektorientierte Programmierung OOP
Objektorientierte Programmierung OOP Objektorientierte Programmierung OOP Ronja Düffel WS2012/13 08. Oktober 2013 Objektorientierte Programmierung OOP Objektorientierte Programmierung Objektorientierte
Softwareentwicklungspraktikum Sommersemester 2007. Grobentwurf
Softwareentwicklungspraktikum Sommersemester 2007 Grobentwurf Auftraggeber Technische Universität Braunschweig
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 [email protected] Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Lösungsvorschlag für Übungsblatt 6 Software Engineering 1 (WS 2012/13)
Prof. Ina Schaefer Institut für Softwaretechnik und Fahrzeuginformatik TU Braunschweig Lösungsvorschlag für Übungsblatt 6 Software Engineering 1 (WS 2012/13) Ausgabe: 12. Januar 2013 Abgabe: 25. Januar
Information Systems Engineering Seminar
Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt
Information zum Projekt. Mitwirkung von Menschen mit Demenz in ihrem Stadtteil oder Quartier
Information zum Projekt Mitwirkung von Menschen mit Demenz in ihrem Stadtteil oder Quartier Sehr geehrte Dame, sehr geehrter Herr Wir führen ein Projekt durch zur Mitwirkung von Menschen mit Demenz in
Esgibt viele Softwarelösungen für die Dienstplanung Esgibt aber nur einen Dienstplan wie diesen!
EDV-Dienstplan Esgibt viele für die Dienstplanung Esgibt aber nur einen Dienstplan wie diesen! 1 Zeitersparniss durch Generator Automatische Planung mit Optimierer Optimierer Dienstplanung reduziert sich
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck
Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke
Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,
Qualitätssicherung. Was ist Qualität?
Ein Überblick Methoden und Werkzeuge zur Softwareproduktion Was ist Qualität? "Als Qualität eines Gegenstandes bezeichnen wir die Gesamtheit seiner charakteristischen Eigenschaften" Hesse et al. 2 Was
Statuten in leichter Sprache
Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch
Vorstellung Microsoft Mathematics 4.0
Vorstellung Microsoft Mathematics 4.0 Inhaltsverzeichnis Plotten einer Funktion... 3 Lösen von Gleichungen... 5 Lösen von Gleichungssystemen... 6 Der Dreieck-Assistent... 8 Vergleich von Mathematics mit
