Raumgeometrie WORTSCHATZ 1
|
|
|
- Käthe Peters
- vor 9 Jahren
- Abrufe
Transkript
1 Raumgeometrie WORTSCHATZ 1 Video zur Raumgeometrie : VOKABEL : eine Angabe ; angeben ; was angegeben ist : ce qui est donné (les données) eine Annahme ; annehmen ; was angenommen ist : ce qui est supposé (les hypothèses) angegegen ist. / angenommen ist. / gesucht ist /. Wie man Ergbenisse u. Formel vorstellt : lauten : s'énoncer es lautet so : cela s'énonce ainsi ; der Satz des Pythagoras lautet so :... gelten / es gilt : «valoir» au sens de être vrai, valable es gilt die folgende Formel : la formule suivante est valable / on a la formule die folgenden Eigenschaften gelten : les pptés suivantes sont vraies ergeben : donner en tant que résultat ; avoir pour résultat es ergibt sich (die folgende Sache) : cela donne / il arrive (la chose suivante) das Ergebnis ; ein Ergebnis erhalten : obtenir un résultat betragen : avoir pour valeur, mesurer au sens de «avoir comme mesure» das Volumen beträgt 1 Liter : le volule mesure 1 litre Die Strecke beträgt 2cm Die Strecke misst 2cm messen, vermessen : mesurer au sens de «réaliser une mesure» (ich maβ / ich habe gemessen) Leo hat die Strecke mit seinem Lineal gemessen. Das Ergebnis ist 2cm. das Maβ la mesure das Verhältnis : la proportion / le rapport ein Verhältnis von 1 zu 3 (un rapport de 1 à 3) «a verhält sich zu b wie 3 zu 5». Das bedeutet dass, a / b = 3 / 5 das Prozent / um t% steigen oder zunehmen / um t% fallen oder abnehmen der Strahlensatz : le théorème de Thalès nach dem Strahlensatz sind die folgenden Verhältnisse gleich : d'après le thm de Thalès
2 Übung 1: Der Erdradius beträgt etwa 6370 km. Ungefähr 71 Prozent der Erdoberfläche sind mit Wasser bedeckt. Berechne den Flächeninhalt der Landmasse (in km 2 ). Raumgeometrie Lösungen 2 Wie muss man die Lösung vorstellen? Folgende Punkte beantworten : - Welche Form hat die Erde? - Gibt es eine Formel für die Oberfläche? - Prozent Rechnung : was ist angegeben? (die Angabe mit eigenen Worten formulieren) was ist gesucht? (die Frage mit eigenen Worten stellen) wie lautet der Anteil der Landfläche an der Erdefläche? Wie viel Prozent der Erdefläche..
3 RaumGeometrie Lösungen 3 Übung 1: Der Erdradius beträgt etwa 6370 km. Ungefähr 71 Prozent der Erdoberfläche sind mit Wasser bedeckt. Berechne den Flächeninhalt der Landmasse (in km 2 ). Wir nehmen an, dass die Erde die Form einer Kugel hat. (Wir nehmen an, dass die Erde kugelförmig ist.) Die Formel für die Oberfläche einer Kugel lautet: F = 4 π r 2 (Nach der Formel für die Oberfläche gilt:..) Mit einem Radius von 6370 km, ergibt sich für die Oberfläche der Erde: F Erde = 4 π (6370) 2 509, (km2) Also, die Oberfläche der Erde beträgt etwa 510 Millionen km2 Gegeben ist, dass etwa 71% der Oberfläche der Erde mit Wasser bedeckt ist. Das heiβt, dass etwa 29% der Oberfläche der Erde mit Land bedeckt ist. Wir bezeichnen mit F Land den Flächeninhalt der Landmasse (in km2) So gilt: F Land = 29%F Erde = 0,29F Erde 148Millionen km2
4 Raumgeometrie Lösungen : Übung 2 4 Übung 2: Eine Geburtstagstorte hat die Form einer Halbkugel mit dem Durchmesser 30 cm. a) Berechne das Volumen der Torte. b) Die Torte wurde mit einer Marzipanschicht überzogen. Wie viel cm 2 Marzipanschicht wurde zur Herstellung benötigt? Sich folgenden Fragen stellen : a) Worum geht es? Es handelt sich, um... Welche Formel können wir verwenden? In welcher Einheit werden wir das Ergebnis erhalten? b) Es handelt sich jetzt, um... Mit Hilfe welcher Formel können wir das berechnen?
5 Raumgeometrie Lösungen : Übung 2 5 Übung 2: Eine Geburtstagstorte hat die Form einer Halbkugel mit dem Durchmesser 30 cm. a) Berechne das Volumen der Torte. b) Die Torte wurde mit einer Marzipanschicht überzogen. Wie viel cm 2 Marzipanschicht wurde zur Herstellung benötigt? a) Benennen wir V das Volumen der Torte / Wir bezeichnen mit V das Volumen... Die Formel für das Volumen einer Kugel lautet so : V Kugel = 4/3.π.R 3 wobei R den Radius bezeichnet Die Torte ist eine Halbkugel ; so ist ihr Volumen die Hälfte des Volumens einer Kugel mit Radius 15 cm : V Torte = 2/3.π.R 3 = 2/3.π.(15) cm3. Das Volumen muss man in Liter angeben. 1 Liter entspricht / ist gleich 1000cm3. Es ergibt sich also : V Torte 7,065 l 7,1 l b) In dieser Frage müssen wir jetzt die Oberfläche der Torte berechnen. Dafür benutzen / verwenden wir die Formel für die Oberfläche einer Kugel : F Kugel = 4π.(R) 2 Da wir nur eine halbe Kugel haben, erhalten wir : F Torte = 2π.(15) 2... in cm2
6 Raumgeometrie Lösungen : Übung 2 6 Übung 2: Eine Geburtstagstorte hat die Form einer Halbkugel mit dem Durchmesser 30 cm. c) 200g Schokolade wurden für diese Torte verbraucht. Wie viel Schokolade braucht man, um eine halbkugelförmige Torte mit einem kleineren Durchmesser von 20cm zu backen? 200g Scholokade wurden für die groβe Torte mit einem Radius von 15 cm verbraucht. Also, man braucht 200g Scholokade für ein Volumen von 7,1 Liter. Die Menge s der Scholokade für 1 Liter der Torte ist also gleich : s = 200g / 7,1 Liter = 28,2 g/l Die kleine Torte hat ein Volumen von : F 2 = 2/3.π cm3 2,1 l Für die kleine Torte werden also 28,2 mal 2,1 g Schokolade verbraucht. Das macht nur etwa 60g Schololade. Das Verhältnis 2 zu 3 der Radien ist nicht das selbe wie das Verhältnis der Volumen! In der Formel des Volumens wird der Radius zur dritten Potenz erhebt
7 Raumgeometrie Lösungen : : Übung 3 7 Übung 3: Im Sommer schmilzt das Eis sehr schnell. Ist die Waffel gross genug, um das geschmolzene Eis der Kugel aufzunehmen? Die Waffel hat die Form eines Kegels, dessen Radius 2cm beträgt und dessen Höhe 10cm beträgt. Das Eis besteht aus einer einzigen Kugel mit dem selben Radius r wie der Kegel. So gilt : r = MB = 2 cm ; h = SM = 10 cm Die Frage ist, ob das Volumens des Eises kleiner als das Volumen der Waffel ist. Wir müssen beide Volumen berechnen, dann vergleichen. Das Eis ist eine Kugel mit Radius 2cm. Also ist ihr Volumen gleich.. Die Waffel ist kegelförmig. Wie lautet die Formel des Volumens eines Kegels? Die Grundfläche des Kegels ist ein Kreis mit Radius Daraus folgt das Volumen der Waffel: V Waffel = 1/3 G h =.. Es ergibt sich, dass das Volumen... Daraus schliessen wir, dass
8 Übung 4: Ein Coktail Glas hat die Form eines Kreiskegels. Das Glas ist bis zur halben Höhe mit leckerem saft gefüllt. Ist das Glas (bezogen auf das Volumen) auch tatsächlich halb voll? Höhe des Kegels : h = SM = 5 cm ; Durchmesser des Kreises : EF = 8cm Raumgeometrie Lösungen : : Übung 4 8 Das Glas ist bis zur Hälfte der Höhe gefüllt. Wir müssen das Volumen des Glases mit dem Volumen der Saft vergleichen. Das Volumen des Glases können wir unmittelbar berechnen, mit Hilfe der Formel : V Glas =.. Der Teil des Glases mit Saft hat auch die Form eines Kegels. Wir kennen nicht den Radius r dieses kleinen Kegels. (Aber der Radius r des kleinen Kegels ist unbekannt.) (Dieser Radius ist nicht angegeben, sondern er kann berechnet werden.) Dafür verwenden wir den Strahlensatz in der folgenden Figur :. Es ergibt sich : r =... Daraus folgt / Daraus kommt / Jetzt können wir das Volumen ergeben : V Saft =...
9 Raumgeometrie Lösungen : : Übung 7 9 Übung 7 : a) Eine Badewanne hat die Form eines Zylinder, mit Höhe 70cm und Radius 60cm. Berechnen Sie den Rauminhalt der Badewanne. b) Aus dem Wasserhahn der Badewanne tropft alle10 Sekunden ein kugelförmiger Wassertropfen mit dem Durchmesser 2mm.Wie viel Liter werden dadurch in einem Jahr verschwendet? c) Würde diese Wassermenge für ein Vollbad reichnen? Wir nehmen an, dass ein Vollbad ungefähr dreiviertel des Volumens der Badewanne beträgt. a) Die Formel des Volumens eines Zylinder lautet so : V = G*h, wo G die Grundfläche und h die Höhe sind. Die Grundfläche der Badewanne ist ein Kreis mit Radius r = 60cm. Dann G beträgt 1/2π*r^2 = 1/2π*(60)^ cm2 (in quadratzentimeter) Es ergibt sich für das Volumen der Badewanne : V * cm3 (in kubikzentimeter) Wir setzen diesen Wert in Liter: 1L = 1dm3 = (10cm)^3 = 1000 cm3 So erhalten wir : V l (der Wert wurde auf eins gerundet) b) Alle 10 Sekunden tropt eine Wasserkugel ; in einer Minute tropfen also 6 Wasserkugeln. Die Anzahl N der Wassertropfen, die in einem Jahr verschwendet sind, kann man so berechnen: N = 365*24*60*6 = (Anzahl der Tagen in einem Jahr mal Anzahl der Minuten in einem Tag usw.) Das Volumen einer einzelnen Wasserkugel, mit Radius 1cm, beträgt (in Kubikzentimetern dann Liter) : v = 4/3 π*(1cm)^3 4,2 cm3 0,0042 l Gesamtvolumen aller Wasserkugeln beträgt also : V 2 = N * v = * 0, l (auf eins gerundet) Jetzt können wir diesen Wert mit dem Volumen eines Vollbad vergleichen : Volumen eines Vollbad : V 3 = 3/4V l Das ist viel kleiner als die Wassermenge der Tropfen! Die verschwendete Wassermenge würde für etwa 22 Vollbade reichnen : /594 22
10 Raumgeometrie Lösungen : : Übung 8 10 Übung 8 : Wie weit muss ein Raumschiff von der Erde weg sein, damit der Astronaut die Erde und den Mond gleich groß sieht? Angegeben sind : der Radius der Erde : R = km ; der Radius des Mondes : r = km der Abstand A des Mondes von der Erde beträgt ca. A = km. (der Abstand zwischen zwei Kugeln ist der Abstand zwischen ihren Mittelpunkten). A E B M S Der Raumschiff wird mit einem Punkt S dargestellt. Der Mittelpunkt der Erde wird mit E bezeichnet, der Mittelpunkt des Mondes mit M. Gesucht ist x der Abstand des Punktes S von der Oberfläche der Erde. SE = x + R Wir benennen A den Kontaktpunkt des Kreises um E mit dem oberen Strahl (dieser Strahl stellt den Blick des Astronauts dar). Das selbe mit B und dem Kreis um M. Da die beiden Kreise tangent an diesem Strahl sind, sind die Strecke [AE] und [EBM] parallel zueinander. Wir können jetzt den Strahlensatz benutzen. Nach diesem Satz sind die folgenden Verhältnisse gleich : AE / BM = SE / SM SE und SM kann man in Abhängigkeit von x bestimmen: SE = x + R ; SM = SE A Daraus folgt eine Gleichung auf x : AE / BM = SE / SM <=> R / r = (x + R) / (x + R A) <=> r(x+r) = R(x+R-A) <=> x(r-r) = R(A + r R) <=> 4640 x = 6378 * <=> x = km
Kreis, Zylinder, Kegel, Kugel
Kreis, Zylinder, Kegel, Kugel Kreis Ziele: Kenntnis der Begriffe: Radius, Umfang, Durchmesser, Sehne, Sekante, Tangente, Berührungsradius einfache Berechnungen durchführen können, Formeln für Umfang und
Fit in Mathe. Januar Klassenstufe 10 Körper und Figuren mit π (hier wegen π = 3, Taschenrechner erlaubt)
Thema Musterlösung 1 Körper und Figuren mit (hier wegen 3,14159654... Taschenrechner erlaubt) Ein 15 cm hohes, kegelförmiges Sektglas soll einen Rauminhalt von 150 cm 3 haben. Bestimme den Durchmesser
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9
Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch
VORSCHAU. zur Vollversion. Warm-up Entscheide, wie die beiden Funktionen zueinander liegen. Begründe. I. y = 5 2 x 2
Lineare Gleichungssysteme Wurzeln Strahlensatz Warm-up 1 1. Entscheide, wie die beiden Funktionen zueinander liegen. Begründe. I. y = 5 x II. y + 5x = 6 I. y = 5 x II. y + 5x = 6 5x y = 5x + 6 : y = 5
Grundwissensaufgaben Klasse 10
Grundwissensaufgaben Klasse 10 1.Grundwissensaufgaben zu Potenz- und Wurzelgesetzen: [Verwendung willkürlicher Zahlen und Buchstaben; eigene Aufgabenstellung] Fasse soweit wie möglich zusammen. a) ( 1,456)
Aufgabe P2/2007 Die Skizze zeigt den Achsenschnitt eines Kegels. Es gilt: 6,2 48
5 Aufgaben im Dokument Aufgabe P6/2004 Eine Kugel und ein Zylinder werden miteinander verglichen - Die Kugel hat ein Volumen von 268, - der Radius der Kugel und der Grundkreisradius des Zylinders sind
Schwierigkeit. Schwierigkeit XXX
X 1 Der abgebildete Teil einer Normal-Parabel wird um die y-achse rotiert, so dass ein Paraboloid mit der Höhe H = entsteht (ähnlich einem Sektglas). Finde mit dem Prinzip von Cavalieri das olumen des
c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge?
13.3 Übungen zur Flächenberechnung 13.3.1 Übungen Quadrat Berechnen Sie für diese Quadrate das gesuchte Maß, geben Sie das Resultat in der verlangten Einheit an. a) l 4,8 dm, A? cm 2, U? m A l 2 4,8 2
c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lang ist eine Seitenlänge?
11.3 Übungen zur Flächenberechnung 11.3.1 Übungen Quadrat Berechnen Sie für diese Quadrate das gesuchte Maß, geben Sie das Resultat in der verlangten Einheit an. a) l 4,8 dm, A? cm 2, U? m A l 2 4,8 2
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar.
Raumgeometrie 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. H G E F K D C A B (a) Berechne den Flächeninhalt des Dreiecks ABK. Runde das Ergebnis auf zwei
2.10. Aufgaben zu Körperberechnungen
Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe
und å = 150ò. c) Kreissegment: Berechne r aus F Segment und å = 60ò. d) Kreisring: Berechne rë und r aus F Ring
Kreisberechnung Kreise 1. Ein Kreis mit Radius r hat die Fläche F. Ein zweiter Kreis mit Radius R hat die Fläche 3F. Welche Beziehung gilt zwischen R und r? (exakt) 2. Gegeben sind zwei Kreise mit den
Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm
Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden
größer ist als die des Zylinders. Lösung: 311,0
Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen der unteren Pyramide
Aufgabe W3b/2007. Aufgabe W2b/2009
8 Aufgaben im Dokument Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen
Oberfläche von Körpern
Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben
gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.
gerader Zylinder 1 Ein gerader Kreiszylinder hat die Höhe h und den Radius r (a) Erklären Sie, wie man die Formel M = rh2π für den Inhalt der Mantelfläche des Zylinders herleiten kann (b) Für den Inhalt
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit eine blaue Kugel zu
Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung
Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.
Kompetenztest. Zylinder-Kegel-Kugel. Kompetenztest. Testen und Fördern. Zylinder Kegel Kugel. Name: Klasse: Datum:
Testen und Fördern Name: Klasse: Datum: 1) Welcher Körper hat keine Ecken und ist trotzdem keine Kugel? Kugel Tetraeder 2) Welches Netz gehört zu dem abgebildeten Körper? 85 85 Testen und Fördern 3) Welcher
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind
KORREKTURVORLAGE 4. MATHEMATIKSCHULARBEIT DER 4B
KORREKTURVORLAGE 4. MATHEMATIKSCHULARBEIT DER 4B - GRUPPE A GRUPPE A GRUPPE A Aufgabe 1. (3x Punkte) (a) (b) (c) Eine Kugel hat einen Radius r = 3cm. Berechne ihr Volumen. Ein Kreis hat einen Umfang U
1 Pyramide, Kegel und Kugel
1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche
Lösungsvorschlag zur Übungsklassenarbeit 10/3
Lösungsvorschlag zur Übungsklassenarbeit 10/ Michael Kopp α 1.1 -Release Aufgabe 1 Bei dieser Aufgabe muss man den gegebenen Körper in Teilkörper Zerlegen. Das Spitze Ende des Hammers kann man als Pyramide
Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE
Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.
DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges
DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 27 9. Klasse: Marco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Vertretungsstunden Mathematik
Schritt 1: Skizze anfertigen. Schritt 2: Volumenformel für das Prisma anwenden. M GYM K09 BY 3.KA ML Var1. Aufgabe 1
Aufgabe 1 Schritt 1: Skizze anfertigen Um dir besser vorstellen zu können, wie der Getränkekarton aussehen soll und wie die Abmessungen zusammenhängen, solltest du dir als allererstes eine saubere Skizze
Übungsaufgaben Klassenarbeit
Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,
UE Extremwertaufgaben 01
1. Ein Rechteck mit einem Umfang von 2m dreht sich um eine seiner Seiten. Wie müssen die Seiten des Rechtecks gewählt werden, damit (a) die Mantelfläche (b) das Volumen des entstehenden Drehzylinders möglichst
4.23 Buch XII der Elemente
4.23 Buch XII der Elemente Buch XII behandelt den Flächeninhalt des Kreises und das Volumen von Pyramiden, Kegeln, Zylindern und Kugeln. Wichtiges Hilfsmittel ist dabei die erste Proposition von Buch X,
Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2
Stereometrie-Formeln Quadrat eines Quadrats mit der Seitenlänge a? A = a Quadrat Wie lang ist die Diagonale d eines Quadrats mit der Seitenlänge a? d = a Rechteck eines Rechtecks mit den Seitenlängen a
Einstiege: Volumen eines Zylinders
An Abbildungen Höhe und Radius bestimmen und Volumen berechnen (1/3) 1 Schneide die Netze der beiden Zylinder aus und stelle zwei Modelle her. a) Schätze, welcher Zylinder das größere Volumen und die größere
Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe
I) So berechnet man das Volumen einer Säule. Körper Strukturbild geometrische Bedeutung Formel Säule Volumen Volumen einer Schicht mal h s Anzahl der Schichten V s A h s Volumen Säule Grundfläche Höhe
Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:
Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:
Kreis- und Kreisteileberechnungen
Kreis- und Kreisteileberechnungen Aufgabe 1: Berechne den Inhalt der getönten Fläche aus dem Radius r des größten Kreises und dem Radius a der beiden kleinen Halbkreise. Aufgabe 2: Wie groß ist der äußere
Schrägbilder von Körpern Quader
Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit
2. Strahlensätze Die Strahlensatzfiguren
2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?
Raumgeometrie - Zylinder, Kegel
Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
Fit für die Oberstufe Teil II - Gleichungen
Gleichungen gibt es in verschiedenen Varianten: lineare und quadratische Gleichungen. Müssen zwei Gleichungen gleichzeitig erfüllt sein, ergibt sich daraus ein Gleichungssystem. Lineare Gleichungen (1
WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten
WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren
Lösungen zum Thema Kreis & Kugel
Lösungen zur Aufg. : a r ; r 8 (,8 ; M M m m M M Dann gilt: r +r + 8 > M M und weiter: r r 8, < M M b Aus r r < M M
Übungen zur Aufnahmeprüfung Mathematik
Alle Fragen orientieren sich am Lehrplan für die Unterstufe bzw. Neue Mittelschule. Zahlen und Maße Vorrangregeln Bruchrechnen (inkl. Umwandeln zwischen Bruchzahlen und Dezimalzahlen) Einheiten umrechnen
Aufnahmeprüfung: Mathematik
Aufnahmeprüfung: Mathematik Alle Fragen orientieren sich am Lehrplan für die Unterstufe bzw. Neue Mittelschule. Beispiele für mögliche Fragestellungen (mit Lösungen) Zahlen und Maße Vorrangregeln Bruchrechnen
Mathe-Quali Teil B: Aufgaben mit Lösungen
Mathe-Quali 2016 - Teil B: Aufgaben mit en QA 2016, Teil B - en: Nr. I/1 1. Löse die folgende Gleichung: 3 (1,5x - 2,5) - (3x - 5) + (3,5x + 7) : 0,2 = 12,5 x Angaben ohne Gewähr 3 (1,5x - 2,5) - (3x -
Ähnlichkeit von Figuren
Ähnlichkeit von Figuren Beispiele: In dem Bild von Escher sind alle Fische einander ähnlich, d.h. sie besitzen dieselbe Form. Alle DIN-Format-Papiere sind einander ähnlich. Es handelt sich um Rechtecke,
Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E
Übungen Klasse 9 Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E Gesucht: a) Wörter aus 3 Buchstaben b) Wörter aus 5 Buchstaben
Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen
Technische Berufsmaturitätsprüfung Baselland 009 Mathematik Teil (Mit Hilfsmitteln) Aufgabe Es sei ein Rechteck mit Umfang in einem Halbkreis einbeschrieben. [ Punkte] Berechnen Sie die Seitenlängen des
Kapitel D : Flächen- und Volumenberechnungen
Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung
Serie 6. x 2 + y 2, 0 z 4.
Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {
Raum- und Flächenmessung bei Körpern
Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Hinweise für Korrektoren Generell gilt: Zielführende Zwischenschritte geben Punkte, auch wenn das Ergebnis falsch
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe
Quader Für das Volumen eines Quaders der Länge l, Breite b und der Höhe h gilt: Maße: Höhe Breite Länge. V Q =5cm 3cm 4cm=60cm 3
Definition Die Größe des Raumes, die ein Körper einnimmt, nennt man. Körper können mit Hilfe von Einheitswürfeln gefüllt werden, womit das gemessen oder bei verschiedenen Körpern verglichen werden kann.
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2016 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B
Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben
Planungsblatt Mathematik für die 4E
Planungsblatt Mathematik für die 4E Woche 10 (von 03.11 bis 07.11) Hausaufgaben 1 Bis Dienstag 11.11: (i) Schreibe die Berechnungen zum Bastelauftrag gut übersichtlich auf (Kontrolle Anfang der Stunde),
ÜBUNGEN FÜR DIE VIERTE MATHEMATIK-SCHULARBEIT
ÜBUNGEN FÜR DIE VIERTE MATHEMATIK-SCHULARBEIT Textgleichungen (S. 105-108) Aus einem Text eine sinnvolle Gleichung aufstellen, lösen, die Probe machen und die Lösung in einer Antwort interpretieren Definiere
Sekundarschulabschluss für Erwachsene
SE Lösungen Name: Sekundarschulabschluss für Erwachsene Nummer: Geometrie Sek 2016 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug (Geo-reieck, Zirkel, Massstab)
Flächeninhalt des Kreises
Flächeninhalt des Kreises 1 Schätze die Fläche der Antarktis, indem du den Maßstab der Karte benutzt Schreibe deine Rechnung auf und erkläre, wie du zu deiner Schätzung gekommen bist (Du kannst in der
SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2012 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten
Pflichtteil 2 und Wahlpflichtteil Arbeitszeit: 160 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Kreuzen Sie die Wahlpflichtaufgabe, die bewertet werden soll, an. Wahlpflichtaufgabe
Zylinder, Kegel, Kugel, weitere Körper
Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
Aufgabe W4b/2007. Aufgabe W2b/2008 8,0 3,5. Ein kegelförmiges Gefäß ist gegeben durch:
Aufgaben im Dokument Aufgabe W3b/2005 Ein Kreis wird in zwei Kreisausschnitte geteilt. Beide Ausschnitte bilden jeweils den Mantel eines Kegels (siehe Skizze). Für Kegel 1 gilt: 12. Zeigen Sie ohne Verwendung
9.3. Rotationsvolumina
9.. Rotationsvolumina Rotationskörper entstehen, wenn man eine ebene Kurve um eine in der Ebene liegende Achse kreisen läßt. Beispiele aus dem praktischen Leben sind Töpferscheibe und Drechselbank. Die
verschiedene Körper Lösung: a = 1 3 m 0,76m
verschiedene Körper 1 (a) Konstruiere die Höhe eines regulären Tetraeders mit der Seitenlänge 6 cm, sowie den Neigungswinkel einer Seitenkante gegen die Grundfläche (b) Die Oberfläche eines regulären Oktaeders
Flächeninhalt, Volumen und Integral
Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1
Mathematik für Berufsintegrationsklassen
Mathematik für Berufsintegrationsklassen Lerngebiet 2.4 Grundkenntnisse der Geometrie Die Schülerinnen und Schüler Kompetenz(en) aus den Lernbereichen Mathematik Titel - bestimmen Flächeninhalte von Rechtecken.
Kreisberechnungen. 2. Kapitel aus meinem Lehrgang Geometrie
Kreisberechnungen 2. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: [email protected] 8. Oktober 08 Überblick über die bisherigen Geometrie
(3r) r 2 =? xy 3y a + 6b 14. ( xy
Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 50.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)
Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig
1. Algebra 1.1. Gleichungssysteme Quadratische Gleichungen Bruchgleichungen Quadratische und lineare Funktionen...
Inhalt der Lösungen: Algebra Gleichungssysteme Quadratische Gleichungen 6 Bruchgleichungen 6 4 Quadratische und lineare Funktionen 8 Stereometrie Kegel und Zylinder Quadratische Pyramide 5 Mehrseitige
1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1961/1962 Aufgaben und Lösungen
1. Mathematik Olympiade 1. Stufe Schulolympiade) Klasse 9 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 1. Stufe Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Du nimmst zufällig eine Münze aus der Schachtel und wirfst sie dreimal.
Wahrscheinlichkeitsrechnung 1. Eine Urne enthält 6 rote, blaue und 1 schwarze Kugeln. Man zieht nacheinander ohne Zurücklegen drei Kugeln. a) Mit welcher W'keit zieht man drei gleichfarbige Kugeln? b)
Inhaltsverzeichnis. III, Band, Stereometrie. 1. Die Ebene und Gerade int Raume 1
Inhaltsverzeichnis. III, Band, Stereometrie. Punkt 1. Die Ebene und Gerade int Raume 1 2. Ebene und Ebene 3 3. Die körperliche Ecke 4 4. Der Körper 5 5. Einteilung der Körper 5 6. Die fünf regelmäßigen
D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
Ähnlichkeit: 1.1 Welche der Figuren sind ähnlich zueinander? Kreuze an! Miss benötigte Winkel und Längen in der Zeichnung ab!
Ähnlichkeit: Ähnliche Figuren: https://www.youtube.com/watch?v=xvpd9cep7qu 1.1 Welche der Figuren sind ähnlich zueinander? Kreuze an! Miss benötigte Winkel und Längen in der Zeichnung ab! 1.2 Welche Vierecke
Ebene Geometrie; Kreis
Testen und Fördern Lösungen Name: Klasse: Datum: 1) Ordne die gemessenen Längenangaben den beschriebenen Objekten zu. 22 m 37 cm Tischdicke 22 mm Breite eines Turnsaals 2 m 45 cm Sitzhöhe 258 mm Raumhöhe
mathbu.ch 7-9 TEIL 3 Faktorisieren, Binome, Brüche Klammerregeln, Distributivgesetz
REPETITION Name: Unterschrift: Aufgabe 69 Faktorisieren, Binome, Brüche Kürze die Brüche x - x - 4 x + 4 x - 10x + 4 x - 4 a - 1 a - 1 a - 1 1 a + 1 x + y x - y x - y 1 Aufgabe 70 Klammerregeln, Distributivgesetz
LU 09: Strahlensätze Ähnlichkeit
LU 09: Strahlensätze Ähnlichkeit 17 Aufgabe 49 Die schraffierten Flächen A 1 und A 2 verhalten sich wie 4 : 5. Der Abstand der beiden konzentrischen Kreise beträgt 2.5 cm. a) Berechne den Radius r i. b)
Übungen zu Experimentalphysik 1 für MSE
Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,
Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67
Aufgabenstellung: Berechne die Schnittpunkte der e k1 und k mit den Mittelpunkten M1 bzw. M und den Radien r1 bzw. r a. k1: M1 3, 4, P 5, 3 k 1, k geht durch A 0 und B 4 0 r 5 M liegt im 1. Quadranten
Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die
Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: 1 = R\4 ; 5; 6 = { 3}
Aufgabe W1a/007 Gegeben ist das gleichschenklige Dreieck und das rechtwinklige Dreieck. Es gilt: = = 10,0 = 3,6 = 58,0 Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: = 5,3. Tipp: Trigonometrischer
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,
Hauptschule Bad Lippspringe Schlangen Klassenarbeit IV Mathematik 9a/b Name: Dutkowski
Aufgabe 1: Basiswissen Hauptschule 07.04.2011 a) Flächen (6 P.) Gib die fehlende Größe des Quaders oder Würfels an. Seitenfläch Seitenlänge Volumen e a² b a) 125 m³ 25 m² 5 m b) 8 m³ 4 m² 2 m c) 66 m³
Übung 11. Fachwerkträger. Aufgabe 01: Aufgabe 02: Aufgabe 03: Aufgabe 04: Aufgabe 05: 170 m. 85 m SEE. E 160 m. x =? 4,4 m.
Übung 11 Aufgabe 01: C D 170 m 85 m Aufgabe 02: E 160 m B SEE =? A Fachwerkträger 5 m 3 m 3 m 4,4 m Aufgabe 03: 10 40 36 z 15 25 Aufgabe 04: 4 13 18 10 Aufgabe 05: 7 3 Aufgabe 06: 4 m 1 m Aufgabe 07: Ein
Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3
Serie W1 Klasse 8 RS 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 3 c = 4 2a - b; a + b; b : c 4. 36:0,4 = 5. Vergleiche. 30+2 10+5 30+2 (10+5) 6. Kürze 12 44 7. Berechne a 8a - 28
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner Prüfungsbedingungen Der Taschenrechner darf nicht verwendet werden. Die Aufgaben sind direkt unterhalb der Aufgabe zu
Fit in Mathe. Mai Klassenstufe 9. Körper ohne π
Thema Musterlösungen 1 Körper ohne π Ein rechtwinkliges Dreieck besteht aus den Seiten a, b und c, wobei der Seite c ein rechter Winkel gegenüberliegt. Berechne jeweils die Länge der fehlenden Seite(n).
Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000
Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende
