Tag der Mathematik 2017
|
|
|
- Annegret Albrecht
- vor 8 Jahren
- Abrufe
Transkript
1 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung
2 Hinweise für Korrektoren Generell gilt: Zielführende Zwischenschritte geben Punkte, auch wenn das Ergebnis falsch ist oder fehlt. Die zu vergebenden Punkte sind neben den entsprechenden Stellen der am Rand angegeben. Zusätzliche oder genauere aufgabenspezifische Bepunktungshinweise sind kursiv gedruckt. Hinweis zu den Hürdenaufgaben: Bei den Hürden müssen die Zwischenschritte nicht erkennbar sein, nur das Ergebnis zählt. Falls zielführende Zwischenschritte ohne Endergebnis angegeben sind, kann man sie mit 1 oder Punkten bewerten. In der Regel ist es allerdings kaum möglich Teilpunkte zu vergeben, da selten Zwischenschritte angegeben werden.
3 Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit eine blaue Kugel zu ziehen 1 4. Nach der Ziehung einer blauen Kugel ist die Wahrscheinlichkeit eine weitere blaue Kugel zu ziehen 1 5. Wie viele rote Kugeln sind in der Urne? Sei n die Anzahl aller Kugeln und b die Anzahl der blauen Kugeln. Dann gilt 1 4 = p(erste Kugel ist blau) = b n 1 b 1 = p(zweite Kugel ist blau) =. 5 n 1 und 1 Aus 4b = n und 5b 5 = n 1 folgt b = 4 und n = Also sind n b = 16 4 = 1 rote Kugeln in der Urne. 1
4 Aufgabe G mit Aufgabe G S Verbindet man bei einem Würfel die Mittelpunkte benachbarter Seitenflächen, so erhält man ein Oktaeder mit den Ecken A, B, C, D, S und T. In einem Koordinatensystem sind vier Eckpunkte des Oktaeders A B D C A(13 5 3), B(11 3 1), C(5 3 7), S(13 1 9) T Berechnen Sie a) die Länge der Würfelkante, b) die Oberfläche des Oktaeders, c) die Koordinaten von D und T. a) Sei r die Länge der Würfelkante. Dann gilt r = AC = (13 5) + ( 5 3) + (3 7) = 144 = 1. b) Sei s die Länge der Oktaederkante. Dann gilt s = AB = (13 11) + ( 5 3) + (3 1) = 7 = 6. 1 Für die Oberfläche gilt dann 8 s 3 = c) 1. : Ist O der Ursprung des Koordinatensystems, so folgt für den Mittelpunkt M von AC OM = OA AC = = , 1 5
5 Aufgabe G mit Weiter ist OD = OM + 9 BM = = 5 1 7, also D(7 5 9) und 1 OT = OM SM = = 3, also T(5 3 1) : Für den Mittelpunkt M von AC gilt Hiermit folgt M = 1 (A + C) = 1 (13 + 5, 5 + 3, 3 + 7) = 1 (18,,10). D = M B = (7, 5,9) und T = M S = (5, 3,1).
6 Aufgabe G3 mit Aufgabe G3 6 Ein Kegel mit der Höhe 1 cm und dem Grundkreisradius 6 cm steht auf der Spitze und wird teilweise mit Wasser gefüllt, das 10 cm hoch steht. Wie hoch steht das Wasser, wenn der Kegel umgedreht wird? 1 10 h r R 1 h h Kegelvolumen: Wasservolumen: 1 3 π6 1 = 144π. Aus r 10 = 6 1 folgt r = πr 10 = 50 1 h π. Aus = 1 3 R 6 folgt R = 1 (1 h). 3 Für das Volumen des Kegelstumpfes gilt dann: 50 3 π = 144π 1 3 πr (1 h) 50 3 = (1 h)3 4 Aus (1 h) 3 = folgt h = = = 3.
7 Aufgabe G4 mit Aufgabe G4 Zwei Kugeln K und H bewegen sich reibungsfrei auf einer Kugelbahn, die zwischen A und B waagrecht verläuft. Zu einem bestimmten Zeitpunkt ist K im Punkt S, der die Strecke AB im Verhältnis 4 : 3 teilt. Zum gleichen Zeitpunkt ist H im Punkt T und bewegt sich auf B zu. H A S B K T Bewegt sich die Kugel K in S mit der Geschwindigkeit 1,5 m/s nach rechts, dann stößt sie mit der Kugel H in B zusammen. Bewegt sich die Kugel K in S mit der Geschwindigkeit 1,5 m/s nach links, dann stoßen K und H in A zusammen. Welche Geschwindigkeit hat die Kugel H beim Zusammenprall? 1. : Seien AS = 4a und BS = 3a. 1 Die Laufzeit der Kugel K von S nach A ist 4a 1,5 3 1 und die von S nach B ist 3a 1,5 Weg 4 1 Für die Kugel H seien t die Zeit, die sie von T bis B braucht und v ihre Geschwindigkeit in B und in A. Dann gilt t = a und t + 7a = 8a. v 3 4 K 1 Daraus folgt a + 7a = 8a, also 7 = und damit v = 1. v 3 v 3 S Zeit Also v = 10,5 m/s. 3 K. : Geschwindigkeit von H: B ,5 = 7 1,5 = 10,5 m/s H 4 1,5 3 1,5 A 1,5 s-t-diagramm von K 4 ; s-t-diagramm von H ; Berechnung von v.
8 Aufgabe E1 mit Aufgabe E1 Die Parabel f (x) = ax + c, a > 0, c > 0, habe den Scheitel S sowie die Nullstellen P und Q. Die Tangente in P schneide die y-achse in T. Berechnen Sie OS ST. y T S O P Q x c Nullstellen von f für x = ± a. Scheitel S(0,c). 1 c c Tangente in P( 0): y = a a a x + c. 3 Somit T (0 c) und OS ST = c c = 1.
9 Aufgabe E mit Aufgabe E A Ein L-förmiger Block wird wie abgebildet aus 63 weißen Einheitswürfeln gebildet. a) Wie groß ist die Oberfläche? b) Welchen Abstand haben A und B? c) Bei dem L-förmigen Block wird die ganze Oberfläche rot angestrichen. Wie viele der 63 Würfel haben genau B (i) eine rote Fläche, (ii) zwei rote Flächen, (iii) drei rote Flächen? (iv) Wie viele Würfel haben keine rote Fläche? a) Oberfläche: = 108. b) Abstand: = 70 c) Anzahl der roten Flächen Obere und untere Schicht Mittlere Schicht Anzahl Summe: 63 4
10 Aufgabe E3 mit Aufgabe E3 Bestimmen Sie u so, dass die Summe der Kehrwerte der en der quadratischen Gleichung maximal wird. u x + (u 3)x + 1 u + 1 = : en sind: x 1, = 3 u ± (u 3) 4u u+1 u Die Funktion f (u) := 1 x x = u 3 u + + u 3 u = (3 u)(u + 1) 4 ist eine nach unten geöffnete Parabel mit den Nullstellen u = 3 und u = 1, also erhält man für u = 3 1 = 1 das Maximum.. : Seien a und b die en der Gleichung. Dann gilt und somit x + u 3 1 x + u u (u + 1) = (x a)(x b) = x (a + b)x + ab 1 a + 1 b = a + b a b = u 3 u 1 u (u+1) = (3 u)(u + 1) = 3 + u u = 4 (u 1) 4 Also ist das Maximum für u = 1.
11 Aufgabe E4 mit Aufgabe E4 a) Zeigen Sie log a b = log c b log c a. b) Für welche x gilt log 4 (x + x 8) = log x? a) Für x := log a b gilt und somit also a x = b x log c a = log c b x = log a b = log c b log c a b) Aus log 4 (x + x 8) = log x folgt mit a) log (x + x 8) log 4 = log x 1 und wegen log 4 = log (x + x 8) = log x. 1 Aus log (x + x 8) = log (x ) 1 folgt x + x 8 = x und somit x = 4. 1
12 Aufgabe H1 mit Aufgabe H1 Welches ist die letzte Ziffer von ? Die letzten Ziffern der Potenzen von 7 sind 7, 9, 3, 1, 7, 9, 3, 1,..., haben also die Periode 4. Wegen 017 = ist 7 die letzte Ziffer.
13 Aufgabe H mit Aufgabe H In ein gleichschenklig-rechtwinkliges Dreieck (Kathetenlänge ) wird ein Quadrat so einbeschrieben, dass a) eine Seite auf der Hypotenuse liegt, b) zwei Seiten auf den Katheten liegen. Welches Quadrat hat die größere Fläche? Berechnen Sie beide Flächen! x s x x s x x s a) Für die Seite x gilt 3x = + =, also x = 8 9. b) Für die Seite s gilt s =, also s = 1. Wegen s > x ist das Quadrat von b) größer.
14 Aufgabe H3 mit Aufgabe H3 Für welche ganzen Zahlen n ist 6 n + eine ganze Zahl? n + muss ein ganzzahliger Faktor von 6 sein, das heißt ±1, ±, ±3, ±6. Für n folgt also 8, 5, 4, 3, 1, 0, 1, 4.
15 Aufgabe H4 mit Aufgabe H4 Gegeben ist ein regelmäßiges Neuneck. α Wie groß ist der Winkel α? 1. : Der Innenwinkel im regelmäßigem n-eck ist n, für n = 9 also 140. Somit gilt α = 360, also α = 60. α 140. : Das Dreieck ist gleichseitig, also ist α = 60. α
16 Aufgabe H5 mit Aufgabe H5 Venedig liegt auf der geografischen Breite von 45. Mit welcher Geschwindigkeit bewegt sich die Stadt bei der Erdrotation? Hinweis: Rechnen Sie mit einem Erdradius von R = 000π [km], π = 10 und = 1,4. Es ist r = R = 1000π. So ergibt sich eine Geschwindigkeit von r 45 πr 4 = 000π 4 = [km/h]. 6
17 Aufgabe H6 mit Aufgabe H6 In einem Garten liegen eine quadratische und sieben runde Steinplatten kreisförmig im Gras. Minnie steht auf der quadratischen Platte und wirft eine Münze. Bei Kopf hüpft sie im Uhrzeigersinn eine Platte weiter, bei Zahl hüpft sie eine Platte entgegen dem Uhrzeigersinn. Mit welcher Wahrscheinlichkeit steht sie nach 8-maligem Münzwurf und Hüpfen wieder auf der quadratischen Platte? Es gibt drei Möglichkeiten um wieder auf die quadratische Platte zu gelangen: 8-maliges Hüpfen im Uhrzeigersinn: ( 1 )8 8-maliges Hüpfen entgegen dem Uhrzeigersinn: ( 1 )8 4-mal vorwärts und 4-mal rückwärts: Wahrscheinlichkeit: 7 56 = 9 3 0,8 ( 8 4) 8 = 70 56
18 Aufgabe H7 mit Aufgabe H7 Ein gleichseitiges Dreieck ABC habe die Seitenlänge 4 cm. Verlängert man zwei der Seiten, lässt sich ein Kreis finden, der sowohl an den verlängerten Seiten des Dreiecks als auch an der verbleibenden Dreieckseite anliegt. M r C 4 Wie groß ist der Kreisradius? A 4 B Der Ankreisradius r ist gleich der Höhe h im Dreieck ABC, also r = 4 3 = 3. M r C 4 h A 4 B
19 Aufgabe H8 mit Aufgabe H8 Welche Koordinaten hat der Schnittpunkt S der beiden folgenden Geraden? 68x + 37y = x + 68y = 4488 Addition und Subtraktion der beiden Gleichungen ergibt und 1000(x + y) = (x y) = 104. Aus x + y = 10 und x y = 4 folgt S(7 3).
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit eine blaue Kugel zu
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.
Tag der Mathematik 2013
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
Tag der Mathematik 2018
Tag der Mathematik 08 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Tag der Mathematik 08 Hinweise für Korrektoren Generell gilt: Zielführende Zwischenschritte
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
Tag der Mathematik 2006
Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000
Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe OE1: Ein
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe
b) Berechnen Sie die Koordinaten des Punktes D so, dass die Punkte A, B, C und D ein Quadrat bilden.
Aufgabe 1: 12 Punkte Gegeben sind die Punkte A(12 / -6 / 2), B(10 / 2 / 0) und C(4 / 2 / 6). a) Zeigen Sie, dass die Punkte A, B und C die Eckpunkte eines rechtwinkligen und gleichschenkligen Dreiecks
Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E
Übungen Klasse 9 Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E Gesucht: a) Wörter aus 3 Buchstaben b) Wörter aus 5 Buchstaben
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :
Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,
Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind
Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2013 am
MW-E Mathematikwettbewerb der Einführungsphase 0. Februar 03 Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 03 am 0.0.03 Hinweis: Beim Mathematikwettbewerb MW-E der Eingangsstufe werden Aufgaben
Passerelle Mathematik Frühling 2005 bis Herbst 2006
Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch [email protected] 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3
Tag der Mathematik 2015
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.
MW-E Mathematikwettbewerb der Einführungsphase
MW-E Mathematikwettbewerb der Einführungsphase. Februar 0 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als fünf
Herbst mit den Parametern a und b
Herbst 4. Gegeben ist eine Funktion f :f()=a+ b mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(/) verläuft und die Tangente t in B parallel ist zur Geraden
MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)
MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert
Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen
Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen. a) (x + y) (x y) = x + xy + y [x xy + y ] = = x + xy + y x + xy y = 4xy b) z 3 z ) = z + z z z(z ) z (z ) (z 0; ) c) (8a 3 b) = ( 3²a3 b) = 3 4 a 6 b
Tag der Mathematik 2008
Tag der Mathematik 008 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
Quadratische Gleichungen
1 Quadratische Gleichungen ax 2 + bx + c = 0 1. Löse folgende Gleichungen: a) x 2 + 2x 15 = 0 b) x 2 6x + 7 = 0 c) x 2 + 15x + 54 = 0 d) x 2 + 12x 64 = 0 e) x 2 34x + 64 = 0 f) x 2 + 15x 54 = 0 g) x 2
4. Mathematikschulaufgabe
1. Wie weit kann man vom Chordach auf dem Mont-Saint-Michel (120 m) auf das Meer hinausschauen? (Erdradius 6370 km) 2. Konstruiere ein Quadrat, das den doppelten Flächeninhalt hat wie das Quadrat mit der
K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung
K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 017 Klasse: g Profil: MN / M Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne
Grundwissen 9. Klasse
Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel
Wahlteil Geometrie/Stochastik B 1
Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG
Trigonometrie und Planimetrie
Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben
2. Berechnungen mit Pythagoras
2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse
Neue Aufgaben, Oktober
Neue Aufgaben, Oktober 2006 2 1. Auf wie viele Nullen endet 10! und 20!? Lösung: Die Nullen ergeben sich durch Faktorenpaare, die jeweils 10 ergeben. In 10! kommt der Faktor 5 zweimal vor, der Faktor 2
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) Bei einer Folge a 1, a 2, a 3,... ist a 1 = 7 2 = 49. Für das nächste Glied der Folge nimmt man die Quersumme der Zahl, addiert 1 und quadriert diese Zahl, also a 2 = (4 + 9 + 1)
Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner
Grundwissen Mathematik 9. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt
Gymnasium Oberwil / Mathematik 2014 / Grundlagenfach Seite 1 von 6
Gymnasium Oberwil / Mathematik 2014 / Grundlagenfach Seite 1 von 6 Aufgabe 1: 14 Punkte Gegeben ist die Funktion f durch die Gleichung 1 3 3 2 f ( x) = x + x. 2 2 a) Berechnen Sie die Nullstellen, die
Grundwissen Mathematik 9. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative
Name/Vorname:... Z. Zt. besuchte Schule:...
KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 11. Schuljahres Mathematik Z. Zt. besuchte Schule:... Bitte beachten: - Bearbeitungsdauer 120 Minuten - Aufgabenserie umfasst
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Kursarbeit Nr.1 LK Mathematik NAME :
Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen
Berufsmaturitätsprüfung 2006 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,
Tag der Mathematik 2010
Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt
Abitur 2016 Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen
Kopfübungen für die Oberstufe
Serie A Alle Kopfübungen der Serie A beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss
Algebra 4.
Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.
Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.
Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I
Gymnasium St. Wolfhelm Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I Mit ihrer Hilfe kannst du selbstständig kontrollieren, ob du die abgefragten Kompetenzen
Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)
Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig
Lösung Abiturprüfung 1997 Grundkurs (Baden-Württemberg)
Lösung Abiturprüfung 997 Grundkurs (Baden-Württemberg) Analysis I.. a) f x= x5 x = x5 x = x5 x = f x Somit ist f punktsymmetrisch zum Ursprung. f x= x x ; x = ; x = 5 ; x =5 f geht durch den Urpsrung:
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
MW-E Mathematikwettbewerb der Einführungsphase
MW-E Mathematikwettbewerb der Einführungsphase 0. Februar 03 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als
Lösungen zum Thema Kreis & Kugel
Lösungen zur Aufg. : a r ; r 8 (,8 ; M M m m M M Dann gilt: r +r + 8 > M M und weiter: r r 8, < M M b Aus r r < M M
Tag der Mathematik 2018
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en Aufgabe G mit Aufgabe G Stein Für reelle Zahlen ist die Relation... ist kleiner als... transitiv, d.h. aus a < b und b < c folgt
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Abschlussprüfung 150 Minuten an den Realschulen in Bayern
Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Nachtermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1 Die nebenstehende Skizze zeigt den Axialschnitt
Tag der Mathematik 2012
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
WBK Bonn Abendrealschule Mathematik Vorklausur SoSe 2016
Vorklausur SoSe 016 Aufgabe 1: Basiswissen (max. 15 Minuten) a) Eine Flasche Spülmittel enthält 10 mg eines Wirkstoffes. Für wie viele Flaschen reicht 1 kg dieses Wirkstoffes? 1 kg = 1000g 1 g = 1000 mg
BITTE WENDEN ETH-AUFNAHMEPRÜFUNG Mathematik II (Geometrie / Statistik)
ETH-AUFNAHMEPRÜFUNG 08 aufrunden). Mathematik II (Geometrie / Statistik) Die Note N berechnet sich für die Punktzahl P gemäss der Formel N = P /9 +, wobei auf halbe Noten zu runden ist (Viertelnote Aufgabe
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima)
Maturitätsprüfung 7 Mathematik Aufgabe Gegeben ist die Funktion f(x) = x x + a) Untersuchen Sie die Funktion bezüglich Symmetrien, bestimmen Sie die Nullstellen, zeigen Sie, dass es zwei Minimalstellen
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
Inhalt der Lösungen zur Prüfung 2015:
Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Grundwissensaufgaben Klasse 10
Grundwissensaufgaben Klasse 10 1.Grundwissensaufgaben zu Potenz- und Wurzelgesetzen: [Verwendung willkürlicher Zahlen und Buchstaben; eigene Aufgabenstellung] Fasse soweit wie möglich zusammen. a) ( 1,456)
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK
ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 210 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
Aufgabe 2 Die Abbildung zeigt den Graphen einer ganzrationalen Funktion f.
Aufgabe 1 Die Abbildung zeigt den Graphen G f einer für 1 x 3 mit x R definierten Funktion f, die bei x= 1; x=1und x=3 Nullstellen besitzt. Die Funktion F mit F( x)= 1 6 ( x2 +2 x+3 ) 3 ist eine Stammfunktion
4. Mathematikschulaufgabe
Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und
Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen
Teil 4 Aufgaben Nr. 4 bis 8 Hier nur Lösung von Nr. 4. Auf der Mathematik-CD befinden sich alle Lösungen Parabelfunktionen mit vielen Zusatzaufgaben (Keine Integration) Datei Nr. 405 S Januar 00 Friedrich
Erweiterte Beispiele 1 1/1
Erweiterte Beispiele 1 1/1 Gegeben ist das Dreieck ABC [A(-20/-9), B(30/-9), C(12/15)]. Die Seitenmittelpunkte D, E, F bilden ein Dreieck. Zeige, dass der Umkreis dieses Dreiecks den Inkreis des Dreiecks
a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B
I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
f(x) = x + 1 ±(x + 1) für 1 x < 0 ±( x + 1) für 0 x 1
Problemstellung. Die gesuchte lineare Funktion durch die Punkte (0, ) und (, 0) lautet f(x) = x + im Intervall [0, ]. Die Gleichungen für die Begrenzungslinien sind: Λ(x) = { ±(x + ) für x < 0 ±( x + )
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Schriftliche Abschlussprüfung 2003 Mathematik (A-Kurs)
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Schriftliche Abschlussprüfung 2003 Mathematik (A-Kurs) Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten.
Lösungshinweise und Notenschlüssel
BMT0 07 Die Lösungshinweise enthalten keine vollständigen Lösungen der Aufgaben. Nicht genannte, aber gleichwertige Lösungswege sind entsprechend zu bewerten. a b Die Gleichungen in der zweiten Spalte
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten
Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Trigonometrie und Planimetrie
Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben
Das Prisma ==================================================================
Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der
m und schneidet die y-achse im Punkt P(0/3).
Aufgabe (Pflichtbereich 999) Eine Parabel hat die Gleichung y x 6x, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.
