9.3. Rotationsvolumina
|
|
|
- Felix Raske
- vor 9 Jahren
- Abrufe
Transkript
1 9.. Rotationsvolumina Rotationskörper entstehen, wenn man eine ebene Kurve um eine in der Ebene liegende Achse kreisen läßt. Beispiele aus dem praktischen Leben sind Töpferscheibe und Drechselbank. Die Scheibenmethode Bei Rotation um eine Achse (z.b. die senkrechte z-achse) kann man sich das entstehende Gebilde aus Kreisscheiben, d.h. sehr flachen Kreiszylindern aufgebaut vorstellen. Das Volumen eines solchen Zylinders ist das Produkt von Grundfläche und Höhe, also r( z) π dz, wenn r( z ) den Radius, d.h. den Abstand von der Drehachse in der Höhe z, und dz die Dicke der Scheibe beschreibt. Durch "Aufsummieren" dieser Scheiben erhält man eine Näherung für das Volumen des Rotationskörpers, und läßt man dz gegen konvergieren, so erreicht man im Grenzwert das exakte Volumen. Verläuft die Achse zwischen den Achsenabschnitten a und b, so ist das Volumen gegeben durch die Erste Integralformel für Rotationsvolumina V ( a, b) r( z ) dz. a b Wir sehen, daß man keineswegs immer Quader als Volumenelemente nehmen muß. Bei Rotationskörpern wäre dies geradezu widersinnig. Hier sind Kreisscheiben offensichtlich adäquate "Bauelemente". Beispiel 1: Volumen einer Vase Wir lassen die Sinus-Kurve um die z-achse rotieren. g( z ) + sin( z ) z Das Volumen errechnet sich nun nach der Formel
2 also V π π ( + sin( z )) dz π 8 π 4 ( cos( π ) cos( ) ) sin( z ) + sin( z ) dz π cos( π ) sin( π) V 9 π 9 π, Stückweise definierte Kurven Gelegentlich wird man eine Profilkurve eines Rotationskörpers (oder andere Kurven) aus einzelnen Stücken zusammensetzen. Bei der Volumenberechnung muß man dann stückweise integrieren. Beispiel : Volumen eines Schach-Bauern dessen Profilkurve aus den folgenden vier Stücken zusammengesetzt ist: r( z ) 1.9 ( z.), z und z <.4 r( z ).6 1. z,.4 z und z <.6 r( z ) 1 4 ( z.9),.6 z und z <. r( z ) 1 ( z 4 ),. z und z 5. Die Höhe ist also 5 [cm], der Radius am Fuß knapp [cm]. Wir drehen die Profilkurve wieder um die Zentralachse. Um das Volumen des Bauern zu bestimmen, integrieren wir die vier Teilstücke nach der Formel V ( a, b) r( z ) dz. a b
3 V 1 π ( 1.9 ( z. ) ) dz, V V π (.6 1. z ) dz, V V π ( 1 4 ( z.9 ) ) dz, V V 4 1 ( z 4) dz, V Schließlich ist das Gesamtvolumen in Kubikzentimetern:. V V 1 + V + V + V 4 V.1976 Zum Vergleich: Ein (spitzer) Kegel mit gleicher Höhe h 5 [cm] und gleichem Maximaldurchmesser r [cm] hat das Volumen r π h Kaum ein Unterschied! Die Formel für das Kegelvolumen verallgemeinern wir in Beispiel : Licht- und Schatten-Kegel Wirft eine punktförmige Lichtquelle den Schatten eines Körpers auf eine Ebene, so ist das Volumen des entstehenden Kegels zwischen der Lichtquelle und dem Schatten stets ein Drittel der Schattenfläche mal Höhe des Kegels: 1 V Kegel F Schatten h Kegel. Denn liegt die Lichtquelle im Ursprung, so hat der Querschnitt des Kegels in der Höhe z nach dem Strahlensatz die Fläche F z F z h
4 und somit ist das Volumen gleich h F z h dz F h. Als Spezialfall erhält man deas Volumen eines Kreiskegels mit Grundradius r und Höhe h: V r h π Die Hülsenmethode In vielen Fällen ist die Profilkurve so parametrisiert, daß die z-koordinate als eine Funktion h( x ) der x-koordinate gegeben ist, und nicht umgekehrt. Wenn diese Funktion nicht explizit invertierbar, also z h( x ) nicht nach x auflösbar ist, hat man mit der ersten Integralformel für Rotationsvolumina schlechte Karten. In diesem Fall hilft eine zweite Methode, bei der man sich Rotationskörper nicht aus Kreisscheiben, sondern aus zylindrischen Hülsen aufgebaut vorstellt.
5 Statt des innerhalb der rotierenden Profilkurve liegenden Drehkörpers kann man natürlich auch den außerhalb liegenden betrachten: Wir greifen eine einzelne Hülse der Dicke dx heraus, die den mittleren Radius x und die Höhe h( x ) hat. Das Volumen errechnen wir als Differenz der Volumina des äußeren und inneren Zylinders: π dx x + h( x ) π dx x Damit haben wir für den Rotationskörper die Zweite Integralformel für Rotationsvolumina V ( r, R) π x h( x ) dx r R h( x ) π x h( x ) dx. zwischen den Radien r und R, und zwar für das Volumen innerhalb einer im positiven Bereich der Achse monoton fallenden oder außerhalb einer im positiven Bereich der Achse monoton wachsenden Profilkurve. Im negativen Bereich der Achse ist es umgekehrt. Das Volumen innerhalb einer rotierenden, im positiven Bereich monoton wachsenden Profilkurve bekommt man schließlich, indem man das Volumen des äußeren Rotationskörpers und das des inneren Zylinders von dem Volumen des äußeren Zylinders abzieht: R V Rest π R h( R ) r h( r) x h( x ) dx. r
6 Beispiel 4: Kelch oder Profile? Obere Randkurve: f( x ) 1 cos π x, - < x < sin( π x ) Untere Randkurve: g( x ) x +, - < x < 6 Flächeninhalt des rechten Profils (untere Randkurve nach oben gespiegelt): F Profil 1 cos π x dx + x + Damit ist der Flächenhalt der Projektion des Kelches sin( π x) 6 dx + 4. F Kelch 4 8 8, also ebenso groß wie die Restfläche. Nun lassen wir die Profilkurve um die senkrechte Achse rotieren. Um das Kelchvolumen nach der Formel
7 V Kelch r( z ) dz zu berechnen, müßte man erst die beiden Teilfunktionen invertieren, also z 1 z x + cos π x bzw. sin( π x ) nach x auflösen, was im oberen Fall auf x 6 arccos ( 1 z) π führt, im unteren Fall aber gar nicht elementar möglich ist. Und selbst das Integral für die obere Hälfte π arccos ( 1 z) π 4 dz π [ arccos ( 1 z) ] sieht ziemlich mühsam aus. Hier ist es eindeutig besser, die zweite Formel für Rotationsvolumina zu benutzen: V π h( x ) x dx (mit h( x ) f( x ) oben und h( x ) g( x ) unten). Das Restvolumen des oberen Kelches ergibt sich mittels partieller Integration: π 1 cos π x x dx π x 4 x sin π x + 4 sin π x dx 16 4 π + π. Das obere Kelchvolumen beträgt somit π 4 π 4 π π π, also deutlich weniger als die Hälfte des oberen Zylindervolumens 8 π. Für das Restvolumen zum unteren Teil (Glocke) bekommen wir entsprechend sin( π x) π x + x dx π x x cos( π x ) π 1, also für das Glockenvolumen selbst 16 π 1 8 π +, dz cos( π x) dx 6
8 und insgesamt π 16 V Kelch + π 1. Das ist ungefähr , also weniger als ein Drittel des gesamten Zylindervolumens 16 π Beispiel 5: Archimedes und das Kugelvolumen Wie schon der geniale Ingenieur Archimedes im. Jahrhundert vor Chr. wußte, ist bei gleicher Höhe und Breite das Verhälnis der Volumina Kegel : Kugel : Zylinder 1 : :. Da ein Zylinder mit Radius R und Höhe R das Volumen R π R R π besitzt, findet man für das Volumen des Kegels wiederum R π und für das der Kugel 4 R π. Da der junge Archimedes seinen "Beweis" dadurch erbracht haben soll, daß er den Zylinder in die eine Waagschale sowie Kegel und Kugel zusammen in die in andere Waagschale einer Balkenwaage legte, wurde er ob solch "niedriger" Beweismethoden von der Akademie verbannt! Später fand er aber einen mathematischen Beweis, den die Ordnungshüter der Akademie nicht mehr anfechten konnten. Leicht abgewandelt in moderne Sprache ergeben sich die Formeln für die drei Körper als einfache Rotationsintegrale nach dem Scheibchenprinzip: R V Zylind R dz R π R R z R R V Kegel dz R π V Kugel R z dz 4 R π R Für die Gleichung V Zylind + V Kegel V Kugel
9 braucht man die Integrale übrigens gar nicht auszuwerten. Ein Blick auf die Integranden genügt! Beispiel 6: Volumina von Perlen Durchbohren wir eine kugelförmige Perle zentrisch, so entsteht ein Bohrloch der Länge L. Wir stellen die durchbohrte Perle graphisch mittels Zylinderkoordinaten dar: R Radius, φ Drehwinkel, z Höhe R z Abstand von der z-achse (in der Höhe z) Enge Bohrung: L 9 R 1 Weite Bohrung: L R 4 Wir wollen jetzt das Volumen der durchbohrten Perle bestimmen, ohne viel zu rechnen (und ohne den Radius R zu kennen!) Ein Schnitt orthogonal zum zylindrischen Bohrloch durch die Kugel in der Höhe H liefert einen Kreisring. Nach dem Satz von Pythagoras beträgt sein Innenradius
10 R L und sein Außenradius R H. Sein Flächeninhalt ist daher π ( R H ) π ( R L ) π ( L H ) und somit gleich der Fläche eines kreisförmigen Schnittes durch eine Kugel vom Radius L in der gleichen Höhe H. Wir bauen die durchbohrte Kugel aus flachen Kreisringscheiben auf. Das Restvolumen der durchbohrten Kugel ergibt sich als Summation über solche Kreisscheiben, ist also gleich dem Volumen einer Vollkugel der gleichen Höhe: V 4 π L. Wir zeichnen vier Perlen gleicher Höhe übereinander. Alle haben das gleiche Volumen!
11 Beispiel 7: Das Ei des Kolumbus Auf ähnlichem Wege gelangt man zu einer verallgemeinerung der Archimedischen Formel für das Volumenverhältnis von Kegel zu Kugel. Wir lassen die Ellipse x + a z 1 um die z-achse rotieren, wobei ein eiförmiger Körper entsteht. Entfernt man aus dem Rotationsellipsoid mit Radius f ( a, z ) 1 a z in der Höhe z den Kegel mit Radius g ( a, z ) 1 a z in der Höhe z, so hat der Querschnitt durch den Restkörper in der Höhe z den Flächeninhalt ( f ( a, z ) g ( a, z ) ) π ( 1 a z ( 1 a ) z ) π ( 1 z ) π und das ist zugleich der Flächeninhalt eines Schnittes durch die Kugel mit Radius 1 in der Höhe z. Der Parameter a kommt gar nicht mehr vor. Die entstehenden Rotationskörper haben also alle das gleiche Volumen! Der Grenzfall a ergibt die Differenz von Zylinder und Kegel, während der Grenzfall a 1 gerade die Halbkugel liefert.
Volumen eines Rotationskörpers
Volumen eines Rotationskörpers Das Volumen V des durch Rotation des Funktionsgraphen r = f (x) 0, a x b, um die x-achse erzeugten Körpers lässt sich durch Integration über die kreisförmigen Querschnitte
x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.
Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das
Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers
http://www.fotocommunity.de/search?q=table&index=fotos&options=ytoyontzoju6inn0yxj0ijtpoja7czo3oijkaxnwbgf5ijtzojg6ijizmjy4oduwijt9/pos/13 Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen
Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung
Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.
Füllstand eines Behälters
Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen
Mehrdimensionale Integration
Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der
Flächeninhalt, Volumen und Integral
Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1
Mathematisches Denken. Übungsserie 1. γ : [0, 2] IR 2,t r(t) := 2t 1
Studiengang Architektur Mathematisches Denken Übungsserie 1 HS 2007 Abgabe der (z.t. mit dem TR) gelösten Aufgaben: Freitag 26. Oktober 2007 in der Vorlesung 1. Durch die folgende Parameterdarstellung
1 Das Prinzip von Cavalieri
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt
Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2
D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale
D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz
Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.
Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden
c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):
Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden
Elementare Längen, Flächen und Volumina. Bogenlänge. Rotationskörper
Elementare Längen, Flächen und Volumina. Bogenlänge. Rotationskörper Jörn Loviscach Versionsstand: 13. Januar 2010, 17:39 1 Elementare Längen, Flächen und Volumina Der Umfang des Einheitskreises ist vom
Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)
Rotationskörper Ronny Harbich 1. August 2003 geändert 24. Oktober 2007) Inhaltsverzeichnis 1 Einführung 3 2 Anschauliche Herleitung 4 2.1 Darstellungen................................. 4 2.2 Gleichungen
Integralrechnung - Rotationskörper
F H Z > F A C H H O C H S C H U L E Z E N T R A L S C H W E I Z H T A > H O C H S C H U L E F Ü R T E C H N I K + A R C H I T E K T U R L U Z E R N A b t e i l u n g I n f o r m a t i k Integralrechnung
1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.
Themenerläuterung Im Kapitel Zusammengesetzte Körper geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. Es
Serie 6. x 2 + y 2, 0 z 4.
Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {
mit 0 < a < b um die z-achse entsteht.
Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit
K A P I T E L - I N T E G
Seitee 1 / 17 K A P I T E L - I N T E G R A L R E C H N U N G 1 Grundlagen Ist eine gegebene Funktion die Ableitung einer Funktion,, also, so heißt STAMMFUNKTION oder ein INTEGRAL von. Die Integration
Räumliche Bereichsintegrale mit Koordinatentransformation
Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe
Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen
Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -
Integralrechnung Rotationskörper 1
Integralrechnung Rotationskörper 1 Volumenberechnung von Rotationskörpern y Datei Nr. 4810 15. Juli 015 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4810 Rotationskörper - Volumenberechnungen Inhalt 1. Berechnungsformel
UE Extremwertaufgaben 01
1. Ein Rechteck mit einem Umfang von 2m dreht sich um eine seiner Seiten. Wie müssen die Seiten des Rechtecks gewählt werden, damit (a) die Mantelfläche (b) das Volumen des entstehenden Drehzylinders möglichst
Kursarbeit Nr.1 LK Mathematik NAME :
Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen
Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya
Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle
Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.
Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen
Zylinder, Kegel und Kugel - Volumen und Oberfläche
Zylinder, Kegel und Kugel - Volumen und Oberfläche 1 Eine Kugel Speiseeis (Radius r) liegt in einem kegelförmigen Sektglas der Höhe H und der Weite 2a (siehe Abbildung) Das Eis schmilzt in der Sonne ohne
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
9. Lineare Gleichungssysteme
9. Lineare Gleichungssysteme. Aufgabe: estimmen Sie mit Hilfe des Gauß-Algorithmus alle Lösungen ~x = (x ; x ; x 3 ; x 4 ) T des Gleichungssystems 3x x + x 3 + x 4 = 4x + 8x 3 + x 4 = 3 x + x + 6x 3 x
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel PD Dr. Roger Labahn {konrad.engel, roger.labahn}@uni-rostock.de.09.
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung
K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne
D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie
D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)
10.6. Implizite ebene Kurven und Tangenten
0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen
Oberfläche von Körpern
Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.
, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl.
Abiturprüfung Berufliche Oberschule 00 Mathematik Technik - A II - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a ( ) a a mit a IR \ {0} in der von a unabhängigen Definitionsmenge D f IR \ {0}. Teilaufgabe.
Rotationskörper mit Integralrechnung
Rotationskörper mit Integralrechnung W. Kippels 26. Oktober 28 Inhaltsverzeichnis Vorwort 2 2 Einleitung 2 3 Grundlagen 3 3. Herleitung der Berechnungsformel...................... 3 3.2 Beispiele....................................
Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15
5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben
Zylinder, Kegel, Kugel, weitere Körper
Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya
Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der
Schritt 1: Pfadregeln anwenden für a) und b)
Aufgabe 1 Schritt 1: Pfadregeln anwenden für a) und b) Baumdiagramm ergänzen Vom Ausgangspunkt ganz links gehen zwei Pfade aus, einer davon mit Wahrscheinlichkeit. Der andere Pfad muss daher die Wahrscheinlichkeit
1 Pyramide, Kegel und Kugel
1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche
2 Koordinatentransformationen
Mathematik für Ingenieure III, WS 9/1 Montag 3.11 $Id: transform.tex,v 1.5 9/11/3 16:9: hk Exp $ Koordinatentransformationen. ie Transformationsformel In der letzten Sitzung hatten wir die Transformationsformel
Koordinaten, Funktionen & Etwas Geometrie
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 26. Oktober 2009 Kartesische Koordinaten Ebene R 2 und Raum R 3 Allgemein: R n Punktmengen in der Ebene Graphen von Funktionen...im R 2 und
3.3. Drehungen und Spiegelungen
3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Aufgabe P2/2007 Die Skizze zeigt den Achsenschnitt eines Kegels. Es gilt: 6,2 48
5 Aufgaben im Dokument Aufgabe P6/2004 Eine Kugel und ein Zylinder werden miteinander verglichen - Die Kugel hat ein Volumen von 268, - der Radius der Kugel und der Grundkreisradius des Zylinders sind
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik
(Gaußscher Integralsatz)
Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene
Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx
Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =
Übungsbeispiele Differential- und Integralrechnung
Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,
4.12 Mathematiker im Umfeld von Platons Akademie
4.12 Mathematiker im Umfeld von Platons Akademie Theodoros von Kyrene (circa 460 390 v.chr.) soll (laut Iamblichos) Pythagoreer und (laut Diogenes Laertios) Platons Lehrer auf dem Gebiet der Mathematik
Block I: Integration und Taylorentwicklung in 1D
Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx
Raumgeometrie - Zylinder, Kegel
Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
8 5 9 : 8 5 ; 0 85<8. 8 : 8 0 > 1 Der Schnittpunkt mit der x-achse ist? 1 0.
Aufgabe M04A1 Gegeben ist die Funktion mit. Ein Teil des Graphen ist abgebildet. a) Geben Sie die maximale Definitionsmenge von und Gleichungen der Asymptoten von an. besitzt einen Schnittpunkt mit der
R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x
Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p
25 Elementare Längen, Flächen und Volumina. Bogenlänge. Rotationskörper
25 Elementare Längen, Flächen und Volumina. Bogenlänge. Rotationskörper Jörn Loviscach Versionsstand: 29. September 2012, 19:49 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen
Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.
Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen
Lösungsvorschlag zur Übungsklassenarbeit 10/3
Lösungsvorschlag zur Übungsklassenarbeit 10/ Michael Kopp α 1.1 -Release Aufgabe 1 Bei dieser Aufgabe muss man den gegebenen Körper in Teilkörper Zerlegen. Das Spitze Ende des Hammers kann man als Pyramide
Analysis 7. f(x) = 4 x (x R)
Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,
Schriftliche Ausarbeitung des Referats
Pädagogische Hochschule Ludwigsburg Jochen Weber/Sven Tittel 5. Semester /. Semester WS 00 / 00 Schriftliche Ausarbeitung des Referats im Rahmen des Fachdidaktischen Hauptseminars: Raumgeometrie und Funktionen
ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang
ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der
a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:
. ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de
Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016
1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,
Serie 8 - Parametrisierte Kurven
Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige
Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen
14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: [email protected], Internet: www.elearning-freiburg.de Einführung des Integrals 15
Fluss durch einen Zylindermantel
Fluss durch einen Zylindermantel Der Fluss eines Vektorfeldes F = F ϱ e ϱ + F ϕ e ϕ + F z e z nach außen durch den Mantel eines Zylinders mit Randkurve ϱ = ϱ(ϕ) ist 2π z max z min F ϱ ϱ F ϕ ϕ ϱ dz dϕ.
SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen
Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. P. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 7 Tutorium Inhalt
Zylinder, Kegel, Kugel, weitere Körper
Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
Aufgabe W4b/2007. Aufgabe W2b/2008 8,0 3,5. Ein kegelförmiges Gefäß ist gegeben durch:
Aufgaben im Dokument Aufgabe W3b/2005 Ein Kreis wird in zwei Kreisausschnitte geteilt. Beide Ausschnitte bilden jeweils den Mantel eines Kegels (siehe Skizze). Für Kegel 1 gilt: 12. Zeigen Sie ohne Verwendung
Höhere Mathematik Vorlesung 4
Höhere Mathematik Vorlesung 4 März 217 ii In der Mathematik versteht man die inge nicht. Man gewöhnt sich nur an sie. John von Neumann 4 as oppelintegral Flächen, Volumen, Integrale Ob f für a x b definiert
Die nummerierten Felder bitte mithilfe der Videos ausfüllen:
5 Koordinatensysteme Zoltán Zomotor Versionsstand: 6. August 2015, 21:43 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach
Musterlösung. für die Klausur MA2_06.1 vom 10. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.
Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA_06. vom 0. Februar 006 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben
