Integralrechnung - Rotationskörper
|
|
|
- Judith Brauer
- vor 8 Jahren
- Abrufe
Transkript
1 F H Z > F A C H H O C H S C H U L E Z E N T R A L S C H W E I Z H T A > H O C H S C H U L E F Ü R T E C H N I K + A R C H I T E K T U R L U Z E R N A b t e i l u n g I n f o r m a t i k Integralrechnung - Rotationskörper Prof. Dr. Josef F. Bürgler Semesterwoche 14 Alle Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein. Kontrollieren Sie also ihre Ergebnisse mit Hilfe von Maple und durch gegenseitige Kontrolle. 1 Volumen von Rotationskörpern Wir rotieren den Graphen G(f) einer anständigen Funktion f : [a, b] R, x y = f(x). um die x-achse. Dadurch ensteht ein Rotationskörper dessen Volumen wir nun berechnen wollen. Dazu gehen wir wie folgt vor: 1. Der Rotationskörper wird in Kreisscheiben der Dicke dx geschnitten. Das Volumen dv einer solchen Kreisscheibe (mit dem Radius f(x) an der Stelle x ist gegeben durch dv = πf 2 (x) dx. 2. Wir summieren die Volumina aller Kreisscheiben, sprich wir integrieren über x und zwar von a bis b V = π b a f 2 (x) dx. (1) 1
2 1 Volumen von Rotationskörpern 1.1 Volumen der Kugel Man berechne das Volumen einer Kugel mit Radius R. Lösung: Wir berechnen das Volumen einer Einheitskugel und multiplizieren dieses Resultat mit R 3 um das Volumen einer Kugel mit Radius R zu erhalten. Zudem können wir aus Symmetriegründen zwei Mal das Volumen einer Halbkugel nehmen. Falls wir den Graphen der Funktion f : [, 1] [, 1], x y = 2 um die x-achse rotieren lassen, entsteht die eine Hälfte der Einheitskugel. Dann hat man für das Volumen der Einheitskugel nach (1) V = 2π = 2π ( ) 2 2 dx, ( 2 ) dx, 2
3 1 Volumen von Rotationskörpern ] 1 = 2π [x x3 3 ( = 2π 1 1 ), 3 = 4 3 π., Das Volumen einer Kugel mit Radius R ist also wie in jedem Formelbuch ersichtlich V = 4π 3 R Volumen der Kugelkappe Einer Kugel vom Radius R wird eine Kappe der Höhe h ( h 2R) weggeschnitten. Wie gross ist das Volumen dieser Kugelkappe der Höhe h? Lösung: Tipp: sie müssen in der vorigen Rechnung lediglich die Integrationsgrenzen anpassen! 1.3 Volumen eines Zylinders Berechnen sie mit der oben gezeigten Methode das Volumen eines Zylinders der Höhe h und dem Radius R. Sie können dann das Resultat mit der Formel kontrollieren, die sie bis jetzt verwendet haben. Lösung: Tipp 1: legen sie das Koordinatensystem so, dass die x-achse entlang der Symmetrieachse des Zylinders zeigt. Zudem soll für die Grundfläche des Zylinders x = und für die Deckfläche x = h gelten. Tipp 2: Wie lautet nun die Funktion f, deren Graph G(f), wenn er um die x-achse rotiert wird, gerade die Zylinderoberfläche ergibt? 1.4 Volumen eines Kegels Berechnen sie mit der oben gezeigten Methode das Volumen eines Kegels der Höhe h und dem Radius des Grundkreises R. Sie können dann das erhaltene Resultat mit der Formel kontrollieren, die sie bis jetzt verwendet haben. Lösung: Tipp 1: legen sie das Koordinatensystem so, dass die x-achse entlang der Symmetrieachse des Kegels zeigt. Zudem soll für die Grundfläche des Kegels x = und für die Spitze des Kegels x = h gelten. Tipp 2: Wie lautet nun die Funktion f, deren Graph G(f), wenn er um die x-achse rotiert wird, gerade die Kegeloberfläche ergibt? 3
4 2 Nochmals: Volumen von Rotationskörpern 2 Nochmals: Volumen von Rotationskörpern Oben wurde der Graph der betroffenen Funktion um die x-achse rotiert. Nun soll der Graph G(f) der Funktion f : [a, b] R, x y = f(x). um die y-achse rotiert werden. Dadurch entsteht wiederum ein Rotationskörper, dessen Volumen wir nun berechnen wollen. Dazu gehen wir wie folgt vor: 1. Der Rotationskörper wird in Hohlzylinder der Dicke dx und der Höhe f(x) geschnitten. Das Volumen dv eines solchen Hohlzylinders (mit dem Radius x) ist gegeben durch dv = 2πxf(x) dx. 2. Wir summieren die Volumina aller Hohlzylinder, sprich wir integrieren über x und zwar von a bis b V = 2π b a xf(x) dx. (2) 4
5 2.1 Volumen der Kugel 3 Mantelfläche von Rotationskörpern Man berechne das Volumen einer Kugel mit Radius R. Lösung: Wir berechnen das Volumen einer Einheitskugel und multiplizieren dieses Resultat mit R 3 um das Volumen einer Kugel mit Radius R zu erhalten. Zudem können wir aus Symmetriegründen zwei Mal das Volumen einer Halbkugel nehmen. Falls wir den Graphen der Funktion f : [, 1] [, 1], x y = 2 um die y-achse rotieren lassen, entsteht die eine Hälfte der Einheitskugel. Dann hat man für das Volumen der Einheitskugel nach (2) V = 4π = 4 3 π. x 2 dx, Dabei haben wir aus lauter Bewequemlichkeit Maple verwendet! Das Volumen einer Kugel mit Radius R ist also wie in jedem Formelbuch ersichtlich V = 4π 3 R Formelbuch Suchen sie die entsprechenden Formeln z.b. im Stöcker (Formelbuch) und machen sie sich mit der Schreibweise und der Verwendung bekannt. 3 Mantelfläche von Rotationskörpern Wir rotieren den Graphen G(f) einer anständigen Funktion f : [a, b] R, x y = f(x). um die x-achse. Dadurch ensteht ein Rotationskörper dessen Mantelfläche wir nun berechnen wollen. Dazu gehen wir wie folgt vor: 1. Der Rotationskörper wird in Kegelstümpfe der Dicke dx geschnitten. 2. Die Mantelfläche eines solchen Kegelstumpfes soll nun berechnet werden. da = 2πf(x) 1 + [f (x)] 2 dx. 5
6 3 Mantelfläche von Rotationskörpern 3. Wir summieren die Mantelflächen aller Kegelstümpfe, sprich wir integrieren über x und zwar von a bis b b A = 2π f(x) 1 + [f (x)] 2 dx. (3) a 3.1 Oberfläche der Kugel Man berechne die Oberfläche einer Kugel mit Radius R. Lösung: Wir berechnen die Oberfläche einer Einheitskugel und multiplizieren dieses Resultat mit R 2 um die Oberfläche einer Kugel mit Radius R zu erhalten. Zudem können wir aus Symmetriegründen zwei Mal die Oberfläche einer Halbkugel nehmen. Falls wir den Graphen der Funktion f : [, 1] [, 1], x y = 2 um die x-achse rotieren lassen, entsteht die eine Hälfte der Einheitskugel. 6
7 4 Das Paradoxon der unendlichen Posaune Dann hat man für die Oberfläche der Einheitskugel nach (3) wegen [ ] 2 [f (x)] 2 2x = 2 = x2 2 2 sofort A = 4π = 4π = 4π = 4π x2 dx, dx, 1 dx, Die Oberfläche einer Kugel mit Radius R ist also wie in jedem Formelbuch ersichtlich A = 4πR Mantelfläche einer Kugelkappe der Höhe h Berechnen sie mit der oben gezeigten Methode die Mantelfläche einer Kugelkappe der Höhe h wenn die Kugel den Radius R hat. Kontrollieren sie das Resultat für die Spezialfälle h = 2R, h = R und h =. Vergleichen sie ihr Resultat auch mit der Formel in einem Formelbuch (z.b. Stöcker). 3.3 Mantelfläche eines Kegels Berechnen sie mit der oben gezeigten Methode die Mantelfläche eines Kegels der Höhe h und dem Radius des Grundkreises R. Sie können dann das erhaltene Resultat mit der Formel kontrollieren, die sie bis jetzt verwendet haben. Lösung: Tipp 1: legen sie das Koordinatensystem so, dass die x-achse entlang der Symmetrieachse des Kegels zeigt. Zudem soll für die Grundfläche des Kegels x = und für die Spitze des Kegels x = h gelten. Tipp 2: Wie lautet nun die Funktion f, deren Graph G(f), wenn er um die x-achse rotiert wird, gerade die Kegeloberfläche ergibt? 4 Das Paradoxon der unendlichen Posaune Lässt man den Graphen der Funktion f : [1, ] R, x f(x) = 1 x 7
8 4 Das Paradoxon der unendlichen Posaune um die x-achse rotieren, entsteht eine unendliche Posaune. Man berechne deren Volumen sowie deren Querschnitts- und Mantelfläche. Es wird sich heraus stellen, dass das Volumen endlich ist. Dagegen sind die Querschnitts- wie auch die Mantelfläche unendlich. Es bräuchte also unendlich viel Gold- oder Silberfarbe, um die Posaune innen zu belegen. Nun hat Hans folgende Idee: er füllt die Posaune mit Gold- oder Silberfarbe und leert die Farbe danach wieder in den Kübel zurück. Dadurch hat er die Posaune innen mit endlich viel Farbe bestrichen. Dies scheint aber im Widerspruch zur oben gemachten Aussage zu stehen! Welche Erklärung haben sie für diesen Widerspruch? Viel Vergnügen beim Durcharbeiten! 8
Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)
Rotationskörper Ronny Harbich 1. August 2003 geändert 24. Oktober 2007) Inhaltsverzeichnis 1 Einführung 3 2 Anschauliche Herleitung 4 2.1 Darstellungen................................. 4 2.2 Gleichungen
Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung
Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.
Das Prisma ==================================================================
Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der
UE Extremwertaufgaben 01
1. Ein Rechteck mit einem Umfang von 2m dreht sich um eine seiner Seiten. Wie müssen die Seiten des Rechtecks gewählt werden, damit (a) die Mantelfläche (b) das Volumen des entstehenden Drehzylinders möglichst
Füllstand eines Behälters
Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens
9.3. Rotationsvolumina
9.. Rotationsvolumina Rotationskörper entstehen, wenn man eine ebene Kurve um eine in der Ebene liegende Achse kreisen läßt. Beispiele aus dem praktischen Leben sind Töpferscheibe und Drechselbank. Die
Stereometrie. Rainer Hauser. Dezember 2010
Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.
Flächeninhalt, Volumen und Integral
Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1
1 Pyramide, Kegel und Kugel
1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche
Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.
Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen
(Tipp: Formelbuch!) x3 dx?
Integralrechnung. bestimmte und unbestimmte Integrale (a) x ( + x ) dx =? (b) e x + e x dx =? (c) x 3 x + x x 6x + 9 dx =? (d) x cos x dx =?. Bestimmtes Integral x3 3x + 9 x dx =? 4 3. Bestimmtes Integral
Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:
Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen
Oberfläche von Körpern
Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben
Beweis des Kugelvolumens und -oberfläche nach Archimedes
1 Thomas Rupp, 17. April 1999 Beweis des Kugelvolumens und -oberfläche nach Archimedes Vorbereitung zum Proseminar unter Professor Lang 1 Kugeloberfläche Bild1 Bild1 zeigt einen Gorsskreis einer Kugel,
2.10. Aufgaben zu Körperberechnungen
Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe
Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016
1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,
Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.
STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden
Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung
1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten
Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9
Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch
Zylinder, Kegel, Kugel, weitere Körper
Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Raum- und Flächenmessung bei Körpern
Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-
Felder und Wellen WS 2016/2017
Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro
Integralrechnung Rotationskörper 1
Integralrechnung Rotationskörper 1 Volumenberechnung von Rotationskörpern y Datei Nr. 4810 15. Juli 015 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4810 Rotationskörper - Volumenberechnungen Inhalt 1. Berechnungsformel
Lösung der Aufgabe ALT 1) aus 6C 18 = 36 folgt C = 9. Daher gilt: Nullstellen:
Lösung der Aufgabe ALT 1) a) y = f(x) = f (x)dx = (x 2 2x 3)dx = x3 3 x2 3x + C 3 ( x3 3 3 x2 3x + C) dx = [ x4 12 x3 3 3x2 x=3 2 + Cx] x= 3 aus 6C 18 = 36 folgt C = 9. Daher gilt: y = f(x) = x3 3 x2 3x
gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.
gerader Zylinder 1 Ein gerader Kreiszylinder hat die Höhe h und den Radius r (a) Erklären Sie, wie man die Formel M = rh2π für den Inhalt der Mantelfläche des Zylinders herleiten kann (b) Für den Inhalt
12. Mehrfachintegrale
- 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
Zylinder, Kegel und Kugel - Volumen und Oberfläche
Zylinder, Kegel und Kugel - Volumen und Oberfläche 1 Eine Kugel Speiseeis (Radius r) liegt in einem kegelförmigen Sektglas der Höhe H und der Weite 2a (siehe Abbildung) Das Eis schmilzt in der Sonne ohne
1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...
1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................
! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2
% Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 8 Aufgaben mit einigen Teilaufgaben.
Raumgeometrie - Zylinder, Kegel
Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt
Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007
Mathematik Matur-Aufgaben 2006 Stefan Dahinden 26. Juni 2007 Rotationskörper Lassen Sie die Kurve mit der Gleichung y = 9 x für 0 x 9 um die x- Achse rotieren und berechnen Sie das exakte Volumen des entstehenden
1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn)
Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag A /40 Das erste Teilstück einer Achterbahn ruht auf sechs senkrechten Stützen, die in Abständen von 5 m aufgestellt sind (siehe Abb.). Es lässt sich
Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe
I) So berechnet man das Volumen einer Säule. Körper Strukturbild geometrische Bedeutung Formel Säule Volumen Volumen einer Schicht mal h s Anzahl der Schichten V s A h s Volumen Säule Grundfläche Höhe
Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen
Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Prisma, Zylinder, Kegel, Kugel. Auf Seite 5 7 finden Sie eine Formelsammlung. Für eine Maschine werden Kugeln beidseitig 5mm abgefräst und mit zwei Bohrungen versehen (vgl. Skizze). Die
Übungen zu Integralsätzen Lösungen zu Übung 19
9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren
2. Die Satzgruppe des Pythagoras
Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 50.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
mit 0 < a < b um die z-achse entsteht.
Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit
Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten Fach: Mathematik Wahlaufgaben
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Analysis: Klausur Analysis
Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com
Abschlussprüfung an der Fachoberschule im Herbst 2013
Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Herbst 013 Fach (B) Prüfungstag. November 013 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
Matur-/Abituraufgaben Analysis
Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische
! % Note: mit P. ! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2
! % Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 10 Aufgaben mit einigen
K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3
Anzahl der Fahrschüler Bild 1
Kultusministerium des Landes Sachsen-Anhalt Schriftliche Abschlussprüfung Mathematik Schuljahr 2001/2002 Realschulbildungsgang 10. Schuljahrgang Pflichtaufgaben 1. 5 a) Lösen Sie die Gleichung + x = 1,
Mathematik Q1 - Analysis INTEGRALRECHNUNG
Mathematik Q1 - Analysis INTEGRALRECHNUNG ZIELE Einführung der neuen Begrifflichkeiten orientierter Flächeninhalt Integral Integralfunktion anhand der Badetag-Aufgabe Berechnung von Integralen mittels
1 /40. dargestellt werden.
Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von
Pyramide und Kegel 14
1 6 1 Falls genau gearbeitet wurde, sollte der Steigungswinkel der Pyramidenseiten 5 betragen. Falls dem so ist, ist das Modell ähnlich zum Original und der Verkleinerungsmassstab kann eindeutig bestimmt
Lösungen zu Übungsblatt 9
Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da
Wurzelfunktionen Aufgaben
Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0
Grundwissen Mathematik 9. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative
DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10
Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Raumgeometrie WORTSCHATZ 1
Raumgeometrie WORTSCHATZ 1 Video zur Raumgeometrie : http://www.youtube.com/watch?v=qbqbd0b3vzu VOKABEL : eine Angabe ; angeben ; was angegeben ist : ce qui est donné (les données) eine Annahme ; annehmen
Trigonometrie und Planimetrie
Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben
Grundkursabitur 2006 Analytische Geometrie Aufgabe VI. In einem kartesischen Koordinatensystem sind die Punkte A 3 2 3,,
Grundkursabitur 6 Analytische Geometrie Aufgabe VI In einem kartesischen Koordinatensystem sind die Punkte A,, B C6 und D6 sowie die Gerade g: X gegeben. 5 9 + λ mit λ R. a) Bestimmen Sie die Normalenform
Lösungen Grundaufgaben Folgen und Reihen
Folgen und Reihen 05.03.006 Grundaufgaben Lösungen Grundaufgaben Folgen und Reihen Formeln arithetische Folge mit Anfangsglied a und Differenz d: a n = a +(n )d (explizite Darstellung) a n+ = a n + d (rekursive
HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)
Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können
Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:
Download Marco Bettner, Erik Dinges an Stationen Übungsmaterial zu den Bildungsstandards Downloadauszug aus dem Originaltitel: an Stationen Übungsmaterial zu den Bildungsstandards Dieser Download ist ein
Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur
Repetition für JZK Aufgabe 1 a) Zeichne die Figur F 4! F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n 1 2 3 4 5 6 7 Term q n = Anz. Quadrate der Figur F n u n = äusserer
Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten
Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme
Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen
Funktionen mehrerer Variabler
Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,
Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:
Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen
DOWNLOAD. Freiarbeit: Geometrische. Günther Koch. Materialien für die 8. Klasse in zwei Differenzierungsstufen. Downloadauszug aus dem Originaltitel:
DOWNLOAD Günther Koch Freiarbeit: Geometrische Körper Materialien für die 8. Klasse in zwei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, 19.1.201 von 9:00 bis 11:00 Seite 1 von 2 Der Rechenvorgang ist ausführlich darzustellen! Maximale Punkteanzahl: 20 1. ( Punkte)
Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld
Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann
Alle Unterlagen finden Sie auch auf der Internetseite
Alle Unterlagen finden Sie auch auf der Internetseite http://www.ken.ch/%7elueg/sol/ Einleitung Darum geht es: Stereometrie ist die Geometrie des Raums. In dieser SOL-Einheit sollen Sie mit einigen geometrischen
Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik
Übungsblatt 9 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 9.6.8 Aufgaben. Durch eine Spule mit n Windungen, die einen Querschnitt A 7, 5cm hat, fliesst
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
cos(kx) sin(nx)dx =?
3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]
31 Die Potentialgleichung
3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-
8.1 Vorstellen im Raum
äumliche Geometrie 1 8 äumliche Geometrie 8.1 Vorstellen im aum 1. Alle dargestellten Körper sind aus elf Würfeln zusammengesetzt. a) Welche der Körper sind deckungsgleich zueinander? b) Welche der Körper
1.3. Beträge, Gleichungen und Ungleichungen
1.3. Beträge, Gleichungen und Ungleichungen Das Maximum zweier Zahlen a, b wird mit max(a,b) bezeichnet, ihr Minimum mit min(a,b). Der Absolutbetrag einer reellen Zahl a ist a = max ( a, a ) oder auch
Technische Universität München Zentrum Mathematik. Übungsblatt 4
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=
Grundlagen IV der Kathetensatz
Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des
