GRUNDWISSEN MATHEMATIK
|
|
|
- Til Norbert Brandt
- vor 9 Jahren
- Abrufe
Transkript
1 GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P O M U K - G Y M N A S I U M
2 1 Die natürlichen Zahlen NI Menge der natürlichen Zahlen {1, 2, 3,...} NI Menge der natürlichen Zahlen mit Null {0, 1, 2,...} 0 Darstellungsmöglichkeiten: Zahlenstrahl: der Abstand zweier benachbarter natürlicher Zahlen ist gleich groß ( Einheit) Koordinatensystem: s. negative Zahlen Diagramme: Balken-, Säulen-, Kreisdiagramme Stellenwertsystem mit Hilfe von Ziffern: 2354 = (Dezimalsystem) Zehnerpotenzen: = = = Zahlenwörter für große Zahlen: Tausender Millionen Milliarden Billionen Billiarden Trillionen Anzahl der Schüler Auto Bus Fahrrad Fußgänger Seite 2 von 16
3 Zahlenmengen: Menge der geraden Zahlen: {2,4,6,8,10, } Teilermenge T(18) = {1,2,3,6,9,18} Vielfachenmenge V(7) = {7,14,21,28,35, } Menge der Primzahlen: {2,3,5,7,11,13,17,19,23,29,31, } ( Zahlen mit genau zwei Teilern) Menge der Quadratzahlen: {1,4,9,16,25,36,49, } 6 T(18) die Zahl 6 ist ein Element der Teilermenge von 18 9 V(7) die Zahl 9 ist kein Element der Vielfachenmenge von 7 2 Rechnen mit natürlichen Zahlen Addition: Wert der Summe = 1. Summand + 2. Summand Subtraktion: Wert der Differenz = Minuend Subtrahend Multiplikation: Wert des Produktes = 1. Faktor 2. Faktor Division: Wert des Quotienten = Dividend : Divisor Kommutativgesetze: a+b = b+a a b = b a Assoziativgesetze: (a + b) + c = a + (b + c) (a b) c = a (b c) Distributivgesetze: (a ± b) c = a c ± b c Seite 3 von 16
4 Weitere Rechenregeln: Klammern zuerst (von innen nach außen bzw. runde vor eckigen) Potenz vor Punkt vor Strich! Potenzen: = heißt Basis, 4 heißt Exponent. Quadratzahlen sind Potenzen mit 2 als Exponent. z. B.: 3 2 = 9 Primfaktordarstellung: Jede Zahl lässt sich eindeutig in ein Produkt von Primzahlen zerlegen ( Faktorisieren ). Bsp.:600 = Teilbarkeitsregeln: Quersummen: Eine Zahl ist durch 3 (9) teilbar, wenn ihre Quersumme durch 3 (9) teilbar ist. Endstellen: Eine Zahl ist durch 2 teilbar, wenn sie auf 0, 2, 4, 6, oder 8 endet. Eine Zahl ist durch 5 teilbar, wenn sie auf 0 oder 5 endet. Eine Zahl ist durch 10 teilbar, wenn sie auf 0 endet. Seite 4 von 16
5 3 Terme Ein Term ist ein Rechenausdruck, der aus Zahlen, Rechenzeichen, Klammern und gegebenenfalls aus Platzhaltern/Variablen besteht. Die zuletzt auszuführende Rechenart legt die Art des Terms fest. Bsp.: 1) 54 + (62 38) ist eine Summe 2) Gliederungsbaum: 3² 4 (2 + 5) Differenz Minuend Produkt Subtrahend Summe 1. Faktor 2. Faktor 1. Summand 2. Summand Potenz Basis Exponent 3 2 Seite 5 von 16
6 Zählprinzip: Bsp.: 1) Herr Scherbl bietet Brezen (B), Semmeln (S) und Hörnchen (H) an, sowie Milch (M) und ACE-Saft (A). Du hast also 3 2 = 6 Möglichkeiten, dir eine Brotzeit aus einem Gebäck und einem Getränk zusammenzustellen. B S H M A M A M A Baumdiagramm 2) Fakultät: Du willst das Mathe-, Musik-, Englisch- und Lateinbuch nebeneinander ins Regal stellen. Dafür hast du 4! = = 24 verschiedene Möglichkeiten der Anordnung. Seite 6 von 16
7 4 Ganze Zahlen Erweiterung durch die negativen Zahlen zur Zahlengeraden. a heißt Gegenzahl von a; Zahl und Gegenzahl haben vom Nullpunkt den gleichen Abstand. Die positiven und die negativen Zahlen bilden mit der Zahl 0 die Menge Z der ganzen Zahlen Koordinatensystem: Es besteht aus einer x-achse und einer y-achse. Ein Punkt P(x y) ist durch seine Koordinaten festgelegt. II. Quadrant I. Quadrant P(3 2) X III. Quadrant X R(-2-3) IV. Quadrant X Q(2-3) Seite 7 von 16
8 Addition und Subtraktion ganzer Zahlen (+5) (+8) = 5 8 = (8 5 ) = 3 ( 5) + ( 8) = 5 8 = (5 + 8) = 13 ( 5) ( 8) = = 8 5 = 3 Multiplikation und Division ganzer Zahlen ( 2) ( 4) = +8 ( 6) : ( 2) = 3 Minus mal Minus ist Plus (+ 3) ( 5) = 15 ( 8) : (+ 2) = 4 Plus mal Minus ist Minus Für alle x 0 gilt: 0 : x = 0 x : 0 ist nicht definiert (Durch 0 kann man nicht dividieren!!!) Betrag einer Zahl: Der Abstand einer Zahl a vom Nullpunkt der Zahlengeraden heißt Betrag von a: a ; -7 = 7; +2 = 2 Seite 8 von 16
9 5 Körper Körper sind räumliche Gebilde. (3 Dimensionen) Sie lassen sich anhand von Schrägbildern oder Netzen darstellen. Würfel 6 gleiche quadratische Seiten Quader Gegenüberliegende Rechtecke sind gleich. Prisma Gleiche eckige Grund- und Deckfläche. Pyramide Eckige Grundfläche und Spitze Zylinder Gleiche kreisförmige Grund- und Deckfläche Seite 9 von 16
10 Kegel Kreisförmige Grundfläche und Spitze Kugel Alle Punkte der Oberfläche sind vom Mittelpunkt gleich weit entfernt. 6 Geometrische Grundbegriffe Strecke [AB] ist die Menge aller Punkte zwischen A und B einschließlich A und B. Länge der Strecke AB ist die Entfernung von A nach B. Abstand eines Punktes P von einer Geraden g ist die Länge der senkrechten Verbindungsstrecke von P zu g: d(p;g) A B Halbgerade [AB Gerade AB A A B B Seite 10 von 16
11 zueinander senkrecht: Zeichnen der Lotgerade durch S zu CD: zueinander parallel: Zeichnen der Parallelen durch P zu [AB]: Rechts: Zeichnen der Parallelen zu g durch einen weit entfernten Punkt A (Parallelverschiebung) Seite 11 von 16
12 Ein Parallelogramm ist ein Viereck, bei dem gegenüberliegende Seiten parallel sind; es entsteht, wenn sich zwei Parallelenpaare kreuzen. Parallelogramm Rechteck (Parallelogramm mit vier rechten Winkeln) Quadrat (Rechteck mit vier gleich langen Seiten) Raute (Parallelogramm mit vier gleich langen Seiten) Kreis: Alle Punkte der Kreislinie haben vom Mittelpunkt die gleiche Entfernung (Radius r) k(m;r) M x Seite 12 von 16
13 Winkel Dreht man die Halbgerade g (Schenkel) um den Anfangspunkt S (Scheitel) gegen den Uhrzeigersinn (Linksdrehung) bis zur Halbgeraden h (Schenkel), so entsteht der Winkel zwischen g und h. B h S A g Bezeichnungen: (g, h) oder ASB oder mit gr. Buchstaben: α, β, γ, δ, ε, φ Winkelarten: Gradzahl Bezeichnung 0 < < 90 spitzer Winkel = 90 rechter Winkel 90 < < 180 stumpfer Winkel = 180 gestreckter Winkel 180 < < 360 überstumpfer Winkel = 360 Vollwinkel Seite 13 von 16
14 Achsensymmetrie Zueinander symmetrische Punkte bilden eine Strecke, die von der Symmetrieachse senkrecht halbiert wird. C C. A A B B Symmetrieachse Figuren, die man durch Falten (entlang der Symmetrieachse) aufeinander legen kann heißen achsensymmetrisch. Seite 14 von 16
15 7 Rechnen mit Größen Eine Größe besteht aus einer Maßzahl und einer Einheit. Längen: Umrechnungszahl ist 10. (Ausnahme 1km = 1000m) mm cm dm m km Massen: Umrechnungszahl ist immer mg g kg t Zeit: s min h Umrechnungszahl ist 60. Größen können auch in gemischten Einheiten (2kg30g) oder in Kommazahlen (3,15m oder auch 3:20,5h) angegeben werden. Rechenregeln: Es können nur Größen derselben Einheit addiert bzw. subtrahiert werden. 12cm + 3,2m = 12cm + 320cm = 332cm = 3,32m Der Quotient zweier gleichartiger Größen ergibt eine (An-)zahl. 15kg : 3kg = 5 Eine Größe wird mit/durch eine/r Zahl multipliziert/dividiert, indem man die Maßzahl mit/durch die/der Zahl multipliziert/dividiert und die Einheit beibehält. 3h20min 4 =200min 4 = 800min = 13h20min Seite 15 von 16
16 Maßstab 1:1000 bedeutet, dass Längen auf der Karte in Wirklichkeit 1000mal größer sind oder, dass Längen in Wirklichkeit auf einer Karte 1000mal kleiner zu sehen sind. Flächeneinheiten Flächen: Umrechnungszahl ist immer 100. mm 2 cm 2 dm 2 m 2 a ha km m 2 = 12 ha 34 a 56 m 2 1m 2 2cm 2 34 mm 2 = 10002,34 cm 2 Rechteck: Quadrat: U = 2 ( l + b ) U Q = 4 a A = l b A Q = a² Oberflächeninhalte Quader: O = 2 ( l b + l h + b h ) ) O = 6 s 2 Würfel: (bei Kantenlänge s) Seite 16 von 16
1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5
1 Zahlen 1.1 Zahlenmengen I N= { 1, 2, 3,...} Menge der natürlichen Zahlen I N 0 = { 0, 1, 2,...} Menge der natürlichen Zahlen mit Null Z = {...-3; -2; -1; 0; 1; 2; 3;...} Menge der ganzen Zahlen V 12
Natürliche Zahlen, besondere Zahlenmengen
Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }
M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4
fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl
M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,
1 Zahlen. 1.1 Zahlenmengen. 1.2 Das Dezimalsystem. 1.3 Runden. 1.4 Termarten
1 Zahlen 1.1 Zahlenmengen N = {1; 2; 3; } Menge der natürlichen Zahlen N 0 = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; 3; 2; 1; 0; 1; 2; 3; } Menge der ganzen Zahlen Die ganzen Zahlen
Die ganzen Zahlen. zwölf Billionen zweihundertvier Milliarden achtzig Millionen vierhunderteinundfünfzigtausendelf
Die ganzen Zahlen Große Zahlen lesen und schreiben (bis Billion) Stellentafel Die Stufenzahlen im Zehnersystem sind zwölf Billionen zweihundertvier Milliarden achtzig Millionen vierhunderteinundfünfzigtausendelf
Grundwissen. 5. Jahrgangsstufe. Mathematik
Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000
I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158
Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }
M 5.1. Natürliche Zahlen und Zahlenstrahl sfg
M 5.1. Natürliche Zahlen und Zahlenstrahl sfg Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2
I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T
I. Zahlen Zahlensysteme Unser Zahlensystem besteht aus den Ziffern 0 bis 9 (Dezimalsystem) und ist ein Stellenwertsystem; die Stelle einer Ziffer bestimmt ihren Wert in der Zahl. Das römische Zahlensystem
Natürliche Zahlen und. Zahlenstrahl
M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl
Natürliche Zahlen und. Zahlenstrahl
M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer
MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM
MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/16 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = {1; 2; 3; 4; } Natürliche Zahlen
M5 Die Teilbarkeitsregeln 1
M5 Die Teilbarkeitsregeln 1 Eine Zahl ist nur dann ohne Rest teilbar durch 2, wenn ihre Einerziffer 0, 2, 4, 6 oder 8 ist. durch 5, wenn ihre Einerziffer 0 oder 5 ist. durch 10, wenn ihre Einerziffer 0
Koordinatensystem. 5.1 Grundwissen Mathematik Zahlen und Operationen Klasse 5. Definitionen und Regeln
5.1 Grundwissen Mathematik Zahlen und Operationen Klasse 5 Koordinatensystem Beispiele Ein Koordinatensystem ermöglicht es uns, die Lage von Punkten in der Zeichenebene festzulegen. y-achse 3 Es besteht
Grundwissen 5. Klasse
Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)
Natürliche Zahlen und. Zahlenstrahl
M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer
M 5. Inhaltsverzeichnis Grundwissen M 5.1. Diagramme. Tabelle: (Beispiel: Klassensprecherwahl) Säulendiagramm: Balkendiagramm:
M 5 Inhaltsverzeichnis Grundwissen M 5.1 Diagramme M 5.2 Natürliche Zahlen M 5.3 Terme (Rechenausdrücke) M 5.4 Vorrangregeln M 5.5 Ganze Zahlen M 5.6 Addition und Subtraktion in Z M 5.7 Koordinatensystem
Grundwissen Seite 1 von 11 Klasse5
Grundwissen Seite 1 von 11 Klasse5 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen Beispiele: 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche
Grundwissen Mathematik 5
Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen
Marie Kilders. Grundwissen Klasse 5
Grundwissen Klasse 5 1 Inhaltsverzeichnis 1. Natürliche und ganze Zahlen... 3 1.1 Dezimalsystem (Zehnersystem)... 4 1.2 Rechnen mit natürlichen Zahlen... 5 1.3 Diagramme... 8 1.4 Primfaktorzerlegung und
GW Mathematik 5. Klasse
Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.
MTG Grundwissen Mathematik 5.Klasse
MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig
Natürliche Zahlen und. Zahlenstrahl
M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen fasst man zur Menge der natürlichen Zahlen zusammen: Nimmt man auch die hinzu, schreibt man: Die Zahl ist ein Element der Menge der natürlichen Zahlen
Ergänzende Informationen zum LehrplanPLUS. Grundlegende Inhalte Mathematik, Realschule, Jahrgangsstufe 5. Inhaltsverzeichnis
Inhaltsverzeichnis Wichtige Symbole Rechenarten Quadratzahlen... Rechenregeln und Rechengesetze in IN 0... 3 Primfaktorzerlegung, Teilbarkeitsregeln... 4 Größter gemeinsamer Teiler und kleinstes gemeinsames
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen
Mathematik 5. Klasse Diese Stoffübersicht ist in drei Hauptteile gegliedert: 1. Grundlagen der Algebra (Zahlenmengen, Rechenarten, Rechengesetze); 2. Geometrie; 3. Darstellung und Kombinatorik Quellen:
Grundwissen Mathematik Klasse 5 Lehrplan Plus
Grundwissen Mathematik Klasse 5 Lehrplan Plus Grundwissen M 5 Natürliche und ganze Zahlen Dezimalsystem: Die Stelle an der eine Ziffer steht, entscheidet über den Wert der Zahl (Stellenwertsystem). Die
Grundwissen zur 5. Klasse (G9) - Lösungen
Grundwissen zur 5. Klasse (G9) - Lösungen (Strukturiert nach dem Schulbuch Lambacher Schweizer 5 zum Lehrplan Plus) I. Natürliche und ganze Zahlen a) Veranschaulichung von Zahlen Du musst wissen, wie man
Basiswissen 5. Klasse
Basiswissen 5. Klasse 1. Daten Zur Darstellung von Daten werden oft Strichlisten, Figurendiagramme oder Säulen- und Strichdiagramme verwendet. Strichliste: Alter Strichliste Anzahl 5-10 Jahre 3 10-15 Jahre
Fragen und Aufgaben zum Grundwissen Mathematik
Natürliche Zahlen Kapitel I ZÄHLEN UND ORDNEN GROßE ZAHLEN UND ZEHNERPOTENZEN Acht Schwimmer bestreiten einen Wettkampf. Miriam gewinnt die Bronzemedaille. Franz wird Vorletzter. Welche Platzierung haben
Grundwissen zur 5. Klasse (G9)
Grundwissen zur 5. Klasse (G9) (Strukturiert nach dem Schulbuch Lambacher Schweizer 5 zum Lehrplan Plus) I. Natürliche und ganze Zahlen a) Veranschaulichung von Zahlen Du musst wissen, wie man Zahlen am
MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM
MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen
GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln
1.1 Zahlenmengen 1. ZAHLEN { } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen 1.2 Teiler und Vielfache Teiler: 4 32, also 4 ist Teiler von 32, d. h.
Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen
Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen 1. Gib mindestens drei Eigenschaften der natürlichen Zahlen an. Jede natürliche Zahl hat einen Nachfolger und jede natürliche Zahl außer 1 hat
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehhren zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehhren zur Menge der natürlichen Zahlen? Schreibe ist ein Element der Menge der natürlichen Zahlen in Symbolschreibweise. Zeichne die Zahlen, und
Zahlen. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK Zahlen Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S -
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
Grundwissen JS 5 Algebra
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009
Basiswissen Klasse 5, Algebra (G8)
Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:
Terme, Gleichungen und Zahlenmengen
Die natürlichen Zahlen Die natürlichen Zahlen werden mit dem Symbol N dargestellt. N = {1 ;2 ;3 ;4 ;5; 6;...} Zur einfachen Erfassung von Daten kann man eine Strichliste anfertigen. Beispiel: Größen der
Aufgaben zum Basiswissen 5. Klasse
Aufgaben zum Basiswissen 5. Klasse 1. Daten 1. Aufgabe: Familie Tierlieb besitzt 4 Katzen, 2 Hunde, 5 Kaninchen, 2 Papageien, 4 Mäuse und ein Pferd. Zeichne hierfür ein Kreisdiagramm. 2. Aufgabe: Zeichne
PDF created with pdffactory Pro trial version
1. Berechne: a) - 311 185 b) - 176 + 213 c) 234 865 d) 195 (- 523) e) (- 324) (- 267) f) 165 + (- 316) g) (-23) 18 h) (- 17) (- 54) i) 35 (- 78) j) 314 1234 k) (- 8) 4 l) (- 11) 3 m) (- 2) 9 n) (- 2) 10
Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen
Seite 1 von 6 Standardaufaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Mene IN der natürlichen Zahlen 5 ist eine natürliche Zahl: der folenden Mene in jeweils einer
Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis
Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken
Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen
Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.
Stoffverteilungsplan Mathematik Klasse 5
Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen
A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; }
Dietrich-Bonhoeffer-Gymnasium Oberasbach Standardaufaben. Fasse alle Primzahlen und alle Quadratzahlen der folenden Mene in jeweils einer eienen Mene zusammen: {; 79; 56; ; ; 96; 7; 65; 8; 95; 97; }. Schreibe
Lösungen zu den Aufgaben 5. Klasse
Lösungen zu den Aufgaben 5. Klasse 1. Daten 18 Tiere 360 : 18 = 20 pro Tier (1 Tier 20 ) Kaninchen Katzen Mäuse 2 Papageien Hunde Pferd 1 5 2 4 4 München 20 C 15 C 10 C 5 C 0 C Januar Februar März April
5 Grundwissen der 5. Klasse
Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 5. Klasse 5 Grundwissen der 5. Klasse 5.1 Natürliche Zahlen und ganze Zahlen Definition: 1. Alle natürlichen Zahlen 1, 2, 3, 4,... fasst man zur Zahlenmenge
Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn
Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,
Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6
Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits
I. Natürliche Zahlen (Seite 1)
I. Natürliche Zahlen (Seite 1) Natürliche Zahlen und der Zahlenstrahl: Man bezeichnet die Zahlen 1, 2, 3, als natürliche Zahlen. Jede natürliche Zahl hat einen Nachfolger und jede (außer 1) einen Vorgänger.
Grundlagen Mathematik 7. Jahrgangsstufe
ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und
Aufgaben mit Lösungen
Aufgaben mit Lösungen Dezimalsystem: 1. Schreibe die angegebenen Zahlen wie in jeder Teilaufgabe verlangt. (eigen) a) 734 000 005 709 001 (in Worten) siebenhundertvierunddreißig Billionen fünf Millionen
Geometrie. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK Geometrie Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S
D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
Marie Kilders. Grundwissen Klasse 5. Aufgaben
Grundwissen Klasse 5 Aufgaben 1 Inhaltsverzeichnis 1. Natürliche und ganze Zahlen... 3 1.1 Dezimalsystem... 3 1.2 Rechnen mit natürlichen Zahlen... 3 1.3 Diagramme... 3 1.4 Primfaktorzerlegung und Potenzen...
Begriffe zur Gliederung von Termen, Potenzen 5
Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend
Grundwissen Klasse 6
Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion
MATHEMATIK GRUNDWISSEN DER 5.JAHRGANGSSTUFE
Inhalte, Wien und Begriffe Anwendungen, Beipiele und Erklärungen 1. Natürliche und ganze Zahlen Menge der natürlichen Zahlen: N= {1; 2; 3; 4; } Menge der nat. Zahlen mit 0 : N 0= {0; 1; 2; 3; 4; } 1 N
c) cm = mm i) 2 h = 120 min
Hier findet ihr zu den Aufgaben (alle Themen der 5. Klasse) die Lösungen. Wenn ihr Fehler findet, bitte informiert mich (z.b. mit einer Email an [email protected]), damit ich die Fehler beseitigen kann.
Grundwissen 5 Lösungen
Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile
Formelsammlung. Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. erstellt von Manfred Präsoll
Formelsammlung erstellt von Manfred Präsoll Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. 01 1 Flächen Parallelogramm Quadrat u = 4 a A = a² u = (a+b) oder u = a
Zahlenmengen Menge der natürlichen Zahlen mit Null
Zahlenmenen N = {1,2,3,...} Mene der natürlichen Zahlen N o = {0,1,2,3,...} Mene der natürlichen Zahlen mit Null Z = {..., -3, -2, -1, 0, 1, 2, 3,...} Mene der anzen Zahlen Vielfachmenen eispiel: V(3)
Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem
Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT
Mathe Leuchtturm Übungsleuchtturm
1 Mathe Leuchtturm-Übung-1.Klasse-Nr.008 C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 008 =Übungskapitel Ökotraktor Lösungen findest du ab Seite 3 1.) Nenne einen geometrischen Körper, der keine windschiefen
Grundwissen Seite 1 von 17 Klasse6
Grundwissen Seite 1 von 17 Klasse6 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche Zahl kurz:
Grundwissen. 6. Jahrgangsstufe. Mathematik
Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren
Grundwissen. 6. Jahrgangsstufe. Mathematik
Grundwissen 6. Jahrgangsstufe Mathematik Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite. Bruchteil 3 4 von 00kg =75 kg NR: 00kg :4 3=25 kg 3=75 kg 3 4 heißt Anteil ; 75kg heißt Bruchteil.2 Erweitern
Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26
E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander
Schulinternes Fachcurriculum im Fach Mathematik Klasse 5
Durch den Einsatz des gesamten Spektrums der neuen Aufgabenformate werden stets möglichst viele der geforderten Kompetenzbereiche K1 bis 1 der Rahmenbedingungen abgedeckt. Diesen sechs Kompetenzbereichen
Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen
1 Längen (km m dm cm mm) umrechnen Längen (mm - µm nm) Zeitspannen (d h min s) umrechnen Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen Rauminhalte (m³ dm³ cm³ mm³) umrechnen Gewichte (t kg g mg) umrechnen
Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und
Zeitraum Rahmenplan Klasse 5 und 6 Schnittpunkt 5 Klassenarbeit Darstellen und Ordnen natürlicher Zahlen, große Zahlen Runden, Schätzen und Überschlagen Kapitel 1 Natürliche Zahlen Unsere neue Klasse 1
Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth
Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Fülle die Tabelle aus Vorgänger 898989 Zahl 115 1519900 Nachfolger 9000 Schreibe ohne Klammern und berechne dann: a) 43 77 = b) 64 35 = Einen Linienzug erhält
Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.
Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und
Zeitraum Kompetenzen Inhalte Schnittpunkt 5 Orientierungsstufe NATÜRLICHE ZAHLEN DARSTELLEN (L1) Zahlenfolgen analysieren und fortsetzen (LE 1, 2)
Stoffverteilungsplan Schnittpunkt Orientierungsstufe Rheinland-Pfalz Band 5 Schule: 978-3-12-742851-3 Lehrer: K2: Geeignete heuristische Hilfsmittel, Strategien und Prinzipien zum Problemlösen auswählen
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mein Übungsbuch Mathematik - Realschule
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mein Übungsbuch Mathematik - Realschule Das komplette Material finden Sie hier: School-Scout.de Inhalt So übst du mit diesem Buch
Leitidee Zahl Variable Operation [3.1.1.]
Fach: Mathematik Fachleitung: Lehmann Klasse: R Wochenstunden R: 4 Stand: Juni 2016 Insgesamt: 144 Wochenstunden (108 K + 36 S) : - Eckige Klammern [ ] verweisen auf die entsprechende Kapitel und Absätze
OvTG Gauting, Grundwissen Mathematik 7. Klasse
1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Natürliche Zahlen Natürliche Zahlen Dezimales Stellenwertsystem Zahlenstrahl Grundrechenarten
Mathematik- Curriculum Klasse 5 Kursiv gedruckte Fachbegriffe sind im Unterricht verbindlich und müssen von den Schülern verstanden und angewendet werden Schuleigenes Curriculum: sicheres Rechnen, intensives
die ganze Zahl die rationale Zahl
die ganze Zahl Beispiele für ganze Zahlen:..., 3, 2, 1, 0, 1, 2, 3,... Ganze Zahlen sind die natürlichen Zahlen und die negativen Zahlen (Minuszahlen). Z = {..., 3, 2, 1, 0, 1, 2, 3, } die rationale Zahl
I. Symmetrie. II. Grundkonstruktionen
I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander
Mathematik Klasse 5/6 Lehrbuch: LOGO 5 und LOGO 6, C.C. Buchner Verlag, 1. Auflage, 2010
Im Mathematik-Bereich von Serlo findest du zusätzlich zu den nachfolgenden Links 930 Artikel, 20 Online-Kurse, 105 Videos und 5.000 mit Musterlösungen zu Schulmathematik komplett kostenlos: https://de.serlo.org/mathe
Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen
Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen Name: Klasse: Ich kann Übungen Kapitel 1 Das kann Das muss erledigt 1 Strichlisten und Diagramme (Seiten 8 10) 1 Strichlisten erstellen Nr.1, 2 Nr.
M5 1: Natürliche und ganze Zahlen Addition und Subtraktion (ca. 30 Std.)
Fachlehrpläne Gymnasium: Mathematik 5 gültig ab Schuljahr 2017/18 M5 1: Natürliche und ganze Zahlen Addition und Subtraktion (ca. 30 Std.) M5 1.1: Natürliche Zahlen und ihre Erweiterung zu den ganzen Zahlen
Stochastik. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK Stochastik Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E
Merkstoff Mathematik: 5. Schulstufe, NMS Schörfling
Merkstoff Mathematik: 5. Schulstufe Seite 2 Seite 3 Seite 4 Seite 5 Seite 6 Seite 7 Seite 8 Seite 9 Seite 0 Seite Seite 2 Seite 3 Seite 4 Zählen und Vergleichen von natürlichen Zahlen Darstellen von natürlichen
1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I
. Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl
Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt.
Inhaltsverzeichnis Einführung 2 Aufgaben Lösungen A1 Zahlverständnis (Natürliche Zahlen)... 3 27 A1* Zahlverständnis (Natürliche Zahlen)... 4 28 A2 Rechnen (Natürliche Zahlen)... 5 29 A2* Rechnen (Natürliche
Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...
I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen
Grundwissen 7. Klasse
Grundwissen 7. Klasse I. Symmetrie 1. Achsensymmetrie Die Punkte P und P sind achsensymmetrisch bzgl. der Symmetrieachse a. Sind Figuren zueinander achsensymmetrisch, so kannst du folgende Eigenschaften
