Evolution als Optimierungsprozess

Größe: px
Ab Seite anzeigen:

Download "Evolution als Optimierungsprozess"

Transkript

1 Evolution als Optimierungsprozess Proseminar Evolutionsstrategien Sommersemester 2002 Mirko Wölflick Quelle: Schöneburg, E.; Heinzmann, F.; Feddersen, S.: Genetische Algorithmen und Evolutionsstrategien. Bonn, Paris: Addison-Wesley (Kapitel 2, S )

2 Gliederung 1. Evolution als Optimierungsprozess 1.1 Prinzipien der Evolution 1.2 Die Evolution - eine kombinierte Suchstrategie 1.3 Finden des globalen Optimums 2. Konventionelle Optimierungsverfahren 2.1 Deterministische Verfahren Gauß-Seidel-Verfahren Gradientenverfahren Simplexverfahren 2.2 Nicht-deterministische Verfahren Monte-Carlo-Verfahren 3. Aspekte der modernen Evolutionstheorien 3.1 Evolution als Rückkopplungsprozess 3.2 Chaos, Fraktale und Selbstorganisation Chaostheorie Prinzip der Fraktale Simuliertes Chaos Anwendung auf Differenzierungsprozesse von biologischen Zellen Selbstorganisation in NK-Zufallsnetzwerken 3.3 Gradualismus versus Saltationismus Paradoxon bei Räumen hoher Dimension 3.4 Kommunikation, Kultur und Kooperation 4. Zusammenfassung, Ausblick

3 1. Evolution als Optimierungsprozess Die Evolution ist ein Optimierungsverfahren, welches durch Manipulation der Erbinformation eine Anpassung von Organismen an die Bedingungen der sie umgebenden Umwelt erreicht. Dabei ist die Evolution mit einem Suchprozess vergleichbar, der den gigantischen Raum der genetischen Informationen, nach der besten Genkombination durchsucht, die ein Individuum dazu befähigt im Kampf ums Dasein zu bestehen. 1.1 Prinzipien der Evolution Die Evolution wendet bei ihrer Suche drei Grundprinzipien an. Diese sind die Mutation, die Rekombination und die Selektion. Alle Prinzipien unterscheiden sich hinsichtlich ihrer Funktion und Wichtigkeit für den Evolutionsprozess. Die Mutation ist ein ungerichteter Suchprozess. Sie erzeugt Varianten und Alternativen. Dies ist besonders wichtig, um lokale Optima zu überwinden. Die Wahrscheinlichkeit einer Mutation ist jedoch sehr gering. Sehr viel häufiger finden Rekombinationen statt. Rekombination (engl. crossing over) genannt, bezeichnet den Austausch von langen Nucleotidketten zwischen den homologen Chromosomen der Eltern. Der Sinn dieses Verfahrens besteht darin, bereits bewährte Genkombinationen neu zu mischen, um eine Verbesserung in Richtung des Optimums zu erreichen. Das wohl wichtigste Prinzip der Evolution ist die Selektion. Sie bestimmt im Wesentlichen die Richtung, in der sich die Evolution bewegt. Die Selektion wäre ein deterministischer Vorgang. Jedoch machen Störungen, z.b. zufällige Unglücke einzelner Individuen, oder Umweltkatastrophen, die den Lebensraum ganzer Populationen verändern, sowie Rückkopplungseffekte zwischen Lebewesen und Umwelt, aus der Selektion einen nicht-deterministischen Vorgang. 1.2 Die Evolution eine kombinierte Suchstrategie Kombinierte Suchstrategie heißt, dass es sich um eine gleichzeitige Tiefen- und Breitensuche handelt (auch serielle und parallele Suche genannt). Das Ziel dieser Kombination ist die Minimierung der Evolutionszeit. In der Evolution bedeutet Tiefensuche, die Suche über Generationen hinweg. Dagegen bedeutet Breitensuche, die Suche über eine Anzahl gleichzeitig lebender Individuen. Um eine möglichst schnelle Anpassung an sich verändernde Umweltbedingungen zu erreichen, müssen somit die Generationsfolgen (Reproduktionszeit) kurz und die Individuenanzahl (Reproduktionsquote) hoch gehalten werden. In der Realität ist jedoch das Verhältnis von Reproduktionszeit zu Reproduktionsquote von Art zu Art unterschiedlich. Besondere Wichtigkeit fällt der parallelen Suche zu. Sie erhöht auf der einen Seite die Wahrscheinlichkeit optimale Punkte des Suchraumes zu erreichen und sie verringert auf der anderen Seite die Wahrscheinlichkeit suboptimale Pfade zu verfolgen. 1.3 Finden des globalen Optimums Das wichtigste Ziel der Evolutionsstrategen ist ein schnelles und systematisches Finden der optimalen Parameterwerte für die Komponenten eines Vektors, der einen Punkt im Suchraum markiert. Um Aussagen über die Qualität einer Kombination aus Parametern treffen zu können, benötigt man eine Zielfunktion, die jedem Parametervektor einen Qualitätswert zuweist. Diese nennt man Qualitätsfunktion. Sie besitzt lokale und globale Maxima und Minima.

4 Dabei ist es von der jeweiligen Problemstellung abhängig, ob man das Maximum oder das Minimum sucht. Nun könnte man, um das globale Optimum zu finden, alle möglichen Vektoren bewerten und miteinander vergleichen. Dies würde jedoch sehr viel Zeit in Anspruch nehmen. Unter Umständen würde man länger rechnen müssen als das Universum existiert. Also benötigt man ein Verfahren, um diese Zeit zu verkürzen. 2. Konventionelle Optimierungsverfahren Die bekannten klassischen Optimierungsverfahren teilen sich auf in deterministische und nicht-deterministische Verfahren. Typische deterministische Verfahren sind: das Gauß- Seidel-Verfahren, das Gradientenverfahren und das Simplexverfahren. Diese Verfahren werden auch als Hill-Climbing bezeichnet. Alle weiteren Betrachtungen beziehen sich auf folgende Vereinbarung: Gesucht ist der Parametervektor (p 1, p 2,, p n ) für den die Qualitätsfunktion Q(p 1, p 2,, p n ) ihr Maximum annimmt. 2.1 Deterministische Verfahren Gauß-Seidel-Verfahren Bei dieser Methode wird zunächst der erste Parameter p 1 in einer Richtung verändert. Wenn die Qualitätsfunktion Q größer wird, dann wird weiter in derselben Richtung verändert bis Q wieder kleiner wird. Dann verändert man p 2 in eine Richtung. Wenn Q kleiner wird, dann verändert man in entgegengesetzter Richtung bis Q wieder kippt. Dies führt man für alle Parameter durch. Bei p n angekommen wiederholt man die gesamte Prozedur bis Q einen zufriedenstellenden Wert erreicht hat oder auf diese Weise keine Verbesserung mehr möglich ist Gradientenverfahren Bei dieser Methode verändert man die Parameter je nach dem, welchen Anstieg die Qualitätsfunktion in einem Punkt hat. Dazu muss man zunächst die Ableitung der Qualitätsfunktion bestimmen. Dann verändert man die Parameter in Richtung des steilsten Gradienten und proportional zum Anstieg. Das heißt, dass bei großem Anstieg die Parameter stark, und bei kleinem Anstieg die Parameter wenig verändert werden. Ein Nachteil dieses Verfahrens ist, dass es bei lokalen Optima hängen bleibt Simplexverfahren Beim Simplexverfahren handelt es sich um ein komplett anderes Prinzip. Es beginnt mit mehreren Startpunkten. Und zwar mit n+1 Startpunkten im n-dimensionalen Raum. Dabei haben alle Punkte den gleichen Abstand zueinander. Bildlich gesprochen bedeutet dies im 2- dimensionalen Raum ein gleichseitiges Dreieck, im 3-dimensionalen Raum ein Tetraeder und im n-dimensionalen Raum ein reguläres Polyeder ein Simplex. Man verfährt bei dieser Strategie wie folgt: Zuerst bewertet man alle Eckpunkte. Dann streicht man den Schlechtesten und ersetzt ihn durch seine Spiegelung am Mittelpunkt des

5 verbleibenden n-ecks. Sollte der neue Punkt auch wieder der Schlechteste sein, so würde der Simplex sich oszillierend zwischen den beiden Zuständen bewegen. Deshalb streicht man in diesem Fall nicht den Schlechtesten Eckpunkt, sondern den Zweitschlechtesten. Nach einigen Iterationen rotiert der Polyeder dann um den Punkt der höchsten Qualität. An diesem Zustand angekommen, lässt sich eine Qualitätsverbesserung nur noch durch eine Verkürzung der Kantenlänge erreichen. Es existieren noch weitere deterministische Verfahren, wie z. B. die Newton-Strategien und die Complex-Strategie von Box. Die Nachteile dieser Verfahren sind: Zum einen, die Möglichkeit der Unauffindbarkeit des Optimum, welche aus der Systematik der Suchvorschrift resultiert, und zum anderen die Unklarheit über die zu verwendende Suchmethode, wenn die Struktur des Suchraums unbekannt ist. 2.2 Nicht-deterministische Verfahren Bei diesen Verfahren verzichtet man völlig auf eine komplizierte Vorschrift und macht stattdessen systematisch vom Zufall Gebrauch. Der Vorteil der sich hieraus ergibt, liegt in der geringeren Gefahr das Optimum zu verpassen Monte-Carlo-Verfahren Anhand dieser Methode kann man zeigen, dass es möglich ist, durch den systematischen Gebrauch des Zufalls, zu recht brauchbaren Ergebnissen zu gelangen. Man kann dieses Verfahren verwenden, um zum Beispiel den Flächeninhalt einer kompliziert zu berechnenden Fläche zu ermitteln. Man beginnt, indem man um die zu berechnende Fläche ein Rechteck zeichnet. Als nächstes erzeugt man innerhalb des Rechtecks zufällige Punkte die jedoch alle die selbe Wahrscheinlichkeit besitzen müssen. Einige Punkte werden dann innerhalb der zu berechnenden Fläche liegen andere nicht. Der Flächeninhalt, der komplizierten Fläche errechnet sich dann aus der Anzahl der Punkte innerhalb der Fläche mal der Anzahl der Punkte, die nur im Rechteck liegen, geteilt durch die gesamte Anzahl der erzeugten Punkte. Das Ergebnis wird dann um so genauer, je mehr Punkte man erzeugt. Da die nicht-deterministischen Verfahren rein zufallsbasiert sind, kann die Suche nach dem Optimum, jedoch sehr lang dauern. Nebenbei sei gesagt, dass die Evolution nicht nach diesem simplen Prinzip vorgeht. Sie sucht sehr viel zielgerichteter. 3. Aspekte moderner Evolutionstheorien Seit Darwin hat sich unser Weltbild hinsichtlich der Evolution stark verändert. Dazu haben neue Erkenntnisse und Sichtweisen beigetragen. 3.1 Evolution als Rückkopplungsprozess Ein Aspekt, den Darwin noch nicht erkannt hatte, ist, dass die Evolution ein von Rückkopplungen beeinflusster Prozess ist. Das heißt, dass die Lebewesen sich nicht nur an ihre Umwelt anpassen, sondern sie auch verändern. Und das schon allein durch ihre bloße Existenz. Der

6 Rückkopplungseffekt besteht dann darin, dass sich die Lebewesen erneut an die veränderte Umwelt anpassen müssen. Der Einfluss der Lebewesen ist von Art zu Art unterschiedlich. Außerdem unterscheidet man direkten und indirekten Einfluss. Das Rückkopplungsprinzip ist ein wichtiges Element der folgenden Theorien. 3.2 Chaos, Fraktale und Selbstorganisation Chaostheorie Die Chaostheorie untersucht das Verhalten komplexer rückgekoppelter Systeme. Zum Beispiel das Zusammenspiel der Zellen eines Individuums oder die Entwicklung von Organen. Die Chaostheorie ist eine relativ junge Theorie sie existiert erst seit einigen Jahrzehnten. Unter Chaos versteht man den unvorhersagbaren spontanen Wechsel zwischen Ordnung und Unordnung. Man unterscheidet nicht-deterministisches Chaos und deterministisches Chaos. Das Merkmal des nicht-deterministischen Chaos ist, dass sein unvorhersehbarer Zustandswechsel allein von Zufallsfaktoren abhängt. Im Gegensatz dazu entsteht die Unvorhersehbarkeit beim deterministischen Chaos nicht durch den Gebrauch des Zufalls sondern allein durch die Eigendynamik, die solche Systeme entwickeln. Man spricht von einem chaotischen System, wenn eine geringfügige Änderung der Randbedingung ein gravierend anderes Verhalten zur Folge hat. Die Unvorhersehbarkeit natürlicher Systeme resultiert zum einen aus der Fülle an beeinflussenden Faktoren, zum anderen aus der strukturbestimmten Nichtmessbarkeit bestimmter Elementarzustände (vgl. Heisenberg sche Unschärferelation): Faktoren, die unter der Messbarkeitsschwelle liegen. Und nicht zuletzt machen auch noch generelle Messungenauigkeiten eine genaue Vorhersage unmöglich. Das interessante an chaotischen Systemen ist, das sie in sich die Möglichkeit des Anti-Chaos bergen. Da wo vorher Unordnung war, kann plötzliche Ordnung entstehen. Dies kann verwendet werden um ein Modell zur Entstehung des Lebens zu entwickeln Prinzip der Fraktale Es ist Benoit Mandelbrot zu verdanken, dass man heute die Unvollkommenheit der Natur (platonisches Weltbild) nicht mehr als einen Makel betrachtet, sondern als ein Grundprinzip der belebten und unbelebten Materie, mit dem Zweck, eine große Formenvielfalt hervorzubringen. Dies hat er in seinem Buch Die Fraktale Geometrie der Natur nachgewiesen. Die wichtigste Eigenschaft der Fraktale ist ihre Selbstähnlichkeit (man spricht hier von Skaleninvarianz), das heißt wenn man in eine fraktale Struktur (einen fraktalen Graphen) hineinoder herauszoomt, so sieht man immer wieder dieselben, sich wiederholenden Muster. Weitere Eigenschaften sind der Wechsel zwischen Regularität und Irregularität sowie ihre spezielle, gebrochene (nicht ganzzahlige!) Dimension. In der Evolution findet man Fraktale bei der Vererbung von bestimmten phänotypischen Merkmalen wieder. Der Fingerabdruck oder das Muster des Leopardenfells sind Beispiele für solche Merkmale. Bei der Vererbung dieser Merkmale werden anstelle komplexer Baupläne fraktale Erzeugungsfunktionen weitergegeben. Dies ist vorteilhaft, weil dadurch die Erbinformation sehr viel kompakter dargestellt werden kann und weil schon kleine Mutationen große phänotypische Veränderungen hervorbringen können.

7 3.2.3 Simuliertes Chaos Stuart Kauffman untersuchte das Problem, wie durch das Zusammenspiel der Gene der Phänotyp eines Lebewesens entsteht. Er entwickelte dazu ein Modell zur Simulation der Genaktivität. Bei dem Modell handelt es sich um Boole sche NK-Zufallsnetzwerke, in denen Gene durch logische Funktionen (UND, ODER, XOR,...) dargestellt werden. Diese werden miteinander verschaltet und zwar so, dass der Ausgang eines Gens mit dem Eingang eines anderen Gens verbunden ist. Der Ausgang eines Gens stellt dessen Zustand (aktiv oder nicht) dar. Die Anzahl der Elemente in einem solchen Netzwerk wird mit N angegeben und die Anzahl der Eingänge pro Element wird mit K angegeben. Daher die Bezeichnung NK-Zufallsnetzwerke. Bei der Simulation wird dann wie folgt vorgegangen: Zuerst initialisiert man ein solches Netzwerk, das heißt: aus allen möglichen Kombinationen, die Elemente miteinander zu verschalten, greift man sich eine heraus und weist jedem Element einen Zustand (aktiv oder inaktiv) zu. Dann startet man das Netzwerk und schaut sich an, wie sich das Netzwerk verhält. Das Netzwerk durchläuft nacheinander viele Zustände. Der Zustand des gesamten Netzwerkes lässt sich als Aktivitätsvektor der einzelnen Elemente darstellen. Bei einem Beispielnetzwerk aus 200 Elementen ergibt dies eine Anzahl von möglichen Zuständen. Das Interessante hierbei ist, dass nicht alle möglichen Zustände durchlaufen werden. Es werden Zustandsketten durchlaufen, deren Anfangs- und Endvektoren gleich sind. Diese Ketten nennt man dann Zyklus. Befindet sich einmal ein Netzwerk in einem solchen Zyklus, so kann es ihn nicht mehr verlassen. Dies resultiert aus dem deterministischen Charakter dieser Systeme. Wenn man dann jedoch das Netzwerk mit nur leicht verändertem Startvektor startet, zeigt sich das chaotische Verhalten, denn es werden dann komplett andere Zustandsketten durchlaufen. Das Interessante hierbei jedoch ist, dass oftmals viele dieser verschiedenen Zustandsketten in ein und demselben Zyklus enden. Man nennt einen solchen Zyklus, in den viele Zustandsketten hineinmünden, einen Attraktor. Auf Grund der hohen Anzahl der möglichen Aktivitätsvektoren könnte man meinen, dass die Länge von Zyklen sehr groß sein sollte. Sie ist jedoch tatsächlich nur ca. N/e. Das heißt bei N = 200 sind das ca. 74 Zyklen. Die Gesamtheit der Aktivitätsvektoren, die in einen Attraktor münden, nennt man den Einzugsbereich des Attraktors. Beispiele für Attraktoren sind allgemein Krater in einer hügeligen Landschaft oder spezielle Fraktale (z.b. der Henon-Attraktor) Anwendung auf Differenzierungsprozesse von biologischen Zellen In der Natur ist die Rückkopplung der Gene nicht so stark, wie bei Netzwerken mit K=N-1. Deshalb beschränkt man sich bei folgender Betrachtung auf Netzwerke mit K=2. Die Zykluslänge, sowie die Anzahl der Zyklen lassen sich bei beliebigem N leicht abschätzen. Sie sind gleich groß und betragen N. Durch Gen-Regulation wird die Differenzierung der Zellen eines Organismus gesteuert. Man kann nun die verschiedenen Zelltypen mit Attraktoren für die Gen-Regulation vergleichen. Nimmt man als Beispiel das Genom des Menschen, dass aus ca Genen besteht, so ergibt sich eine ungefähre Zykluslänge von 370. Daraus lässt sich dann die durchschnittliche Länge eines Zellzyklus berechnen. Es ist bekannt, dass ein Gen ca. eine bis zehn Minuten benötigt um aktiv zu werden. Die Länge eines Zellzyklus sollte dann zwischen min und min, also zwischen 6 und 60 Stunden liegen. Dies deckt sich mit der Realität! Ebenso deckt sich die Anzahl der möglichen Zyklen (370) mit der Anzahl der möglichen Zelltypen (tatsächlich ca. 260). Bei Berücksichtigung aller möglichen Genomzustände ( ) ist die Abweichung sicherlich vertretbar.

8 3.2.5 Selbstorganisation in NK-Zufallsnetzwerken Interessante Ergebnisse wurden bei der Simulation von NK-Zufallsnetzwerken erzielt. Das Forscherteam um Kauffman fand heraus, dass sich bestimmte Netzwerke chaotischer verhalten als andere. Chaotischeres Verhalten bedeutet, dass diese Netzwerke eher zu Unordnung neigen. Unordnung heißt, es werden lange Zyklusketten durchlaufen. Und ein Netzwerk, dass zu Ordnung neigt durchläuft dementsprechend kurze Zyklusketten. Der Versuch, den die Forscher machten, gestaltete sich wie folgt. Alle Elemente eines Netzwerkes werden während der Simulation eingefärbt. Elemente, die selten ihren Zustand wechseln, bekommen eine rote Farbe und Elemente, die häufig ihren Zustand wechseln, bekommen eine blaue Farbe. Als Konsequenz verhalten sich überwiegend blaue Netzwerke chaotischer als rote. Die Ordnung der Netzwerke nimmt zu, je größer das Verhältnis aus roten zu blauen Elementen ist. Außerdem nimmt die Ordnung zu, je kleiner man die Rückkopplung wählt (K 2). Die Ordnung wird ebenfalls erhöht, wenn man Elemente verwendet, die nur selten ihren Zustand wechseln (ODER-Funktion). Die Bedeutung dieser Ergebnisse für die Evolutionstheorie ist, dass diese NK-Zufallsnetzwerke, das Genom höherer Lebewesen recht gut beschreiben. Deshalb lassen sich aus dem Verhalten dieser Netzwerke Vorhersagen über die spontane Bildung von Ordnung in Gen- Regulationssystemen treffen. Außerdem kann man abschätzen, welche Auswirkungen Mutationen auf die Gen-Regulation haben. Dies konnte wiederum durch Experimente belegt werden. Bei der induzierten Mutation eines Gens (von 5000) bei der Taufliege Drosophila, folgte eine Kaskade von 150 Veränderungen der Genaktivitäten. Die Simulation mittels NK-Zufallsnetzwerken (N = 5000, K = 2 und ODER-Elemente) sagte einen Wert von 160 voraus. 3.3 Gradualismus versus Saltationismus Der Gradualismus ist eine Theorie, die davon ausgeht, dass die Evolution der Arten durch geringfügige, kontinuierliche Veränderung vonstatten geht. Diese Ansicht wurde besonders von Darwin und Leibniz entwickelt und vertreten. Die Befürworter des Saltationismus hingegen, vertreten die Ansicht, dass die Evolution der Arten durch größere, qualitative Sprünge fortschreitet. Ein wichtiges Argument für den Saltationismus ist die Tatsache, dass selten Fossilien gefunden werden, die Bindeglieder zwischen zwei Arten sind. Ein weiteres Argument gegen den Gradualismus liefert die moderne Genetik. Sie besagt, dass die Entwicklung neuer Organe eine unvorstellbar große Anzahl an Mutationen benötigt und dass dies nicht in einer Folge vieler kleiner Veränderungen möglich ist. Allerdings sprechen auch Argumente gegen Makromutationen. Denn die Wahrscheinlichkeit, dass sich durch Makromutationen neue Organe bilden, ist sehr gering. Die meisten dieser Mutationen führen nämlich zum Verlust der Überlebensfähigkeit. Trotz der Argumente für den Saltationismus ist der Gradualismus dank dem Modell von Ingo Rechenberg und Manfred Eigen theoretisch besser fundiert. Sie haben ein Modell entwickelt, den Rechenberg schen Gradientenpfad, der eine geeignete Struktur für den Suchraum vorgibt. Diese Struktur ermöglicht nun, durch eine kurze Folge von Mutationen, jede möglich Genkombination im Suchraum zu erreichen. Die Grundlage dieses Modells ist die Basensequenz. Somit besitzt der Suchraum die Dimension n mit n gleich Anzahl der Basenpaare. Ein jeder Punkt im Suchraum repräsentiert als Vektor eine mögliche Basensequenz. Man nennt diesen Raum daher auch Sequenzraum. Wird nun eine Base einer solchen Basensequenz durch Mutation verändert, so entspricht die Änderung gerade einem Schritt im Sequenzraum von einem Punkt zum nächsten Punkt.

9 Durch die Redundanz des genetischen Codes (jede Aminosäure wird durch verschiedene Codewörter codiert), haben geringe Mutationen auch kaum Auswirkungen Paradoxon bei Räumen hoher Dimension: Bei Räumen hoher Dimension ist der Abstand zwischen zwei zufällig gewählten Punkten nahezu konstant. Dies kann man leicht am Beispiel eines Wanderers, der einen Ausweg aus einem Gebirge sucht und dabei keine Berge überqueren darf, zeigen. Befindet sich der Wanderer in einem Gebirge des zweidimensionalen Raumes, so ist es für ihn unmöglich dieses zu verlassen. Befindet er sich in einem Gebirge des dreidimensionalen Raumes, so ist es schon recht wahrscheinlich, dass es in irgend einer Richtung bergab geht. Bei Räumen höherer Dimension wird es immer wahrscheinlicher einen Ausweg zu finden. Bis es dann bei Räumen extrem hoher Dimension sogar keine Umwege und Sackgassen mehr gibt. Für die Evolution bedeutet dies, dass sie, bei ihrer Suche, zu keiner früheren Position mehr zurückkehren muss. Und weiterhin bedeutet es, dass jeder Punkt des Sequenzraumes durch eine kurze Folge von Mutationen erreichbar ist. Doch wie lang ist nun eine solche Mutationskette? Um diese Frage zu beantworten, arbeitet man zunächst mit einem vereinfachten Raum. Man betrachtet einen binären Raum mit n Dimensionen. D.h. jeder Punkt dieses Raumes ergibt sich aus einem binären Vektor der Länge n. Man wählt sich dann einen Startpunkt s = (x 1, x 2,..., x n ) und einen Zielpunkt z = (y 1, y 2,..., y n ) wobei x i, y i {0,1}. Der Abstand zwischen diesen beiden Punkten berechnet sich dann so: Abstand ( s, z) Da x i und y i nur in zwei von vier Fällen etwas zum Abstand beitragen, gilt Der Abstand ist also gleich der Wurzel aus der halben Dimension, und er ist konstant. Das selbe Prinzip gilt auch für den Basensequenzraum. Dies alles zeigt, dass sich der Gradualismus durchaus rechtfertigen lässt. = n i= 1 Abstand ( s,z) = n/ 2 ( x i y i ) Kommunikation, Kultur und Kooperation Diese drei Prinzipien wurden in den klassischen Evolutionstheorien ebenfalls vernachlässigt. Dabei stellen sie, besonders bei höher entwickelten Lebewesen, wichtige Evolutionsfaktoren dar. Durch Kommunikation kann Wissen weitergegeben werden, durch dessen Einsatz der Selektionsdruck gemindert werden kann. Diese Art des Informationsaustausch ist dabei sehr viel gezielter und schneller als über den Weg der Vererbung. Durch die Bildung von Kulturgemeinschaften können Individuen überleben, die sonst, auf sich allein gestellt, nur geringe Überlebenschancen haben. Das Prinzip der Kooperation existiert schon seit der Entstehung von mehrzelligen Organismen. Darwin ging davon aus, dass nur die Individuen einer Art zur Fortpflanzung kommen, die sich im Kampf um Nahrung und Territorium gegenüber den Artgenossen durchsetzen können. In der Realität finden Kämpfe zwischen Artgenossen jedoch relativ selten statt. Es überwiegt die Kooperation. Eine besondere Art der Kooperation ist die Symbiose. Dabei kooperieren Lebewesen unterschiedlicher Art miteinander.

10 Auch Kulturgemeinschaften unterliegen einer Art Evolution. Einige sind bereits ausgestorben. Andere müssen sich noch behaupten bzw. weiterentwickeln. Bei der Evolution der Kulturen herrschen jedoch andere Gesetze, als bei der Evolution der Arten. 4. Zusammenfassung, Ausblick Die klassische Evolutionstheorie geht von einer ewig währenden Evolution aus. Die moderne Gentechnik prophezeit jedoch das Gegenteil. Mit dem Wissen, was die Menschheit bereits über Evolutionsprozesse erworben hat und mit Hilfe der modernen Gentechnik ist es dem Menschen (zumindest theoretisch) möglich, die Evolution durch natürliche Selektion zu beenden. Mit wachsendem Wissen über die Evolutionstheorien könnte der Mensch eines Tages in der Lage sein, die Entwicklung aller Lebewesen nach seinem Willen zu steuern. Die natürliche Evolution wäre damit am Ende. Aber die Kenntnisse über die Evolution sind längst noch nicht vollständig. Viele Fragen sind noch offen. Es existieren weitere interessante Theorien, auf die hier nicht eingegangen wurde. Zum Beispiel die Überlegungen von Manfred Eigen zur präbiotischen Evolution. Die existierenden Algorithmen, die verwendet werden um evolutionäre Prozesse zu simulieren, sind im Vergleich zu realen Prozessen geradezu simpel. Aber trotzdem kann man mit ihnen erstaunliche Ergebnisse erzielen, was für die Genialität der Evolution spricht.

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Prof. Dr. Ottmar Beucher Dezember 2001 Genetische Algorithmen 1 Optimierungsaufgaben Ein einfaches Beispiel Prinzipielle Formulierung Lösungsansätze Genetische Algorithmen Anwendungen

Mehr

Der Kampf ums Überleben

Der Kampf ums Überleben Einführungstext - 2 - Der Kampf ums Überleben Seit den Anfängen des Lebens auf der Erde verändern sich die Lebewesen ständig. Unzählige Arten starben aus und neue Arten haben sich entwickelt. Aber nicht

Mehr

Synthese Eingebetteter Systeme. Übung 6

Synthese Eingebetteter Systeme. Übung 6 12 Synthese Eingebetteter Systeme Sommersemester 2011 Übung 6 Michael Engel Informatik 12 TU Dortmund 2011/07/15 Übung 6 Evolutionäre Algorithmen Simulated Annealing - 2 - Erklären Sie folgende Begriffe

Mehr

Carl von Linné ( )

Carl von Linné ( ) Carl von Linné (1707-1778) Begründer der Systematik, teilte Pflanzen nach Blütenorganen und Tiere nach anatomischen und physiologischen Merkmalen ein. Seine Erkenntnisse waren für die späteren Evolutionsvertreter

Mehr

Synthese durch Rechner-Optimierung

Synthese durch Rechner-Optimierung 4.2.4. Synthese durch Rechner-Optimierung Möglichkeiten zum Finden passender Reglerparameter: 1. Theoretische Synthese (Herleitung der optimalen Werte) 2. Einstellregeln Messungen an der Strecke (z. B.

Mehr

Evolution und Algorithmen

Evolution und Algorithmen Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Pinschertage der OG Bonn Grundlagen der Zucht

Pinschertage der OG Bonn Grundlagen der Zucht Pinschertage der OG Bonn 31.05. - 01.06.2008 Grundlagen der Zucht von Ralf Wiechmann Der Phänotyp Ist die Gesamtheit der wahrnehmbaren Merkmale eines Organismus. das äußere Erscheinungsbild das Aussehen,

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (), 204 Exercise. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp, genetische

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (1), 2015 Aufgabe 1. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp,

Mehr

Local Search Algorithmen 1

Local Search Algorithmen 1 Local Search Algorithmen 1 Seminar über Algorithmen Manuel Gellfart 18.05.2012 Fachbereich Mathematik und Informatik 18.05.2012 2 Gliederung 1. Einleitung 2. Theorie 3. Beispiel: Vertex Cover 4. Beispiel:

Mehr

Von der Mikro- zur Makroevolution... (1) Einige Bemerkungen zur Evolution von Organen und der höheren Taxa

Von der Mikro- zur Makroevolution... (1) Einige Bemerkungen zur Evolution von Organen und der höheren Taxa Von der Mikro- zur Makroevolution... (1) Einige Bemerkungen zur Evolution von Organen und der höheren Taxa Wie funktioniert Evolution im Kleinen? Evolution beinhaltet nicht nur Artbildung, sondern auch

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Joachim Schauer Betriebliche Optimierung 1 / 31 1 Metaheuristische Verfahren 2 Joachim Schauer Betriebliche Optimierung 2 / 31 Einleitendes Metaheuristische Verfahren

Mehr

Evolutionsstrategien

Evolutionsstrategien Evolutionsstrategien zum Seminar Evolutionäre Algorithmen von Jana Schäfer INHALTVERZEICHNIS 1. Einführung... 3 2. Die Geschichte der Evolutionsstrategien...4 3. Grundlegendes... 6 3.1 Begriffe... 6 3.2

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 19 1 Joachim Schauer ( Institut für

Mehr

Algorithmen. Von Labyrinthen zu. Gerald Futschek

Algorithmen. Von Labyrinthen zu. Gerald Futschek Von Labyrinthen zu Algorithmen Gerald Futschek Wie kommt man aus einem Labyrinth (griechisch: Haus der Doppelaxt, wahrscheinlich Knossos auf Kreta) Labyrinth heraus? Labrys Grundriss des Palastes von Knossos

Mehr

Computational Intelligence 1 / 37. Berechne die Positionen potentieller Optima, d.h. die Stellen an denen der Gradient verschwindet

Computational Intelligence 1 / 37. Berechne die Positionen potentieller Optima, d.h. die Stellen an denen der Gradient verschwindet 1 / 37 Gliederung 1 Analytische Lösung 2 Optimierungsalgorithmen Kalkülbasierte Verfahren Indirekte kalkülbasierte Verfahren Direkte kalkülbasierte Verfahren Zufallsgesteuerte Verfahren Rein zufallsgesteuerte

Mehr

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis Die Chaostheorie a) Geschichtliche Betrachtung i. Das mechanistische Naturbild ii. Zweikörperproblem iii. Dreikörperproblem iv. Lagrange-Punkte v. Entdeckung des Chaos b) Die Chaostheorie i. Eigenschaften

Mehr

8. Evolution (Teil II): Koevolution

8. Evolution (Teil II): Koevolution 8. Evolution (Teil II): Koevolution Darwinsche Evolution bedeutet zunächst einmal Konkurrenz wie können mehrere Arten gemeinsam evolvieren? was passiert, wenn die Arten ihre Fitnesslandschaften gegenseitig

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

12. Vorlesung Stochastische Optimierung

12. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 12. Vorlesung Stochastische Optimierung Differential Evolution 12. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Evolutionsfaktoren. = Gesamtheit der Gene aller Individuen einer Population bleibt nach dem HARDY-WEINBERG-Gesetz unter folgenden Bedingungen

Evolutionsfaktoren. = Gesamtheit der Gene aller Individuen einer Population bleibt nach dem HARDY-WEINBERG-Gesetz unter folgenden Bedingungen Evolutionsfaktoren 1 Genpool = Gesamtheit der Gene aller Individuen einer bleibt nach dem HARDY-WEINBERG-Gesetz unter folgenden Bedingungen gleich: keine Mutationen alle Individuen sind für Umweltfaktoren

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Dynamik von Genen in Populationen

Dynamik von Genen in Populationen Dynamik von Genen in Populationen Thomas Spießer 01.08.2007 Zusammenfassung Evolution ist die Veränderung der vererbbaren Merkmale einer Population von Lebewesen von Generation zu Generation. 1 Das Studium

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 1)

Genetische und Evolutionäre Algorithmen (Vol. 1) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Der genetische Algorithmus

Der genetische Algorithmus Joachim Breitner Seminarkurs am Schickhardt-Gymnasium Herrenberg 2002/2003 Halbjahr 12.2 Modellbildung und Simulation am Beispiel der Evolution und dem Programm EvoLab Thema 2: Der genetische Algorithmus

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Erfolgversprechende Konfigurationen für Versuche mit Evolutionsstrategien anhand von ausgewählten Testfunktionen

Erfolgversprechende Konfigurationen für Versuche mit Evolutionsstrategien anhand von ausgewählten Testfunktionen Erfolgversprechende Konfigurationen für Versuche mit Evolutionsstrategien anhand von ausgewählten Testfunktionen Krischan Keitsch 3. Juni 214 Zusammenfassung Um ein Optimierungsproblem mit einer Evolutionsstrategie

Mehr

InformatiCup 2009 EvolutionConsole

InformatiCup 2009 EvolutionConsole InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack

Mehr

Optimale Produktliniengestaltung mit Genetischen Algorithmen

Optimale Produktliniengestaltung mit Genetischen Algorithmen Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

Der molekulare Bauplan des Lebens; biologische Nano- und Mikrobausteine von Lebewesen. RNA und DNA als sich selbst replizierende Informationsspeicher

Der molekulare Bauplan des Lebens; biologische Nano- und Mikrobausteine von Lebewesen. RNA und DNA als sich selbst replizierende Informationsspeicher Der molekulare Bauplan des Lebens; biologische Nano- und Mikrobausteine von Lebewesen RNA und DNA als sich selbst replizierende Informationsspeicher Quelle: Biochemie, J.M. Berg, J.L. Tymoczko, L. Stryer,

Mehr

Grundlagen der Vererbungslehre

Grundlagen der Vererbungslehre Grundlagen der Vererbungslehre Zucht und Fortpflanzung Unter Zucht verstehen wir die planvolle Verpaarung von Elterntieren, die sich in ihren Rassemerkmalen und Nutzleistungen ergänzen zur Verbesserung

Mehr

Konvergenz von Hopfield-Netzen

Konvergenz von Hopfield-Netzen Matthias Jauernig 1. August 2006 Zusammenfassung Die nachfolgende Betrachtung bezieht sich auf das diskrete Hopfield-Netz und hat das Ziel, die Konvergenz des Verfahrens zu zeigen. Leider wird dieser Beweis

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Diskrete dynamische Systeme in der Populationsgenetik Hofbauer J., und Sigmund K.: Evolutionary Games and Population Dynamics, Cambridge

Diskrete dynamische Systeme in der Populationsgenetik Hofbauer J., und Sigmund K.: Evolutionary Games and Population Dynamics, Cambridge Diskrete dynamische Systeme in der Populationsgenetik Hofbauer J., und Sigmund K.: Evolutionary Games and Population Dynamics, Cambridge Dominik Urig Saarbrücken, den 10.01.2012 Inhaltsangabe 1 Biologische

Mehr

Evolutionstheorien und -faktoren erforschen S 2. Colourbox II/I2. Thinkstock

Evolutionstheorien und -faktoren erforschen S 2. Colourbox II/I2. Thinkstock Evolutionstheorien und -faktoren erforschen Reihe 4 Verlauf Material S 2 LEK Glossar M1 Colourbox t h c i s n a r o V Thinkstock Evolutionstheorien und -faktoren erforschen Reihe 4 M2 Verlauf Material

Mehr

Pharmazeutische Biologie Grundlagen der Biochemie

Pharmazeutische Biologie Grundlagen der Biochemie Pharmazeutische Biologie Grundlagen der Biochemie Prof. Dr. Theo Dingermann Institut für Pharmazeutische Biologie Goethe-Universität Frankfurt Dingermann@em.uni-frankfurt.de Empfohlene Literatur Empfohlene

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Biologischer Abbau (Physiologie)

Biologischer Abbau (Physiologie) Ö K O L O G I E Biologischer Abbau (Physiologie) Der biologische Abbau organischer Substrate (u.a. Kohlenhydrate) durch Enzyme oder Mikroorganismen dient zu folgendem: --- zelleigenes Material (u.a. Proteine)

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Von Valentina Hoppe und Jan Rörden Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Gliederung Biologische Evolution Genetischer Algorithmus Definition theoretischer

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR Bei sehr vielen mathematischen Aufgabenstellungen ist nicht nur die Länge von bestimmten Strecken oder der Umfang interessant, sondern auch die

Mehr

Seminar Verkehrsinformatik Offline-Optimierung der Lichtsignal-Koordinierung mittels genetischer Algorithmen

Seminar Verkehrsinformatik Offline-Optimierung der Lichtsignal-Koordinierung mittels genetischer Algorithmen Fachhochschule Wedel - SS 2006 Seminar Verkehrsinformatik Offline-Optimierung der Lichtsignal-Koordinierung mittels genetischer Algorithmen Marco Lehmann (wi5909) m@rco-l.de 3. Juli 2006 Gliederung 1.

Mehr

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Optimierungsprobleme

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 2)

Genetische und Evolutionäre Algorithmen (Vol. 2) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. 2) von Adam El Sayed Auf und Kai Lienemann Gliederung: 4) Rückblick 5) Allgemeine Einführung 6) Genauere Beschreibung von Evolutionären Strategien

Mehr

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Jana Müller Seminar Das Virtuelle Labor Otto von Guericke Universität Magdeburg Gliederung 1. Motivation

Mehr

Übersicht. Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation

Übersicht. Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation Evolution 1 Übersicht Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation 2 Jean Baptiste de LAMARCK... der häufige Gebrauch eines Organs [stärkt]

Mehr

Mechanismen der Evolution. Übersicht. Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation

Mechanismen der Evolution. Übersicht. Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation Mechanismen der Evolution 1 Übersicht Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation 2 Jean Baptiste de LAMARCK... der häufige Gebrauch eines

Mehr

Von der Mikro- zur Makroevolution... (2)

Von der Mikro- zur Makroevolution... (2) Von der Mikro- zur Makroevolution... (2) Biologische Strukturbildung im Ausleseprozeß Aus der Erkenntnis heraus, daß man durch kleine, zufällige Änderungen am Erbgut über viele Generationen hinweg durch

Mehr

Algorithmen. Von Labyrinthen zu. Gerald Futschek

Algorithmen. Von Labyrinthen zu. Gerald Futschek Von Labyrinthen zu Algorithmen Gerald Futschek Wie kommt man aus einem Labyrinth heraus? Labyrinth (griechisch: Haus der Doppelaxt, wahrscheinlich Knossos auf Kreta) Labrys Grundriss des Palastes von Knossos

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel?

Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel? Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel? Inhaltsfeld: IF 6: Evolution Inhaltliche Schwerpunkte: Schwerpunkte übergeordneter Kompetenzerwartungen:

Mehr

Inhalt. Streitfall Evolution 11

Inhalt. Streitfall Evolution 11 Inhalt Streitfall Evolution 11 Die größte Show im Universum 15 1. Wie wäre die Welt ohne die Evolution? 15 2. Wer hat Angst vor der Evolution? 16 3. Was ist Evolution? 18 4. Warum ist die Evolutionstheorie

Mehr

Genetische Algorithmen von der Evolution lernen

Genetische Algorithmen von der Evolution lernen Genetische Algorithmen von der Evolution lernen (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Nils J. Nilsson Artificial Intelligence Morgan Kaufmann, 1998 Ansatz Bisher: Problemlösung

Mehr

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler Zelluläre Automaten Sommerakademie Ftan 2004 Daniel Abler Zelluläre Automaten 1.Merkmale komplexer Systeme bzw. zellulärer Automaten 2.Grundcharakteristika - Game of Life 3.Definition 4.Eigenschaften und

Mehr

Evolution. Biologie. Zusammenfassungen. Semesterprüfung Freitag, 17. Juni Evolutionstheorien Lamarck/Darwin. Evolutionsfaktoren

Evolution. Biologie. Zusammenfassungen. Semesterprüfung Freitag, 17. Juni Evolutionstheorien Lamarck/Darwin. Evolutionsfaktoren Biologie Evolution Zusammenfassungen Semesterprüfung Freitag, 17. Juni 2016 Evolutionstheorien Lamarck/Darwin Evolutionsfaktoren Auswirkungen der Selektion Artbildung Phylogenie Steffi ENTHÄLT INHALTE

Mehr

Von Labyrinthen zu Algorithmen 2. Gerald Futschek

Von Labyrinthen zu Algorithmen 2. Gerald Futschek Von Labyrinthen zu Algorithmen 2 Gerald Futschek Problem der Zyklen Die Strategie Linke Wand entlang funktioniert leider nicht bei allen Labyrinthen, wenn man von A nach B will! Möglicherweise gibt es

Mehr

2) Können Sie allein aus den gegebenen Zahlen ablesen welches der beiden Allele einen Selektionsvorteil besitzt?

2) Können Sie allein aus den gegebenen Zahlen ablesen welches der beiden Allele einen Selektionsvorteil besitzt? Ihre Namen: Übung 2: Populationsgenetik 2, Drift und Selektion In der Vorlesung haben Sie ein Modell für Selektion kennengelernt. Heute wollen wir uns mit Hilfe von Simulationen intensiver mit den Konsequenzen

Mehr

Evolution und Entwicklung

Evolution und Entwicklung Evolution und Entwicklung Wie aus einzelnen Zellen die Menschen wurden: Phylogenese Klassische Genetik: Mendel Moderne Genetik: Watson & Crick Wie aus einer einzigen Zelle ein Mensch wird: Ontogenese Vererbung

Mehr

Grundkurs Q 1: Inhaltsfeld: IF 3 (Genetik)

Grundkurs Q 1: Inhaltsfeld: IF 3 (Genetik) Grundkurs Q 1: Inhaltsfeld: IF 3 (Genetik) Unterrichtsvorhaben I: Humangenetische Beratung Warum sehe ich eigentlich meinen Eltern (nicht) ähnlich? Klassische und molekulare Genetik Unterrichtsvorhaben

Mehr

Evolutionär ablaufende Strukturbildung

Evolutionär ablaufende Strukturbildung Evolutionär ablaufende Strukturbildung Peter Schuster, Klaus Lucas, Peter Roosen und Hans-Paul Schwefel Aachen, Dortmund und Wien BBAW, Ratspräsentation Berlin, 26.05.2005 1. Biologische Strukturbildung,

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

Algorithmen. Von Labyrinthen zu. Gerald Futschek

Algorithmen. Von Labyrinthen zu. Gerald Futschek Von Labyrinthen zu Algorithmen Gerald Futschek Wie kommt man aus einem Labyrinth (griechisch: Haus der Doppelaxt, wahrscheinlich Knossos auf Kreta) Labyrinth heraus? Labrys Grundriss des Palastes von Knossos

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Evolutionspsychologische Emotionstheorien I: Grundlagen

Evolutionspsychologische Emotionstheorien I: Grundlagen Evolutionspsychologische Emotionstheorien I: Grundlagen 2. Vererbung 3. natürliche Patricia Buggisch Justus-Liebig-Universität Gießen 2006 2. Vererbung 3. natürliche Einleitung - Biologische Evolution

Mehr

Christoph Wulf - Anthropologie (2004)

Christoph Wulf - Anthropologie (2004) WULF 1 Christoph Wulf - Anthropologie (2004) 1 5 10 15 20 25 ( ) Nicht die Erzeugung des Menschen in einem einmaligen Schöpfungsakt, sondern der Prozesscharakter der Entstehung Lebens und der Hominisation

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 01.12.2017 7. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Warum konvergieren Genetische Algorithmen gegen ein Optimum?

Warum konvergieren Genetische Algorithmen gegen ein Optimum? 1 / 21 Gliederung 1 Das Schematheorem Motivation Begriffe Herleitung Ergebnis Das Schematheorem Das Schematheorem Motivation 3 / 21 Warum konvergieren Genetische Algorithmen gegen ein Optimum? Theoretische

Mehr

Genetische Algorithmen und Evolutionsstrategien

Genetische Algorithmen und Evolutionsstrategien Eberhard Schöneburg Frank Heinzmann Sven Feddersen Genetische Algorithmen und Evolutionsstrategien Eine Einführung in Theorie und Praxis der simulierten Evolution Tschnische UnsversSsät Darmstadt Fachbereich

Mehr

Wachstum von Baumstrukturen. Ein Ansatz von Tim Landgraf Christian Schudoma

Wachstum von Baumstrukturen. Ein Ansatz von Tim Landgraf Christian Schudoma Wachstum von Baumstrukturen Ein Ansatz von Tim Landgraf Christian Schudoma Bäume in der Natur Pflanzen im Wald Strukturen in Organismen (Gefäßnetze, Bronchien, Nierentubuli, Gehirn, Neuronen und deren

Mehr

Evolutionäre (Genetische) Algorithmen

Evolutionäre (Genetische) Algorithmen Evolutionäre (Genetische) Algorithmen Ziel, Aufgabe von evolutionären Algorithmen: Optimierung von Objekten mit komplexer Beschreibung, wobei es Parameter gibt. Die Objekte kodiert man so als Bitstrings,

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Hauptseminar Repräsentationen für Optimierungsalgorithmen

Hauptseminar Repräsentationen für Optimierungsalgorithmen Stefan Bens Hauptseminar Dresden, 03.07.2008 Inhalt 1. Motivation 2. Einleitung 3. Repräsentationsarten und Eigenschaften 4. Beispiel 5. Zusammenfassung Folie 2 Als Repräsentation bezeichnet man die Kodierung

Mehr

Analysis 7. f(x) = 4 x (x R)

Analysis 7.   f(x) = 4 x (x R) Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,

Mehr

Electronic Design Automation (EDA) Technology Mapping

Electronic Design Automation (EDA) Technology Mapping Electronic Design Automation (EDA) Technology Mapping Überblick digitale Synthese Technology Mapping Abbildung durch die Abdeckung eines Baumes Partitionierung des DAG Dekomposition und Abdeckung Beispiel

Mehr

1 Schulinterner Kernlehrplan Biologie Q2 Evolution

1 Schulinterner Kernlehrplan Biologie Q2 Evolution 1 Schulinterner Kernlehrplan Biologie Q2 Evolution 1 Inhaltsfelder Schwerpunkt Basiskonzept Konkretisierte Kompetenzen Evolution Evolutionstheorien LK Evolutionstheorie Biodiversität und Systematik Entwicklung

Mehr

Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung

Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung Weimarer Optimierungs- und Stochastiktage 4.0 Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung Dr.-Ing. Andreas Plotzitza, PT/EST4 29. November 2007 1 Inhalt

Mehr

Von Labyrinthen zu Algorithmen

Von Labyrinthen zu Algorithmen Von Labyrinthen zu Gerald Futschek Wie kommt man aus einem Labyrinth heraus? Labyrinth (griechisch: Haus der Doppelaxt, wahrscheinlich Knossos auf Kreta) Labrys Grundriss des Palastes von Knossos 1 Fragestellungen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Bioinformatik. Lokale Alignierung Gapkosten. Silke Trißl / Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. Lokale Alignierung Gapkosten. Silke Trißl / Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik Lokale Alignierung Gapkosten Silke Trißl / Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Ähnlichkeit Lokales und globales Alignment Gapped Alignment Silke Trißl:

Mehr

biotischen Umweltfaktoren im Ökosystem Wald (Auswahl) Gewässer als Ökosysteme Projekt: Der See als Ökosystem gewusst gekonnt...

biotischen Umweltfaktoren im Ökosystem Wald (Auswahl) Gewässer als Ökosysteme Projekt: Der See als Ökosystem gewusst gekonnt... Inhaltsverzeichnis Bio 9 /10 3 Inhaltsverzeichnis 1 Ökologie... 8 1.1 Struktur und Vielfalt von Ökosystemen... 9 1 Lebensraum und abiotische Umweltfaktoren... 10 Lebensraum und biotische Umweltfaktoren...

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

Biologische Psychologie I Kapitel 2

Biologische Psychologie I Kapitel 2 Biologische Psychologie I Kapitel 2 Evolution, Genetik und Erfahrung Von Dichotomien zu Beziehungen und Interaktionen Früher (z.t. auch heute noch) gestellte Fragen zum Verhalten: physiologisch oder psychologisch?

Mehr

Seminar. Algorithmische Geometrie

Seminar. Algorithmische Geometrie Seminar Algorithmische Geometrie WS 2000/2001 Thema: Konvexe Hülle Mirko Dennler 21439 Inhaltsverzeichnis Konvexe Hülle 1. Problemstellung 3 2. GRAHAMS SCAN 4-5 3. JARVIS' MARCH 5-6 4. QUICK HULL 6-7 5.

Mehr

Gebäudeevakuierung als Beispiel einer Mikroskopischen Analyse

Gebäudeevakuierung als Beispiel einer Mikroskopischen Analyse Gebäudeevakuierung als Beispiel einer Mikroskopischen Analyse Proseminar: Algorithmen der Verkehrssimulation Richard Röttger Technische Universität München 12.12.2005 Gliederung 1 Einführung Motivation

Mehr

erläutern Eigenschaften des genetischen Codes und charakterisieren mit dessen Hilfe Experimentelle Entschlüsselung (SF)

erläutern Eigenschaften des genetischen Codes und charakterisieren mit dessen Hilfe Experimentelle Entschlüsselung (SF) Schulinterner Kernlehrplan Biologie Q1 : Genetik Inhaltsfelder Schwerpunkt Basiskonzept Konkretisierte Kompetenzen 1.1 Vom Gen zum Genprodukt Wiederholung - DNA und Replikation Aufgaben DNA und Replikation

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Spiel 1: Spielerische Simulation der Hardy-Weinberg-Regel

Spiel 1: Spielerische Simulation der Hardy-Weinberg-Regel Spiel : Spielerische Simulation der Hardy-Weinberg-Regel Spielbrett, Box Genpool, Taschenrechner Wichtig! Das Spiel wird fünf Runden gespielt!. Ziehen Sie aus dem Genpool ohne Hinschauen insgesamt 54 Individuen.

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr