Chemische und physikalische Kristallographie

Größe: px
Ab Seite anzeigen:

Download "Chemische und physikalische Kristallographie"

Transkript

1 Teil III Chemische und physikalische Kristallographie 2 Kristallchemie Die Kristallchemie befaßt sich mit der Ermittlung, Beschreibung und Klassifizierung der relativen räumlichen Atomanordnung kistalliner chemischer Verbindungen, mit der Erklärung der Ursachen, die zu dieser Anordnung führen, und mit den chemischen und physikalischen Eigenschaften, die sich daraus ergeben. Dazu gehört auch die systematische Ordnung nach Strukturtypen und das Aufzeigen von Verwandtschaften und Symmetriebeziehungen zwischen Kristallstrukturen. 2. Dichteste Kugelpackungen Kristallstrukturen bestehen im allgemeinen aus einer relativ dichten, gitterhaften Packung von Materie. Besonders einfach sind die Elementstrukturen der Edelgase und Metalle sowie die Strukturen von Ionenkristallen gebaut. In deren Kristallstrukturen können Atome und Ionen als näherungsweise starre Kugeln betrachtet werden, denen typische und übertragbare Radien zukommen. Diese Kugeln lagern sich so zu Kugelpackungen zusammen, daß sie den Raum möglichst effektiv und hochsymmetrisch ausfüllen und daß die einzelnen Bausteine mit möglichst vielen anderen Bausteinen in Wechselwirkung treten können. Mit diesen einfachen Modellvorstellungen lassen sich weitgehende Einsichten in die Bauprinzipien der Kristallstrukturen von Metallen, Legierungen und Ionenkristallen gewinnen. Auch Molekülkristalle enthalten meist dicht gepackte Moleküle; die Bauprinzipien sind allerdings andere, weil Moleküle eine vielfältig strukturierte Oberfläche haben können und normalerweise auch nicht annähernd kugelsymmetrisch sind. Verschiedene Arten von Kugelpackungen sind bei den Elementstrukturen der Metalle realisiert. Sie beruhen auf einer Stapelung dicht gepackter hexagonaler Netze, in denen eine Kugel jeweils von sechs Nachbarkugeln umgeben ist. Wird nun eine zweite hexagonale Schicht auf die erste gepackt, dann entsteht eine dichte Packung, wenn die Kugeln der zweiten Schicht in die Lücken der ersten einrasten. Eine einzelne hexagonale Schicht besitzt zwei Arten von Lücken, die sich in ihrer relativen Orientierung unterscheiden. Bezeichnet man die Lagen der Kugeln der Ausgangsschicht mit A und die beiden Lückenarten mit B und C, dann kann eine zweite Schicht entweder in die Lücken B oder C einrasten. Beide Möglichkeiten zur Bildung einer Doppelschicht sind jedoch identisch: sie sind gegeneinander nur um 80 verdreht. Für eine dritte Schicht gibt es wieder zwei Möglichkeiten der Stapelung: Besetzt die zweite Schicht die Lage B (C), dann kann eine dritte Schicht entweder die Lage C oder A (B oder A) einnehmen. Es gibt unendlich viele verschiedene Stapelfolgen (Polytypen), die alle eine dichteste Kugelpackung mit 74% Raumerfüllung darstellen. Von diesen Stapelvarianten sind periodische 45

2 Stapelfolgen, von denen es ebenfalls unendlich viele geben kann, von besonderem Interesse. Die wichtigsten sind die beiden einfachsten periodischen Stapelfolgen: die hexagonal und die kubisch dichteste Kugelpackung. 2.. Hexagonal dichteste Kugelpackung Bei der Stapelfolge ABABAB... (bzw. ACACAC...) nimmt jeweils die übernächste Schicht wieder die Lage der Ausgangsschicht ein; die Periodenlänge beträgt folglich zwei Schichten. Die entstehende Stapelfolge hat hexagonale Symmetrie, die hexagonale c-achse steht senkrecht zu den Schichten. Entlang der hexagonalen Achse verlaufen 6 3 -Schraubenachsen senkrecht zu den dichtest gepackten Ebenen (00). Das Achsenverhältnis c/a berechnet sich für eine ideale hexagonale Kugelpackung zu c/a = 8/3 =.633. Die hexagonale Zelle der Packung ABABAB... enthält zwei symmetrisch äquivalente Kugeln in den Lagen 0,0,0 und 2/3,/3,//2 (0,0,0 und /3,2/3,/2 für eine Packung ACACAC...). Diese beiden Kugeln sind translatorisch nicht gleichwertig; das zugrunde liegende Translationsgitter hp ist einfach primitiv. Diese Art der Kugelpackung wird häufig mit dem Symbol hcp ( hexagonal close packing ) bezeichnet Kubisch dichteste Kugelpackung Bei der Stapelfolge ABCABC... (bzw. ACBACB...) nimmt erst jede vierte Schicht wieder die Lage der Ausgangsschicht ein; die Periodenlänge beträgt drei Schichten. Die entstehende Stapelfolge hätte in hexagonaler Aufstellung die Lagen 0,0,0, 2/3,/3,/3 und /3,2/3,2/3 besetzt, was einer rhomboedrischen Zelle hr entspräche. Der Winkel zwischen den Achsen dieser rhomboedrischen Zelle ist jedoch exakt 60, so daß die Kugeln tatsächlich die Positionen der Gitterpunkte einer kubisch flächenzentrierten Anordnung cf besetzen, weshalb diese Kugelpackung auch mit den Symbolen ccp ( cubic close packed ) und fcc ( face centered cubic ) beschrieben wird. Im Gegensatz zur hexagonal dichtesten Kugelpackung sind in der kubisch dichtesten Pakung alle Kugeln translatorisch gleichwertig: sie hat eine gitterhafte Struktur. Die dichtest gepackten Schichten entsprechen den vier {}-Netzebenenscharen der kubischen Zelle. Senkrecht zu den dichtest gepackten Schichten stehen dreizählige Drehinversionsachsen. Entsprechend den vier Raumdiagonalen des Würfels ist eine solche 3-Achse viermal vorhanden; die Form {} stellt einen Oktaeder dar. Die Packungsdichte beider Kugelpackungen beträgt wie die aller dichtesten Kugelpackungen 74%; die Koordinationszahl ist für beide Pakungen 2: zu den sechs nächsten Nachbarn einer Schicht kommen jeweils drei Nachbarn aus der darüber und darunter liegenden Schicht. Das Koordinationspolyeder der kubisch dichtesten Kugelpackung ist ein Kubooktaeder der Symmetrie m 3m, das der hexagonal dichtesten Kugelpackung ist ein verdrehtes Anti-Kubooktaeder (Disheptaeder) der Symmetrie 6m Kristallstrukturen mit dichtester Kugelpackung (a) Die Edelgase und viele metallische Elemente kristallisieren in dichtesten Kugelpackungen; einschließlich der Hochtemperaturmodifikationen kennt man rund 80 solcher Elementstrukturen. Einige Metalle kristallisieren allerdings in einer kubisch innenzentrierten 46

3 Struktur, deren Packungsdichte immerhin noch 68% beträgt. Sie besteht aus quadratisch statt hexagonal gepackten Kugelschichten; eine Kugel hat acht nächste Nachbarn an den Ecken eines Würfels. Die sechs übernächsten Nachbarn sind nur 5% weiter entfernt, so daß man besser von einer (8+6)-Koordination spricht. Kugelpackung Packungs- Koordinadichte tionszahl (cp) kubisch primitiv (ci) kubisch innenzentriert (cf) kubisch dichtest (hp) hexagonal dichtest (b) Die Kristallstrukturen der Ionenkristalle lassen sich als Varianten der dichtesten Kugelpackungen verstehen. Sie bestehen aus einer dichtesten Packung kugelförmiger Ionen, in deren Lücken die kleineren Gegenionen eingelagert sind. Normalerweise bilden Anionen die dichteste Packung, weil sie in der Regel deutlich größer als die Kationen sind; gelegentlich ist die Rolle von Anionen und Kationen aber auch vertauscht: dann bilden die Kationen die dichteste Packung, deren Lücken von Anionen besetzt sind. Der Volumenanteil der Lücken einer dichtesten Kugelpackung beträgt insgesamt 26%. Es gibt zwei Arten von Lücken: Oktaederund Tetraederlücken Oktaederlücken Oktaederlücken liegen zwischen zwei Schichten mit sechs nächsten Nachbarn. Bei der kubisch dichtesten Kugelpackung gibt es solche oktaedrischen Lücken in der Mitte der Elementarzelle und auf den Kantenmitten, 4 Lücken pro Zelle, also pro Kugel eine oktaedrische Lücke. Bei der hexagonal dichtesten Kugelpackung befinden sich diese Oktaederlücken senkrecht übereinanderliegend auf den Positionen /3,2/3,/4 und /3,2/3,3/4; auch hier gibt es pro Kugel genau eine Lücke. In der kubisch dichtesten Kugelpackung sind diese Oktaeder über Kanten und Ecken verknüpft; in der hexagonal dichtesten Kugelpackung erfolgt die Verknüpfung zusätzlich noch über gemeinsame Flächen Tetraederlücken Tetraederlücken liegen zwischen zwei Schichten mit vier nächsten Nachbarn. Sie befinden sich bei der kubisch dichtesten Kugelpackung in den Mitten der Achtelwürfel auf den Positionen /4,/4,/4, /4,/4,3/4, /4,3/4,/4, 3/4,/4,/4, /4,3/4,3/4, 3/4,/4,3/4, 3/4,3/4,/4 und 3/4,3/4,3/4. Bei der hexagonal dichtesten Kugelpackung befinden sich tetraedrische Lücken auf 0,0,3/8, 0,0,5/8, 2/3,/3,/8 und 2/3,/3,7/8. In beiden Fällen gibt es pro Kugel zwei Tetraederlücken. In der kubisch dichtesten Kugelpackung sind diese Tetraeder über alle vier Kanten verknüpft, in der hexagonal dichtesten Kugelpackung erfolgt die Verknüpfung abwechselnd über Ecken und gemeinsame Flächen. In der kubisch dichtesten Kugelpackung umgeben die oktaedrischen Lücken eine zentrale Kugel ebenfalls in Form eines Oktaeders (Koordinationszahl 6); die tetraedrischen Lücken umgeben dieselbe Kugel in Form eines Würfels (Koordinationszahl 8). In der hexagonal dichtesten Kugelpackung bilden die sechs oktaedrischen Lücken ein trigonales Prisma um die 47

4 zentrale Kugel (Koordinationszahl 6); die tetraedrischen Lücken bilden ein trigonales Prisma mit aufgesetzter Dipyramide (Koordinationszahl 8). Durch verschiedenartige Auffüllung der Oktaeder- und Tetraederlücken bauen sich unter Einhaltung der Elektroneutralitätsbedingung die wesentlichen Strukturtypen der Ionenkristalle auf. Zwischen den Radien der Lückenatome r L und den Radien r K der Atome, die die dichteste Kugelpackung aufbauen gibt es optimale Radienverhältnisse, bei denen das Lückenatom genau in eine der Lücken paßt: Oktaederlücken: r L /r K = 2 = 0.44 Tetraederlücken: r L /r K = 3/2 = Diese charakteristischen Radienverhältnisse werden in den tatsächlich vorliegenden Kristallstrukturen allerdings nicht exakt eingehalten; die eingelagerten Kationen können die Packung der Anionen durchaus etwas aufweiten oder auch etwas Spiel in ihren Lücken haben. Hinzu kommt, daß die Kugelpackung auch verzerrt sein kann (Deformationsvarianten) Beispiele für Kristallstrukturen mit dichtester Kugelpackung (a) Kristallstrukturen, die eine dichteste Kugelpackung darstellen: Cu (Kupfertyp) kubisch dichteste Kugelpackung Mg (Magnesiumtyp) hexagonal dichteste Kugelpackung La dichteste Kugelpackung mit der Stapelfolge ABACABAC... (b) Kristallstrukturen, die sich von der kubisch dichtesten Kugelpackung ableiten: MgO (Periklas) Li 2 O Li 3 Bi CdCl 2 CrCl 3 ZnS (Sphalerit) Al 2 MgO 4 (Spinell) Besetzung aller Oktaederlücken Besetzung aller Tetraederlücken Besetzung aller Oktaeder- und aller Tetraederlücken Besetzung eines Drittels der Oktaederlücken Besetzung der Hälfte der Tetraederlücken und eines Achtels der Tetraederlücken (c) Kristallstrukturen, die sich von der hexagonal dichtesten Kugelpackung ableiten: FeS Al 2 O 3 (Korund) CdI 2 BiI 3 ZnS (Wurtzit) Mg 2 SiO 4 (Forsterit) Besetzung aller Oktaederlücken Besetzung von zwei Dritteln der Oktaederlücken Besetzung eines Drittels der Oktaederlücken Besetzung der Hälfte der Tetraederlücken und eines Achtels der Tetraederlücken 48

5 2.3 Bauverbände In den Kristallstrukturen von CaF 2 (Fluorit, Fm 3m), ZnS (Sphalerit, F 43m) und Cu 2 O (Cuprit, Pn 3m) bilden die Kationen Ca 2+, Zn 2+ und Cu + für sich jeweils dieselbe Teilstruktur: sie sind auf den Punkten eines F-Gitters angeordnet (0,0,0; /2,/2,0; /2,0,/2; 0,/2,/2). Die Raumgruppensymbole bringen diese enge Verwandtschaft jedoch nicht zum Ausdruck. Noch weniger geeignet sind die Hermann-Mauguin-Symbole, wenn verzerrte Varianten verglichen werden sollen, in denen sich sogar das Kristallsystem ändert. Andererseits kristallisieren mehr als 30% aller organischen Substanzen im Raumgruppentyp P2 /c, ohne daß ihre Kristallstrukturen verwandt oder direkt vergleichbar wären. Raumgruppen und ihre Punktlagen erlauben zwar eine präzise und detaillierte Beschreibung insbesondere der Symmetrie von Kristallstrukturen, sie sind jedoch zur Klassifizierung von Kristallstrukturen nach gemeinsamen Bauprinzipien offenbar weniger geeignet. Das hat zur Entwicklung andersartiger Systematisierungen geführt. Man verwendet beispielsweise Klassifizierungen nach grundlegenden Strukturtypen, an Hand dichter Kugelpackungen, über Verknüpfungsmuster von Koordinationspolyedern, etc. Ein auf NIGGLI (99) zurückgehendes Schema zur Klassifizierung anorganischer Kristallstrukturen, das von HELLNER (966) erweitert wurde, verwendet das Konzept des Baumusters und des Bauverbandes zur Klassifizierung. Die Nomenklatur der Bauverbände oder Baumuster ist angelehnt an die Bezeichnung der Bravaisgitter. Wichtige Bauverbände sind: Symbol Koordinaten Symmetrie Zähligkeit E 2 3, 3, 2 6m2 2 hcp F 2, 2, 0; 2, 0, 2 ; 0, 2, 2 m 3m 4 ccp, fcc D 2, 2, 0; 2, 0, 2 ; 0, 2, 2 ; 43m 8 Diamant 4, 4, 4 ; 3 4, 3 4, 4 ; 3 4, 4, 3 4 ; 4, 3 4, 3 4 I 2, 2, 2 m 3m 2 bcc J 2, 2, 0; 2, 0, 2 ; 0, 2, 2 4/mmm P 0, 0, 0 m 3m Zur Unterscheidung von den Bravaisgittern schreibt man das Symbol des Baumusters oft in eckige Klammern. Wenn sich der Bauverband nicht im Ursprung befindet, schreibt man seine Koordinaten vor das Symbol. So kann man z.b. das Baumuster [D] der Diamantstruktur aus zwei F-Baumustern zusammensetzen und daher auch so ausdrücken: [D] = 0,0,0 [F] + /4,/4,/4 [F]. Ganz ähnlich ist [F] = [P] + [J] oder [J] = [F] [P]. Grundsätzlich läßt sich jeder Bauverband durch P-Baumuster aufbauen. Das läuft jedoch auf die Angabe von Punktlagen der IT/A in Form von Koordinaten oder Wyckoff-Symbolen hinaus und bringt keine Vereinfachung. 49

6 Mit dieser Nomenklatur wären die oben erwähnten Strukturen wie folgt zu beschreiben: Cuprit (Cu 2 O) : Cu + F-Baumuster [F] (kubisch flächenzentriert, cf4) O 2 I-Baumuster [I] (kubisch innenzentriert, ci2) Sphalerit (ZnS) : Zn 2+ F-Baumuster [F] (kubisch flächenzentriert, cf4) S 2 F-Baumuster [F] (kubisch flächenzentriert, cf4) Fluorit (CaF 2 ) : Ca 2+ F-Baumuster [F] (kubisch flächenzentriert, cf4) F F-Baumuster F F-Baumuster [F] (kubisch flächenzentriert, cf4) [F] (kubisch flächenzentriert, cf4) Für sich alleine gesehen besetzen die Fluoridionen im CaF 2 die Punkte eines kubisch primitiven Gitters (P-Baumuster) mit halbierter Translationsperiode, das gegen das F-Baumuster der Ca 2+ -Ionen um /4, /4, /4 verschoben ist. Das kann man so ausdrücken: Fluorit (CaF 2 ) : Ca 2+ F-Baumuster [F] (kubisch flächenzentriert, cf4) F P-Baumuster [P] 222 (kubisch primitiv, cp, a = a/2) Dabei meinen die drei Zweien im Symbol, daß entlang jeder der drei Achsen die Translationsperiode des P-Baumusters der F -Ionen verdoppelt werden muß, um den richtigen Gitterparameter der Kristallstruktur zu erhalten. 50

7 2.4 Einfache Kristallstrukturtypen 2.4. Elementstrukturen (a) mit überwiegend metallischer Bindung Prototyp Bauverband Raumgruppe Punktlage Koordination Cu F Fm 3m 4 a 2 Kuboktaeder (co) Mg E P6 3 /mmc 2 c 6 planar + 6 prismatisch α Fe, W I Im 3m 2 a 8 Kubus (c) F (fcc): kubisch dichteste Kugelpackung; Raumerfüllung: 74% E (hcp): hexagonal dichteste Kugelpackung; Raumerfüllung: 74% I (bcc): kubisch innenzentriert; Raumerfüllung: 68% 98% der Metalle kristallisieren in diesen Kugelpackungen. (b) mit überwiegend kovalenter (Elektronenpaar) Bindung Gruppe Prototypen Bauverband Raumgruppe Koordination IVb C, Si, Ge, Sn D = F + F Fd 3m 4 Tetraeder Diamant Vb As, Sb, Bi R 3m 3 gewellte Schichten VIb Se, Te P3 2, P gewinkelte Ketten VIIb I (Iod) F Hanteln Bmab Hanteln Valenzregel: Koordination = 8 Gruppennummer im Periodensystem Einfache Ionenkristalle Strukturtyp Bauverbände Raumgruppe Z Gitterparameter CsCl P; 2, 2, 2 P Pm 3m a = 4.2 Å NaCl (Steinsalz) F; 2, 2, 2 F Fm 3m 4 a = 5.64 Å ZnS (Zinkblende) F; 4, 4, 4 F F 43m 4 a = 5.43 Å ZnS (Wurtzit) E; 0, 0, 3 8 E P6 3mc 2 a = 3.82, c = 6.25 Å CaF 2 (Fluorit) F; 4, 4, 4 P 222 Fm 3m 4 a = 5.46 Å Cu 2 O (Cuprit) F; 4, 4, 4 I Pn 3m 2 a = 4.27 Å TiO 2 (Rutil) F; 4, 4, 0 F P4 2/mnm 2 a = 4.59, c = 2.96 Å 5

Kristallstrukturen und (Kugel-) Packungen

Kristallstrukturen und (Kugel-) Packungen Beschreibung von Kristallstrukturen durch: Elementarzellen: Vollständige Beschreibung der Kristallstruktur durch Größe, Form und Symmetrie der Elementarzelle (translationsinvarianter Teil der Kristallstruktur)

Mehr

Freiwillige Übungsaufgaben zum Stoff vorangegangener Vorlesungen zur Selbstkontrolle für den 2. April 2008 (wird nicht bewertet)

Freiwillige Übungsaufgaben zum Stoff vorangegangener Vorlesungen zur Selbstkontrolle für den 2. April 2008 (wird nicht bewertet) AC II - 2. April 2008 Übungen Anke Zürn Zusammenfassung & Wiederholung Dichteste Kugelpackungen (KP) Freiwillige Übungsaufgaben zum Stoff vorangegangener Vorlesungen zur Selbstkontrolle für den 2. April

Mehr

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Gitterpunkte, Gittergeraden, Gitterebenen, Weiß'sche Koeffizienten, Miller Indizes Symmetrie in Festkörpern, Symmetrieelemente, Symmetrieoperationen, Punktgruppenymmetrie,

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Auf n-kugeln einer dichtesten Packung kommen n-oktaederlücken und 2n-Tetraederlücken

Auf n-kugeln einer dichtesten Packung kommen n-oktaederlücken und 2n-Tetraederlücken 2.1 Kugelpackungen In einer Verbindung A m X n haben die X-Atome die Anordnung einer dichtesten Kugelpackung und A-Atome besetzen die Oktaederlücken (OL). Geben Sie die resultierenden Formeln A m X n an,

Mehr

Ionenbindungen, Ionenradien, Gitterenergie, Born-Haber-Kreisprozess, Madelung-Konstante

Ionenbindungen, Ionenradien, Gitterenergie, Born-Haber-Kreisprozess, Madelung-Konstante Wiederholung der letzten Vorlesungsstunde: Ionenbindungen, Ionenradien, Gitterenergie, Born-Haber-Kreisprozess, Madelung-Konstante Thema heute: 1) Kovalente Gitter, 2) Metalle 280 Kovalente und molekulare

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Übungsaufgaben zur Kristallographie Serie 8 LÖSUNG

Übungsaufgaben zur Kristallographie Serie 8 LÖSUNG 1) Edelgase a) Unter welchen Bedingungen kristallisieren Edelgase? Bei tiefen Temperaturen und/oder hohen Drücken. Ausnahme: Helium braucht tiefe Temperaturen und hohen Druck gleichzeitig um zu kristallisieren.

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 5. Grundlagen der chemischen Bindung Ionenbindung Eigenschaften, Ionengitter, Kugelpackung Strukturtypen, Kreisprozesse Kovalente Bindung Lewis Formeln, Oktettregel, Formalladungen

Mehr

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen Kristallchemie Atome Ionen Moleküle Chemische Bindungen Metalle, Metalloide, Nichtmetalle Metalle: E-neg < 1.9 - e - Abgabe Kationen Nichtmetalle: E-neg > 2.1 - e - Aufnahme Anionen Metalloide: B, Si,

Mehr

Struktur von Festkörpern

Struktur von Festkörpern Struktur von Festkörpern Wir wollen uns zunächst mit der Struktur von Festkörpern, daß heißt mit der Geometrie in der sie vorliegen beschäftigen Kovalent gebundene Festkörper haben wir bereits in Form

Mehr

Werkstoffe und Sensorik

Werkstoffe und Sensorik 1 1. Kristall-Strukturen Kristalline Materialien bestehen aus regelmäßigen Anordnungen von Atomen in 3 Dimensionen. Einheitszelle: Kleinste, sich wiederholende Einheit, die die volle Symmetrie der Kristallstruktur

Mehr

Übungsaufgaben zur Kristallographie Serie 10 LÖSUNG

Übungsaufgaben zur Kristallographie Serie 10 LÖSUNG 1) Packungsdichte Berechnen Sie die Packungsdichte der kubisch dichtesten Kugelpackung, der hexagonal dichtesten Kugelpackung, einer kubisch primitiven Kugelpackung und einer kubisch innenzentrierten Kugelpackung.

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

AC II Übung 3 Abgabe Mittwoch, 11. März 2009

AC II Übung 3 Abgabe Mittwoch, 11. März 2009 3.1 Rotes PbO a) Skizzieren Sie die idealisierte Struktur von PbO (rot) in perspektivischer Darstellung (eine Elementarzelle). Pb-Atome: weiss, O-Atome: orange. b) Geben Sie die Koordinationspolyeder und

Mehr

Strukturchemie. Kristallstrukturen. Elementstrukturen. Kugelpackungen. Kubisch dichte Kugelpackung. Lehramt 1a Sommersemester

Strukturchemie. Kristallstrukturen. Elementstrukturen. Kugelpackungen. Kubisch dichte Kugelpackung. Lehramt 1a Sommersemester Kugelpackungen Kubisch dichte Kugelpackung Lehramt 1a Sommersemester 2010 1 Kugelpackungen: kubisch dichte Packung (kdp, ccp) C B A A C B A C B A C Lehramt 1a Sommersemester 2010 2 Kugelpackungen Atome

Mehr

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen Zirkon Kristallchemie Atome Ionen Moleküle Chemische Bindungen Bohr sches Atommodell Kernteilchen: p: Proton n: Neutron Elektronenhülle: e - Elektron Nukleus: Massenzahl A = p + n, Ordnungszahl Z = p =

Mehr

Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung

Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung Wiederholung der letzten Vorlesungsstunde: Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung Thema heute:

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 4 Molekülstruktur Ausnahmen von der Oktettregel Hypervalente Verbindungen VSEPR Hybridisierung Molekülorbitale

Mehr

3a. Metalle. - etwa die Hälfte der HG Elemente - alle d- und f-elemente

3a. Metalle. - etwa die Hälfte der HG Elemente - alle d- und f-elemente 3a. Metalle Metalle sind: - etwa die Hälfte der HG Elemente - alle d- und f-elemente typische Eigenschaften: metallischer Glanz, elektrische Leitfähigkeit thermische Leitfähigkeit, duktil/verformbar Strukturen

Mehr

A. N. Danilewsky 77. Inhalt von Kapitel 4

A. N. Danilewsky 77. Inhalt von Kapitel 4 A. N. Danilewsky 77 Inhalt von Kapitel 4 4 Kristallchemie... 78 4.1 Chemische Bindung und Koordination... 79 4.2 Konzept der dichtesten Kugelpackungen... 81 4.3 Strukturtypen... 84 4.3.1 Metalle... 84

Mehr

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0a) Es sollen aus folgenden kubischen Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Ionenbindung, Koordinationspolyeder, ionische Strukturen, NaCl, CsCl, ZnS, Elementarzelle, Gitter, Gitterkonstanten, 7 Kristallsysteme, Ionenradien, Gitterenergie

Mehr

2. Struktur von Festkörpern

2. Struktur von Festkörpern . Struktur von Festkörpern Energie-Minimum wird erreicht, wenn jedes Atom möglichst dieselbe Umgebung hat Periodische Anordnung von Atomen. Periodische Anordnung erleichtert theoretische Beschreibung erheblich.

Mehr

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG Chemische Bindung - Struktur - Physikalische Eigenschaften Für diese Aufgabe benötigen Sie das Programm VESTA. Sie finden es im Internet unter http://jp-minerals.org/vesta. Laden Sie die Kristallstrukturen

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2012/13 Christoph Wölper Universität Duisburg-Essen Symmetrie Kombination von Symmetrie-Elementen Symmetrie Kombination von Symmetrie-Elementen

Mehr

6. Die Chemische Bindung

6. Die Chemische Bindung 6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung I Kovalente Bindung II Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Salzartige

Mehr

2 Bindung, Struktur und Eigenschaften von Stoffen. 2.1 Ionenbindung und Ionenkristall s Modell der Ionenbindung

2 Bindung, Struktur und Eigenschaften von Stoffen. 2.1 Ionenbindung und Ionenkristall s Modell der Ionenbindung 2 Bindung, Struktur und Eigenschaften von Stoffen 2.1 Ionenbindung und Ionenkristall s. 0.6 Modell der Ionenbindung 8 - Bindung zwischen typischen Metallen und Nichtmetallen, EN > 1,7 - stabile Edelgaskonfiguration

Mehr

Anorganische Strukturchemie

Anorganische Strukturchemie Ulrich Müller Anorganische Strukturchemie 5., überarbeitete und erweiterte Auflage Teubner Inhaltsverzeichnis 1 Einleitung 9 2 Beschreibung chemischer Strukturen 11 2.1 Koordinationszahl und Koordinationspolyeder

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # kubisch Fd3m # Aufbau durch nur 3 Atome -> 0 0 0 (8a) -> 5/8 5/8 5/8 (16d) -> 3/8 3/8 3/8

Mehr

Vorlesung Anorganische Chemie II im SS 2007 (Teil 3) Hans-Jörg Deiseroth Anorganische Chemie Fb 8 Universität Siegen

Vorlesung Anorganische Chemie II im SS 2007 (Teil 3) Hans-Jörg Deiseroth Anorganische Chemie Fb 8 Universität Siegen Vorlesung Anorganische Chemie II im SS 2007 (Teil 3) Hans-Jörg Deiseroth Anorganische Chemie Fb 8 Universität Siegen (unter Verwendung von Folien des Buches Allgemeine und Anorganische Chemie, Binnewies

Mehr

Thema heute: Grundlegende Ionenstrukturen

Thema heute: Grundlegende Ionenstrukturen Wiederholung der letzten Vorlesungsstunde Einfache Metallstrukturen, Dichtestpackung von "Atomkugeln", N Oktaeder-, 2N Tetraederlücken, Hexagonal-dichte Packung, Schichtfolge ABAB, hexagonale Elementarzelle,

Mehr

M. W. Tausch. 3.Teil Ionenbindung

M. W. Tausch. 3.Teil Ionenbindung Ionenbildung bei der NaCl-Synthese Energie als Funktion des Ionenabstands Gitterenergie Born-Haber Kreisprozess Gitterenergie und Gittergeometrie Koordinationszahlen Dichteste Kugelpackungen Elementarzellen

Mehr

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl 2.4 Metallische Bindung und Metallkristalle Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Unterteilung in Metalle, Halbmetalle, Nicht metalle Metalle etwa

Mehr

AC II Übung 4 Abgabe Mittwoch, 18. März 2009

AC II Übung 4 Abgabe Mittwoch, 18. März 2009 4.1 Energieberechnungen nach Sanderson (Beispiel Prüfungsaufgabe) Berechnen Sie die polar-kovalente Bindungsenergie nach R.T. Sanderson für ein KBr-Molekül (monomer, Gas). Geben Sie alle Rechenschritte

Mehr

Funktionsmaterialien Funktionsmaterialien SS2017

Funktionsmaterialien Funktionsmaterialien SS2017 1 Auslöschungen im Röntgenpulverdiffraktogramm (110) alpha-eisen (110) Cäsiumchlorid Intensität Intensität (100) (211) (200) (211) (220) (310) (200) (210) (111) (220) (310) (321) (222) (221) (311) (320)

Mehr

Thema heute: Chemische Bindungen - Ionenbindung

Thema heute: Chemische Bindungen - Ionenbindung Wiederholung der letzten Vorlesungsstunde: Chemische Bindungen, Doppelbindungsregel, VSEPR-Theorie Thema heute: Chemische Bindungen - Ionenbindung Vorlesung Allgemeine Chemie, Prof. Dr. Martin Köckerling

Mehr

Hexagonal dichtest gepackte Struktur

Hexagonal dichtest gepackte Struktur Hexagonal dichtest gepackte Struktur Auch diese Struktur ist sehr wichtig, da sie von sehr vielen Systemen angenommen wird (kein Bravaisgitter). Das einfach hexagonale Bravais-Gitter (in 3-dim): zwei-dim:

Mehr

Wiederholung der letzten Vorlesungsstunde: Thema: Ionenbindung

Wiederholung der letzten Vorlesungsstunde: Thema: Ionenbindung Wiederholung der letzten Vorlesungsstunde: Thema: Ionenbindung Elementarzelle, Symmetrie, 7 Kristallsysteme, Zentrierte Elementarzellen, Salzstrukturen, NaCl-Struktur, AB-Strukturen, ZnS, CsCl, AB 2 -Strukturen,

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Hybridisierung und Molekülstruktur, sp 3 -Hybridorbitale (Tetraeder), sp 2 - Hybridorbitale (trigonal planare Anordnung), sp-hybridorbitale (lineare Anordnung),

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2012/13 Christoph Wölper Universität Duisburg-Essen > Intermetallische Phasen Hume-Rothery-Phasen # späte Übergangsmetalle (Gruppe T2) und Gruppe

Mehr

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Festkörper, ausgewählte Beispiele spezieller Eigenschaften von Feststoffen, Kohlenstoffmodifikationen, Nichtstöchiometrie, Unterscheidung kristalliner und amorpher

Mehr

Einfache Kristallstrukturen

Einfache Kristallstrukturen Einfache Kristallstrukturen Konstruktion von Kristallen: Kugelpackungen - hexagonal und kubisch dichteste Packungen - kubisch einfache Packung - kubisch innenzentrierte Packung Kristallstrukturen der Metalle

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 3

Kristallstruktur und Mikrostruktur Teil I Vorlesung 3 Kristallstruktur und Mikrostruktur Teil I Vorlesung 3 1 Wiederholung Punktsymmetrie - Erkennung 1/ Eine Punktsymmetrie-Gruppe {G} mit Ordnung N hat N Punktsymmetrieoperationen G i, i = 1,2, N. aber nur

Mehr

Anorganische Chemie I (Chemie der Metalle) Übungsfragen

Anorganische Chemie I (Chemie der Metalle) Übungsfragen Anorganische Chemie I (Chemie der Metalle) Übungsfragen Wenn eine zusätzliche Fragestunde vor der Klausur gewünscht wird, wenden Sie sich bitte an: gerhard.mueller@uni-konstanz.de 1. Metalle und ihre Darstellung

Mehr

Grundlagen der Chemie Ionenradien

Grundlagen der Chemie Ionenradien Ionenradien Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ionenradien In einem Ionenkristall halten benachbarte

Mehr

PERIODISCHE STRUKTUR DES FESTKÖRPERS. A. Reziproke Gitterbeziehung zwischen fcc- und bcc Gitter

PERIODISCHE STRUKTUR DES FESTKÖRPERS. A. Reziproke Gitterbeziehung zwischen fcc- und bcc Gitter II. PERIODISCHE STRUKTUR DES FESTKÖRPERS A. Reziproke Gitterbeziehung zwischen fcc- und bcc Gitter 1. Zeigen Sie für das kubisch flächenzentrierte Gitter in Fig. 1 mit der Kantenlänge a: Das Volumen der

Mehr

Gliederung der Vorlesung im SS

Gliederung der Vorlesung im SS Gliederung der Vorlesung im SS A. Struktureller Aufbau von Werkstoffen. Atomare Struktur.. Atomaufbau und Periodensystem der Elemente.2. Interatomare Bindungen.3. Aggregatzustände 2. Struktur des Festkörpers

Mehr

Materialwissenschaft I - Keramik-Kapitel 2 2-1

Materialwissenschaft I - Keramik-Kapitel 2 2-1 Materialwissenschaft I - Keramik-Kapitel 2 2-1 2 Strukturen der Keramiken Die Kristallchemie erklärt den atomaren Aufbau der Keramiken und die Zusammenhänge zwischen der chemischen Zusammensetzung und

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII Prof. Dr. F. Koch Dr. H. E. Porteanu fkoch@ph.tum.de porteanu@ph.tum.de SS 2005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII 19.05.05 Festkörperphysik - Kristalle Nach unserem kurzen Ausflug in die Molekülphysik

Mehr

Festkörperchemie SYNTHESE. Shake and bake Methode: Sol-Gel-Methode. Am Beispiel :

Festkörperchemie SYNTHESE. Shake and bake Methode: Sol-Gel-Methode. Am Beispiel : Festkörperchemie SYNTHESE Shake and bake Methode: Am Beispiel : Man zerkleinert die Salze mechanisch, damit eine möglichst große Grenzfläche zwischen den beiden Komponenten entsteht und vermischt das ganze.

Mehr

Symmetriebeziehungen zwischen verwandten Kristallstrukturen

Symmetriebeziehungen zwischen verwandten Kristallstrukturen Ulrich Müller Symmetriebeziehungen zwischen verwandten Kristallstrukturen Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie unter Verwendung von Textvorlagen von Hans Wondratschek

Mehr

Wiederholung der letzten Vorlesungsstunde. Thema heute: Weitere Grundlegende Ionenstrukturen

Wiederholung der letzten Vorlesungsstunde. Thema heute: Weitere Grundlegende Ionenstrukturen Wiederholung der letzten Vorlesungsstunde Einfache Ionengitter, abgeleitet von kubisch-dichten Ionenpackungen: NaCl, CaF 2, Li 2 O, inverse Strukturtypen, ZnS (Zinkblende), Li 3 Bi, Strukturvarianten:

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zur Vorlesung Anorganische Chemie III Wintersemester 2015/16 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah # hexagonale Strukturtypen

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Das Gitter Kristalle bestehen

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # Elektronengas # Bändermodell Bindungsmodelle Metallbindung > Bindungsmodelle Elektronengas

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

Typisch metallische Eigenschaften:

Typisch metallische Eigenschaften: Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zur Vorlesung Anorganische Chemie III Wintersemester 2015/16 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah # Gittertypen # Bravaisgitter

Mehr

II.3. Primitive Elementarzellen und Basisvektoren

II.3. Primitive Elementarzellen und Basisvektoren II.3. Primitive Elementarzellen und Basisvektoren Elementarzelle (EZ): lückenlose Überdeckung des Raumes, Beispiel: Würfel für kubische Gitter, Primitive EZ: enthält 1 Gitterpunkt Beispiel: kubische bcc-struktur

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Festkörperphysik.1 Aggregatszustände. Kristallstrukturen.3 Chemische Bindung.4 Gitterschwingungen.5 Elektronen im Festkörper Phasendiagramm von CO Klassisches

Mehr

Thema heute: Aufbau fester Stoffe - Kristallographie

Thema heute: Aufbau fester Stoffe - Kristallographie Wiederholung der letzten Vorlesungsstunde: Thema: Ionenbindung Ionenbindung, Kationen, Anionen, Coulomb-Kräfte Thema heute: Aufbau fester Stoffe - Kristallographie 244 Aufbau fester Materie Im Gegensatz

Mehr

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können: Festk234 37 11/11/22 2.9. Drehungen und Drehinversionen Bereits kennen gelernt: Translationssymmetrie. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 5

Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Wiederholung # 2D Muster haben keine Spiegelebene in der Projektionebene # Der Verschiebungsvektor v einer Gleitspiegelebene, parallel zur Achse t

Mehr

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik - Festkörper - Prof. Dr. Ulrich Hahn WS 2008/2009 Grundtypen Gläser, amorphe Festkörper Nahordnung der Teilchen 5 10 Atom- unterkühlte Flüssigkeiten

Mehr

Nachbesprechung. Übung 3

Nachbesprechung. Übung 3 Nachbesprechung Übung 3 Form (a) Pinakoid, (b) allgemeine Fläche (Pfeil) wird durch eine Spiegelebene in ein Doma überführt, (c) Sphenoid (Pfeil), generiert durch die Wirkung einer 2-zähligen Achse, (d)

Mehr

Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand

Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand Beispiel 1: Difluoramin M. F. Klapdor, H. Willner, W. Poll, D. Mootz, Angew. Chem. 1996, 108, 336. Gitterpunkt, Gitter, Elementarzelle, Gitterkonstanten,

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen.5: Kleine Skalen Chemische Bindung Aggregatszustände Kristallstrukturen und Streuung Bildung des Lebens Kovalente Molekülbindungen Ladungsdichteverteilungen: CH 4 NH 3 H

Mehr

Übungsaufgaben zur Kristallographie Serie 8

Übungsaufgaben zur Kristallographie Serie 8 Übungsaufgaben zur Kristallographie Serie 8 HS ) Edelgase a) Unter welchen Bedingungen kristallisieren Edelgase? b) Warum kristallisieren Edelgase in Form von dichtesten Kugelpackungen? 2) Dichteste Kugelpackungen

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 284 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 5

Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Wiederholung 2/m 2/m 2/m {1 i 2 x 2 y 2 z m x m y m z } Ordnung 8! m 2 i 2 Wiederholung Spezielle Lagen # spezielle Lagen in zentrierten Raumgruppen

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Komplexchemie und Molekülgeometrie. Aufbau und Nomenklatur von Komplexverbindungen

Komplexchemie und Molekülgeometrie. Aufbau und Nomenklatur von Komplexverbindungen Aufbau und Nomenklatur von Komplexverbindungen Komplexverbindungen sind chemische Verbindungen, die aus einem Zentralatom und Molekülen bzw. Ionen gebildet werden. Aufbau von Komplexverbindungen Zentralatom

Mehr

Schülervorbereitungsseminar an der Rheinischen Friedrich-Wilhelms- Universität Bonn für die Chemieolympiade 2009

Schülervorbereitungsseminar an der Rheinischen Friedrich-Wilhelms- Universität Bonn für die Chemieolympiade 2009 Schülervorbereitungsseminar an der Rheinischen Friedrich-Wilhelms- Universität Bonn für die Chemieolympiade 009 Teil : Allgemeine und Anorganische Chemie 0.05.009 Aufgabe Ein Ferrochrom-Stahl (Legierung

Mehr

Vorlesung Allgemeine Chemie: Chemische Bindung

Vorlesung Allgemeine Chemie: Chemische Bindung Vorlesung Allgemeine Chemie: Chemische Bindung Inhalte Gruppentendenzen: Alkalimetalle, Halogene, Reaktion mit H 2 und H 2 O, basische und saure Oxide, Ionenbindung, Gitterenergie, Tendenzen in Abhängigkeit

Mehr

Struktur von Einkristallen

Struktur von Einkristallen Struktur von Einkristallen Beschreibung des einkristallinen Festkörpers Am einfachsten zu beschreiben sind atomare Kristalle bei denen an jedem Punkt des Raumgitters sich genau ein Atom befindet. Man wählt

Mehr

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Grundlagen-Vertiefung PW3 Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Kristalle besitzen einen geordneten und periodischen Gitteraufbau. Die überwiegende Mehrzahl der anorganischen Festkörper

Mehr

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper

Mehr

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale.

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. Quantenzahlen Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. l = 0, 1, 2, 3, (Orbital-)Symbol s, p, d, f, Zahl der Orbitale

Mehr

Prinzipien des Kristallbaus

Prinzipien des Kristallbaus Zirkon Prinzipien des Kristallbaus 1. Pauling sche Regel: Kationen umgeben sich mit Anionen, wobei Anionen annähernd regelmässige Polyeder bilden. Die Koordinationszahl der Kationen, d.h. die Anzahl Anionen

Mehr

Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18

Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18 Gefüge und Eigenschaften metallischer Werkstoffe WS 7/8 Übung 5 Musterlösung 0..07 Aufgabe Welche Bravais-Gittertypen gibt es? Welche Modifikationen besitzen Sie? Nennen Sie Materialbeispiele zu jedem

Mehr

Vorlesung Allgemeine Chemie: Chemische Bindung

Vorlesung Allgemeine Chemie: Chemische Bindung Vorlesung Allgemeine Chemie: Chemische Bindung Inhalte Gruppentendenzen: Alkalimetalle, Halogene, Reaktion mit H 2 und H 2 O, basische und saure Oxide, Ionenbindung, Gitterenergie, Tendenzen in Abhängigkeit

Mehr

1. Kristalliner Zustand der Materie

1. Kristalliner Zustand der Materie Vorwort Eine Vorlesung über Festkörperphysikgehörtzu den Pflichtveranstaltungen des Physikstudiums an Universitäten und Technischen Hochschulen. Sie wird im allgemeinen als Einführungsvorlesung innerhalb

Mehr

Hier: Beschränkung auf die elektrische Eigenschaften

Hier: Beschränkung auf die elektrische Eigenschaften IV. Festkörperphysik Hier: Beschränkung auf die elektrische Eigenschaften 3 Aggregatzustände: fest, flüssig, gasförmig: Wechselspiel Anziehungskräfte der Teilchen gegen die thermische Energie kt. Zustand

Mehr

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie DIE CHEMISCHE BINDUNG Ionische Bindung, Beispiel Natriumchlorid Trifft

Mehr

CHEMIE ZOMETOOL. Leseprobe. art and science at play. Tout est trouvé - René Just Haüy

CHEMIE ZOMETOOL. Leseprobe. art and science at play. Tout est trouvé - René Just Haüy BURKART RISTALL DIETERICH MARTIN HIERTZ CHEMIE Leseprobe Tout est trouvé - René Just Haüy art and science at play ZOMETOOL Allgemeine Hinweise zum Aufbau Mit diesem Baukasten halten Sie ein ideales Hilfsmittel

Mehr

Einteilchenbeschreibung in entsprechender Umgebung (andere Atome als Hintergrund) nicht formbeständig und nicht. aber volumenbeständig

Einteilchenbeschreibung in entsprechender Umgebung (andere Atome als Hintergrund) nicht formbeständig und nicht. aber volumenbeständig Literatur 1. N.W. Ashcroft und N.D. Mermin: Solid State Physics, (Sounders College, Philadelphia, 1988) N.W. Ashcroft und N.D. Mermin: Festkörperphysik, (R. Oldenbourg Verlag, München, 001). K. Kopitzky:

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

Kristallographie I. Inhalt von Kapitel 3

Kristallographie I. Inhalt von Kapitel 3 62 Kristallographie I Inhalt von Kapitel 3 3 Der Kristall als Diskontinuum... 63 3.1 Zweidimensionale Raumgruppen... 63 3.1.1 Elementarmaschen... 63 3.1.2 Die zweidimensionalen Punkt- und Raumgruppen...

Mehr

Workshop: Kristallstrukturen

Workshop: Kristallstrukturen Workshop: Kristallstrukturen Literatur: Anorganische Strukturchemie, Ullrich Müller, Teubner-Verlag Borchardt-Ott: Kristallographie, Springer-Verlag Smart/Moore: Einführung in die Festkörperchemie, Vieweg

Mehr

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge!

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge! Eine Pyramide aus Kugeln Eine Pyramide aus übereinander gelegten Kugeln das ist sehr einfach und kompliziert zugleich! In der Draufsicht So wie in den Abbildungen links wurden damals im Mittelalter Kanonenkugeln

Mehr

Unterrichtsmaterial zum Modul Symmetrie

Unterrichtsmaterial zum Modul Symmetrie Unterrichtsmaterial zum Modul Symmetrie Inhalt (je 4x) Alkalifeldspat (Prisma - monoklin) Kalkspat/Calcit (Rhomboeder - trigonal) Apatit (Prisma & Pyramide - hexagonal) Quarz (Prisma & Pyramide - trigonal)

Mehr

Besetzung der Orbitale

Besetzung der Orbitale Frage Beim Wiederholen des Stoffes bin ich auf die Rechnung zur Energie gestoßen. Warum und zu welchem Zweck haben wir das gemacht? Was kann man daran jetzt erkennen? Was beschreibt die Formel zu E(n),

Mehr

Allgemeine Chemie I Herbstsemester 2012

Allgemeine Chemie I Herbstsemester 2012 Lösung 4 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Im Vorlesungsskript sind für Xenon die Werte σ(xe) = 406 pm und ε = 236 kjmol 1 tabelliert. ( ) 12 ( ) 6 σ σ E i j = 4ε (1) r i j r i j r i j

Mehr

Röntgenstrukturanalyse von Einkristallen

Röntgenstrukturanalyse von Einkristallen Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2017 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah Symmetrie,

Mehr

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8 Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste

Mehr