Physik 2 (GPh2) am
|
|
|
- Georg Becker
- vor 9 Jahren
- Abrufe
Transkript
1 Name, Matrikelnummer: Physik 2 (GPh2) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung Physik 2 im SS 00 (Prof. Müller, Prof. Sternberg) oder folgende SS ohne Veränderungen oder Ergänzungen, Taschenrechner (ohne drahtlose Übertragung mit einer Reichweite von größer als 30 cm wie Funkmodem, IR-Sender, Bluetooth) Dauer: 2 Stunden Maximal erreichbare Punktezahl: 100. Bestanden hat, wer mindestens 50 Punkte erreicht. Bitte beginnen Sie die Lösung der Aufgabe unbedingt auf dem betreffenden Aufgabenblatt! Falls Sie weitere Blätter benötigen, müssen diese unbedingt deutlich mit der Aufgabennummer gekennzeichnet sein. Achtung! Bei dieser Klausur werden pro Aufgabe 1 Punkt für die Form (Gliederung, Lesbarkeit, Rechtschreibung) vergeben! Bitte kennzeichnen Sie dieses Blatt und alle weiteren, die Sie verwenden, mit Ihrem Namen und Ihrer Matrikelnummer. AUFGABE MÖGLICHE PUNKTZAHL ERREICHTE PUNKTZAHL 1 a 6 1 b 3 1 c 6 1 d 3 1 e 3 1 f 3 2 a 8 2 b 8 2 c 8 3 a 6 3 b 6 3 c 6 3 d 6 4 a 8 4 b 2 4 c 3 4 d 3 4 e 4 4 f 4 Form 4 Gesamt 100 Seite 1 von 9
2 1. Wellen und Tsunami a) Tsunami sind durch Seebeben ausgelöste Wellen. Sie sind sehr lange Wellen. Typische Wellenlängen bei Tsunamis liegen zwischen 100 km und 500 km, je nach Wassertiefe. Die Ausbreitungsgeschwindigkeit liegt bei 800 km/h. In welchem zeitlichen Abstand treffen die Wellen beider obigen Wellenlängen auf die Küste? b) Auf dem Meer beträgt die Amplitude (z.b.) 0,2 m. Warum ist die Amplitude in Küstennähe so hoch (Begründung). c) Auf dem Meer in 10 km Entfernung ist eine Sandbank vorgelagert. Auf dieser Sandbank befindet sich eine beleuchtete Boje mit einem Licht, welches eine Lichtleistung von 1 kw hat. Welche Leistung trifft in das Auge eine Beobachters am Strand, der die Boje beobachtet (Durchmesser der Pupille 4 mm)? d) Schreiben Sie die Tsunami-Welle mit obigen Angaben als Lösung der Wellengleichung auf (Wellenlänge 100 km). e) Was ist der Unterschied zwischen einer Wasserwelle und einer Schallwelle? f) Haben Sie eine Idee, woran es liegt, dass sich Wasserwellen nicht wie Schallwellen ausbreiten können (Begründung) Lösungen: a) λ/v = T 100 km/800km/h = 1/8 h = 60/8 min = 7,5 min 500 km/800km/h = 5/8 h = 300/8 min = 37,5 min b) In Strandnähe hat die Welle keinen Platz nach unten sich auszubreiten. Sie wird, bildlich gesprochen, angehoben. c) Fläche der Pupille: π * r² = : π * 2² mm² = 4 π mm² Fläche einer Kugel (in 10 km Entfernung): = 4 π r² = 4 π ( mm)² = 4 π mm² Leistung, die min die Pupille trifft: 1000 W * (Fläche der Pupille) / (Fläche Kugel) = 1000 W * 4 π mm² / 4 π mm² = W Seite 2 von 9
3 d) Für die Wellenlänge 100 km: mit f = v/λ und ω = 2 π f ω = 2 π 800 km/h/100 km = 2 π 8 / (60 * 60 sec) y(x,t) = 0,2 m * sin ( k * x ω * t) = 0,2 m * sin ( 2 π / m 2 π ω * t) e) Eine Wasserwelle (Oberfläche) ist immer eine transversale Welle und eine Schallwelle ist eine longitudinale Welle. f) Luft ist kompressibel, d.h. lässt sich zusammendrücken. Wasser dagegen lässt sich so gut wie nicht zusammendrücken. Daher bevorzugen Wasserwellen transversale Wellen zur Ausbreitung, da sie sich an der Oberfläche ausbreiten. Seite 3 von 9
4 2. Polarisation a) Es seien zwei ideale Polarisationsfilter hintereinander geschaltet. Zeichnen Sie die Intensität als relative Größe zu I 0 nach dem zweiten Filter in Abhängigkeit des Winkels der Polarisationsebenen zwischen 1. und 2. Filter für die Winkel von 0 bis 180 auf. I 0 sei die Intensität vor dem ersten Filter. b) Nicht jeder Polarisationsfilter ist ideal. Der erste Filter lasse 30 % des Lichtes als unpolarisiertes Licht durch. Wie viel der (Anfangs-)Intensität I 0 ist nach dem 3. Filter noch vorhanden, wenn die Polarisationsebenen um 45 gegeneinander versetzt sind und der zweite Filter zu 95 % polarisiert? c) Sie haben Licht aus zwei Farben (rot und blau), die um 90 gegeneinander polarisiert sind. Der erste Polarisationsfilter ist um 45 gegenüber der blauen (waagerechten) Ebene gedreht. Der zweite Filter ist um weitere 90 gedreht und der 3. Filter ist um weitere 45 gedreht. (Alle Filter haben die gleiche Drehrichtung). Welche Aussage(n) ist/sind richtig? O Es kommt kein Licht mehr an. O Es kommt blaues Licht mit voller Intensität an. O Es kommt rotes Licht mit voller Intensität an. O Es kommt rotes Licht mit schwächerer Intensität an. O Es kommt blaues Licht mit schwächerer Intensität an. O Es stimmt keine der obigen Aussagen. Seite 4 von 9
5 Lösung: Intensität I 0 Winkel b) nach dem 1. Filter: I 1 = 0, 3 I 0 + 0,7 * I 0 /2 unpol. pol. Anteil nach dem 2. Filter: I 2 = (0,3 * I 0 /2 + 0,7 *I 0 /2* cos²45 ) *0,95 + 0,05 * I 1 pol. unpol. Anteil vom 2. Filter nach dem 3. Filter: I 3 = (0,3 * I 0 /2 + 0,7 *I 0 /2* cos²45 ) *0,95 * cos²45 ) + 0,05 * (0, 3 * I 0 + 0,7 * I 0 /2) = (0,15 I 0 + 0,175 * I 0 ) *0, ,05 (0,3 * I 0 + 0,35 I 0 ) = 0, I 0 c) blau mit schwächerer Intensität, da der dritte Filter in der blauen Ebene liegt und den Rest ausfiltert. Seite 5 von 9
6 3. Photoelektrischer Effekt Der photoelektrische Effekt war ein wichtiges Experiment zur Entwicklung des Welle- Teilchen-Dualismus. Gegeben ist die folgende Apparatur zur Messung des photoelektrischen Effektes. h (Wirkungsquantum) = 6, m/s; 1ev = 1, J 34 ( kg m 2 2 / s ) s ; c (Lichtgeschwindigkeit) = a) Erläutern Sie anhand der Skizze das Experiment! b) Mit den experimentellen Daten wurde die Formel E = hf hergeleitet. Was ist die zentrale Aussage dieser Formel? c) Berechnen Sie die Energie des Lichtes mit den Wellenlängen 400 nm und 700 nm! d) Die Intensität des Sonnenlichtes an der Oberfläche der Erde beträgt ca W/m 2. Berechnen Sie die Anzahl der Photonen, die in einer Sekunde auf eine Fläche von 1 cm 2 treffen. Gehen Sie dabei von der Annahme aus, dass die durchschnittliche Photonenenergie 2 ev beträgt. Seite 6 von 9
7 Musterlösung: h c 1240eV E = h f = = = 3,1 ev c) λ 400nm E(700nm) = 1,77eV Egesamt 0,14 J 17 d) Egesamt = N EPhoton N = = = 4, EPhoton 2 1,6 10 J Reibungskoeffizient: mv m( 2gh) m2gh h 15m Ekin = WR mv = µ Gmgs µ G = = = = = = 0,5 2 mgs mgs 2mgs s 30m d) keinen!!!!! Wird die Reibung vernachlässigt, so sind die potentielle Energie, die kinetische Energie und die Reibkraft proportional zur Masse. Die Umwandlung der potentiellen Energie in kinetische Energie ist dann unabhängig von der Masse. Alle Körper fallen gleich schnell, wenn die Reibung vernachlässigt wird. Seite 7 von 9
8 4. Geschwindigkeitsmessung In Ostfriesland haben alle Fahrzeuge einen Sender, der immer während einer Fahrt ein Signal der Frequenz 10 Hz erzeugt. Diese Frequenz liegt unterhalb der tiefsten hörbaren Frequenz für Menschen, so dass sie nicht gestört werden. Die Polizei in Ostfriesland braucht daher keine Radargeräte zur Geschwindigkeitsmessung, sondern nur Frequenzmessgeräte, die Frequenzverschiebungen des Signals messen, und Thermometer. a) Bei einem Auto, das auf einen Polizeiwagen zufährt, wird eine Signalfrequenz von 10,52 Hz gemessen. Die Temperatur der Luft beträgt 10,0 C. Wie schnell fährt das Auto? (Schallgeschwindigkeit in Luft: (331, T/ C) m/s, Lichtgeschwindigkeit in Luft: km/s) b) Der Fehler in der Geschwindigkeitsmessung betrage 3 m/s. Geben Sie das Ergebnis aus a) und den dazugehörigen Fehler in der allgemein üblichen Darstellungsform an, indem Sie das Ergebnis auf die signifikante Dezimalstelle des Fehlers runden. c) Ist das Runden des Ergebnisses hier in dem konkreten Fall der Geschwindigkeitsmessung angebracht? d) Wie groß ist der relative Fehler bei der Messung? Denken Sie daran den relativen Fehler auf eine signifikante Stelle aufzurunden. e) Während ein ostfriesischer Polizist seinen Dienst tut, rauscht ein Auto an ihm vorbei, ehe seine Messung abgeschlossen ist. Da denkt sich der Polizist: Ich messe einfach die Signalfrequenz, während sich das Auto von mir entfernt. Was muss der Polizist beachten? Kreuzen Sie an. Mehrere Antworten können richtig sein. O Bei gleicher Geschwindigkeit des Autos ist die Signalfrequenz des wegfahrenden Autos größer als die des heranfahrenden Autos. O Bei gleicher Geschwindigkeit des Autos ist die Signalfrequenz des wegfahrenden Autos kleiner (aber größer 0) als die des heranfahrenden Autos. O Bei gleicher Geschwindigkeit des Autos ist die Signalfrequenz des wegfahrenden Autos negativ. O Das Einsetzen der gemessenen Signalfrequenz des wegfahrenden Autos in die zu großen Geschwindigkeit. O Das Einsetzen der gemessenen Signalfrequenz des wegfahrenden Autos in die zu kleinen Geschwindigkeit (aber größer 0). O Das Einsetzen der gemessenen Signalfrequenz des wegfahrenden Autos in die negativen Geschwindigkeit. O Das Einsetzen der gemessenen Signalfrequenz des wegfahrenden Autos in die Geschwindigkeit, deren Betrag ungefähr der Geschwindigkeit des heranfahrenden Autos entspricht. Seite 8 von 9
9 f) Begründen Sie Ihre Kreuze, indem Sie die Signalfrequenz des wegfahrenden Autos (mit Geschwindigkeit aus a) ) berechnen und diese Signalfrequenz in die Formel zur Bestimmung der Geschwindigkeit für heranfahrende Autos einsetzen. Lösung: a) vph = (331,5 + 0,6 * 10,0) m/s) = 337,5 m/s f ' = f / (1 vq/vph) => vq = vph * (1 f / f ') = 16,68251 m/s 16,7 m/s b) vq = (17 ± 3) m/s c) Nein. Es ist nicht angebracht. Wenn aufgerundet werden muss, kann es sein, dass die Geschwindigkeit inklusive Fehler größer als erlaubt wird, wohingegen ohne Rundung die Geschwindigkeit inklusive Fehler kleiner als erlaubt sein könnte. d) ur = 3 / 16,7 = 17,96 % 20 % e) Bei gleicher Geschwindigkeit des Autos ist die Signalfrequenz des wegfahrenden Autos kleiner (aber größer 0) als die des heranfahrenden Autos. Das Einsetzen der gemessenen Signalfrequenz des wegfahrenden Autos in die negativen Geschwindigkeit. Das Einsetzen der gemessenen Signalfrequenz des wegfahrenden Autos in die Geschwindigkeit, deren Betrag ungefähr der Geschwindigkeit des heranfahrenden Autos entspricht. f) f' = f / (1 + vq/vph) = 9,529 Hz vq = 337,5 m/s * (1 10 Hz / 9,529 Hz) = 16,68197 m/s 16,68197 m/s 16,68251 m/s Seite 9 von 9
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur
Teilklausur Physik 2 (GPh2) am
Name, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 21.9.06 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Teilklausur: Beiblätter
Physik 2 (GPh2) am
Name, Matrikelnummer: Physik 2 (GPh2) am 16.9.11 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter
Teilklausur Physik 2 (GPh2) am
Name, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 7.2.07 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Teilklausur: Beiblätter
Teilklausur Physik 2 (GPh2) am
Name, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 17.3.05 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Teilklausur: Beiblätter
Physik 2 (GPh2) am für BA
Name, Matrikelnummer: Physik 2 (GPh2) am 16.12.08 für BA Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
Physik 2 am
Name: Matrikelnummer: Studienfach: Physik 2 am 28.03.2017 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 7.3.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Teilklausur Physik 2 (GPh2) am
Name, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 22.9.05 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Teilklausur: Beiblätter
Klausur Physik 1 am
Name, Matrikelnummer: Klausur Physik 1 am 10.7.00 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 im WS 99/00
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 13.3.07 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 18.9.09 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Teilklausur Physik 2 (GPh2) am
Name, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 18.3.04 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 11.7.05 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 1.10.10 Fachbereich Elektrtechnik und Infrmatik, Fachbereich Mechatrnik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vrlesung Physik 1 ab WS
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik (GPh) am 11.03.014 Fachbereich Elektrtechnik und Infrmatik, Fachbereich Mechatrnik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vrlesung
Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 16.5.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Klausur Physik 1 (GPH1) am 8.7.02
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 8.7.02 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 im
Physik 1 am
Name: Matrikelnummer: Studienfach: Physik 1 am 30.01.2017 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
Teilklausur Physik 2 (GPh2) am
ame, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 8.2.07 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Teilklausur: Beiblätter
Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 9.7.07 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Teilklausur Physik 2 (GPh2) am 30.9.04
Name, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 30.9.04 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Teilklausur: Beiblätter
Klausur Physik 1 (GPH1) am 10.7.06
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 10.7.06 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 13.3.09 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Klausur Physik 1 (GPH1) am
Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 10.3.10 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab
Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau
Nae, Matrikelnuer: Klausur Physik 1 (GPH1) a 30.9.11 Fachbereich Elektrotechnik und Inforatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsittel: Beiblätter zur Vorlesung Physik 1 ab WS 99/00
Physik 2 (GPh2) am
Name, Matrikelnummer: Physik 2 (GPh2) am 18.3.11 Fahbereih Elektrotehnik und Informatik, Fahbereih Mehatronik und Mashinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 2 ab WS 10/11 (Prof.
Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2004/2005
Name: Gruppennummer: Aufgabe 1 2 3 4 5 6 7 insgesamt erreichte Punkte erreichte Punkte Aufgabe 8 9 10 11 12 13 14 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner
1. Klausur in K2 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit
1. Klausur in K2 am
Name: Punkte: Note: Ø: Kernfach Phsik Abzüge für Darstellung: Rundung:. Klausur in K am.0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit
Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31
Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Bitte Rückseite beachten! D-93053 Regensburg Physik Postfach: D-93040 Regensburg Prof. Dr. A. Penzkofer Telefon (0941) 943-2107
Experimentalphysik EP, WS 2011/12
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/ Probeklausur (ohne Optik)-Nummer:. Februar 0 Hinweise zur Bearbeitung Alle benutzten
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall
Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Versuchsziel Geschwindigkeitsmessung mit Hilfe
PN 1 Klausur Physik für Chemiker
PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.
Aufgabensammlung. zum. RCL "Fotoeffekt"
Aufgabensammlung zum RCL "Fotoeffekt" S. Gröber Technische Universität Kaiserslautern März 2009 Inhaltsverzeichnis I. Aufgaben 1. Intensität von Licht 2 2. Versuchsaufbau zum RCL Fotoeffekt 2 3. Einsteinsche
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode
Polarisationsapparat
1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist
Physikalisches Praktikum O 4 Debye-Sears Effekt
Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum O 4 Debye-Sears Effekt Versuchsziel Messung der Ultraschallwellenlänge. Literatur
Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 21/211 13. Übungsblatt - 31. Januar 211 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (2 Punkte) Der Mensch
6.2.2 Mikrowellen. M.Brennscheidt
6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ
m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter
Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche
Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in
A. Mechanik (18 Punkte)
Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht
Klausur 3 Kurs 11Ph1e Physik
2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)
ANHANG MASSE UND GEWICHTSKRAFT
ANHANG Arbeitsblatt Name: MASSE UND GEWICHTSKRAFT 1. Führe 10 Messungen durch! Auf dem Display wird die gewichtskraft in Newton (N) angegeben. 10 g Massestück N 20 g Massestück N 50 g Massestück N 100
Physik Profilkus ÜA 09 Fotoeffekt Ks. 2012
Aufgaben zum Fotoeffekt: Afg. 1: An einem klaren Tag nimmt ein Quadratmeter eines Sonnenkollektors bei senkrechtem Einfall eine Strahlungsleistung von ca. 1,0 kw auf. Schätze ab, wie viele Photonen also
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Musterlösung Montag 14. März 2011 1 Maxwell Wir bilden die Rotation der Magnetischen Wirbelbleichung mit j = 0: ( B) = +µµ 0 ɛɛ 0 ( E) t und verwenden wieder die Vektoridenditäet
Vordiplomsklausur Physik
Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich
Schriftliche Prüfung zur Feststellung der Hochschuleignung
Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen
= 6,63 10 J s 8. (die Plancksche Konstante):
35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese
Grundwissen. Physik. Jahrgangsstufe 10
Grundwissen Physik Jahrgangsstufe 10 1. Impuls Grundwissen Physik Jahrgangsstufe 10 Seite 1 Definition: p=m v [ p]=1 kg m s Impulserhaltungssatz: p vorher = p nachher p= p ' p 1 p = p' 1 p ' m 1 =1kg stößt
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem
Version A. Aufgabe 1. A: 1.2 m B: 0.01 m C: 0.11 m D: 0.31 m E: m. Aufgabe 2
Aufgabe 1 Eine Kugel mit Masse 5 kg wird auf eine senkrecht stehende Spiralfeder mit Federkonstante D=5000 N/m gelegt. Wie weit muss man die Kugel nun nach unten drücken (die Feder stauchen), damit beim
Musterlösung 2. Klausur Physik für Maschinenbauer
Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit
Äußerer lichtelektrischer Effekt
Grundexperiment 1 UV-Licht Video: 301-1 Grundexperiment 2 UV-Licht Grundexperiment 3 Rotes Licht Video: 301-2 Grundexperiment 3 UV-Licht Glasplatte Video: 301-2 Herauslösung von Elektronen aus Metallplatte
Elektromagnetische Feldtheorie 2
Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript
Lösung: a) b = 3, 08 m c) nein
Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter
8. Akustik, Schallwellen
Beispiel 2: Stimmgabel, ein Ende offen 8. Akustik, Schallwellen λ l = n, n = 1,3,5,.. 4 f n = n f1, n = 1,3,5,.. 8.Akustik, Schallwellen Wie gross ist die Geschwindigkeit der (transversalen) Welle in der
Lösungen zu den Aufg. S. 363/4
Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f
Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008
Klausur Physik für Pharmazeuten und Biologen (PPh) WiSe 07/08 11. Februar 2008 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min Bitte NICHT mit Bleistift schreiben! Nur Ergebnisse auf
Aufnahmeprüfung Physik Teil II. kj kg K. Viel Erfolg! Name:... Vorname:... Studiengang:... Wahlbereich. Aufgabe Total.
Aufnahmeprüfung 2011 Name:... Vorname:... Studiengang:... Wahlbereich 1 Wahlbereich 2 Aufgabe 4 5 6 7 6 7 Total Punkte Physik Teil II Zeit: Hilfsmittel: 90 Minuten für Teil I und Teil II Grafikfähiger
Institut für Physik Name: Vorname: Universität Mainz
Institut für Physik Name: Vorname: Universität Mainz Nach-Klausur zum Physikalischen Praktikum für Mediziner und Pharmazeuten SS 2015 A - Klausuren ohne deutlich lesbaren Namen und Matrikelnummer sind
Labor für Technische Akustik
Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende
Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen
Vordiplomsklausur Physik
Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich
Äußerer lichtelektrischer Effekt Übungsaufgaben
Lösung: LB S.66/1 Ein Modell ist ein Ersatzobjekt für ein Original. Es stimmt in einigen Eigenschaftenmit dem Original überein, in anderen nicht. Einsolches Modell kann ideel (in Form eines Aussagesystems)
Schwerpunktfach Physik und Anwendungen der Mathematik
Schriftliche Maturitätsprüfung 2014 Kantonsschule Reussbühl Luzern Schwerpunktfach Physik und Anwendungen der Mathematik Prüfende Lehrpersonen Klasse Hannes Ernst ([email protected]) Luigi Brovelli
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Grundlagen der Physik 2 Schwingungen und Wärmelehre
(c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in
7. Klausur am
Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34
Bewertung: Jede Aufgabe wird mit 4 Punkten bewertet.
gibb / BMS Physik Berufsmatur 2007 Seite 1 Name, Vorname: Klasse: Zeit: 120 Minuten Hilfsmittel: Taschenrechner und Formelsammlung nach eigener Wahl. Die Formelsammlung darf mit persönlichen Notizen ergänzt
Name: Punkte: Note Ø: Achtung! Es gibt Abzüge für schlechte Darstellung: Klasse 7b Klassenarbeit in Physik
Name: Punkte: Note Ø: Achtung! Es gibt Abzüge für schlechte Darstellung: Klasse 7b 16. 1. 01 1. Klassenarbeit in Physik Bitte auf gute Darstellung und lesbare Schrift achten. Aufgabe 1) (4 Punkte) Bei
Schwingungen und Wellen
Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen
Experimentalphysik EP, WS 2013/14
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung
Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung
Experimentalphysik EP, WS 2012/13
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten
Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:
Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände
Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz
Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,
Aufgaben Mechanische Wellen
I.2 Unterscheidung von Wellen 1. Beschreibe, in welche zwei Arten man Wellenvorgänge einteilen kann. 2. Welche Arten von mechanischen Wellen gibt es in folgenden Medien: a) Luft, b) Wasser, c) Stahl? I.3
PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert
PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben
12. Vorlesung. I Mechanik
12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene
Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische
Grundkurs Physik (2ph2) Klausur
1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.
Probeklausur Physik für Ingenieure 1
Probeklausur Physik für Ingenieure 1 Othmar Marti, ([email protected]) 19. 1. 001 Probeklausur für Ingenieurstudenten Prüfungstermin 19. 1. 001, 8:15 bis 9:15 Name Vorname Matrikel-Nummer
Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung
Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer
Abiturprüfung Physik, Leistungskurs
Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer
Photozelle. Kathode. Spannungsquelle - + U Voltmeter
1. Mache dich mit dem Applet vertraut! Lies hierzu den einführenden Text und erkläre die folgenden Begriffe in diesem Zusammenhang in einem kurzen Satz. Photon: Kathode: Anode: Energie eines Photons: Energie
Labor für Technische Akustik
Labor für Technische Akustik Bestimmung der Wellenlänge von Schallwellen mit einer Abbildung 1: Experimenteller Aufbau zur Bestimmung der Wellenlänge von Schallwellen mit einer. 1. Versuchsziel Wenn sich
Abiturprüfung Physik, Grundkurs
Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
Mathematik Grundlagen Teil 2
BBZ Biel-Bienne Eine nstitution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatike r Médiamaticiens Centre de
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
