Mündliche Matura-Aufgaben: Analysis
|
|
|
- Gitta Solberg
- vor 9 Jahren
- Abrufe
Transkript
1 Mündliche Matura-Aufgaben: Analsis A1) Schreiben Sie mit dem Summenzeichen A2) Berechnen Sie: lim x x 3 + 3x 5 x x 3 A3) Welches Glied der Folge 8, 24, 72, 216,... ist das erste, welches grösser als 1'000'000 ist? A4) Berechnen Sie die Ableitung ohne den Term zu vereinfachen: f(x) = 1 x 2 x A5) Berechnen Sie die Ableitung ohne den Term zu vereinfachen: f(x) = x sin(x 2 ) A6) Lösen Sie die Gleichung 3 4 x = 6 7 x nach x auf! A7) Lösen Sie die Gleichung 8x 3 = 27 ohne Taschenrechner nach x auf! A8) Lösen Sie die Gleichung x 1.5 = 64 ohne Taschenrechner nach x auf! A9) Wald wächst pro Jahr ca. um 4%. In diesem Jahr nimmt ein Waldstück 4800 m 3 ein. Wie gross ist es im Jahr 2050? A10) Berechnen Sie die Gleichung der Tangente an den Graphen von f(x) = x 2 + 3x im Punkt ( 1 2). A11) Berechnen Sie den Scheitelpunkt der Parabel = 1 3 x x + 1 A12) Berechnen Sie alle Wendepunkte der Parabel = x 3 + 3x 2 4 A13) Berechnen Sie die Fläche, welche von der Parabel = x (x 1) und der x Achse eingeschlossen wird. A14) Skizzieren und berechnen Sie: e x dx 0
2
3 Mündliche Matura-Aufgaben: Vektorgeometrie V1) Gegeben sind die Punkte A(7 3 1), B(2 0 5) und C(9 3 1). Berechnen Sie die Fläche des Dreiecks ABC und den Winkel α beim Punkt A. V2) Gegeben sind die Punkte A(7 3 1), B(2 0 5) und C(9 3 1). Berechnen Sie den Abstand des Punktes D(4 4 4) zur Ebene durch die Punkte A, B und C. V3) Gegeben sind die Punkte A(9 3), B( 7 3) und C(5 2). Berechnen Sie den Mittelpunkt des Umkreises des Dreiecks ABC. V4) Eine quadratische Pramide mit den an einer Kante liegenden Ecken A(2 2 1) und B(0 1 1) hat die Spitze S(1 2 3). Die Grundfläche also das Quadrat ABCD liegt in der Ebene E: x 2 + 2z = 0. Berechnen Sie das Volumen der Pramide. V5) Gegeben sind die Punkte A(5 4 3) und B (6 2 3). Finden Sie einen Punkt C, der mit den Punkten A und B ein rechtwinklig-gleichschenkliges Dreieck bildet. (mit rechtem Winkel beim Punkt A) V6) Gegeben sind die Punkte A(2 3) und B ( 1 7). Finden Sie zwei Punkte C und D, sodass A, B, C und D ein Quadrat bilden. V7) Bestimmen Sie die Gleichung der mittelsenkrechten Ebene der Strecke AB. A(3 1 1), B( 5 3 7)! V8) Der Punkt P(1 8) geht durch eine Geradenspiegelung an der Geraden g in den Punkt P ( 3 2) über. Finden Sie eine Gleichung der Geraden g! V9) Finden Sie die Projektion P' (den senkrechten Schatten) des Punkts P(1 2 3) auf die Ebene E: x z = 0. V10) Die Punkte A(1 2 3) und B(2 4 5) sind aneinander liegende Ecken eines Quadrates, das in der Ebene E: 2x 2 z 1 = 0 liegt. Berechnen Sie die Gleichung der Geraden g, auf welcher die Seite AD des Quadrates liegt. V11) Bestimmen Sie den Schnittpunkt und den Schnittwinkel der Geraden g und h: g: = t ; h: 5 = t 1
4 V12) Zeigen Sie dass sich die Geraden g und h schneiden und bestimmen Sie den Schnittwinkel: g: 6 = t ; h: 14 = t 6 V13) Bestimme die Gleichung der Schnittgeraden sowie den Schnittwinkel der Ebenen E :5x 6z +1 = 0 und F : 4x + z 3 = 0. V14) Bestimme den Schnittpunkt sowie den Schnittwinkel zwischen der Geraden 0 = t 1 und der Ebene E :3x = 0. V15) Wie lautet die Gleichung der Kugel um den Ursprung, welche die Ebene der Gleichung 4x 2 + 4z 24 = 0 berührt? V16) Gegeben ist die Kugel k: (x 4) 2 + ( + 3) 2 + (z 2) 2 = 9 und die Ebene E: 3x + 4 = 0 Bestimmen Sie die Gleichungen der zur Ebene E parallelen Tangentialebenen der Kugel. V17) Gegeben ist die Kugel k: (x 4) 2 + ( + 3) 2 + (z 2) 2 = 9. Untersuche, ob sie die Ebene E: 2x z = 7 schneidet. V18) Bestimme die Schnittpunkte von der Kugel K mit Mittelpunkt M(1 0 3) und Radius r = 5 und der Geraden g: 0 = t 1
5 Mündliche Matura-Aufgaben: Wahrscheinlichkeitsrechnung WK1) Ein Hersteller von Taschenrechnern verschickt eine Lieferung, obwohl 7% aller Exemplare defekt sind. Wie gross ist die Wahrscheinlichkeit, dass bei einer Qualitätskontrolle von16 zufällig ausgewählten Exemplaren mindestens 2 defekte Taschenrechner dabei sind? WK2) Vier gleiche Würfel werden geworfen. Berechnen Sie die Wahrscheinlichkeit, dass höchstens ein Würfel eine Zahl über 4 zeigt. WK3) Eine 21 köpfige Schulklasse umfasst 7 Frauen und 14 Männer. a) Wie gross ist die Wahrscheinlichkeit, dass bei einer zufälligen Wahl einer Neunergruppe eine Gruppe mit 7 Männern und 2 Frauen gewählt wird? b) Wie gross ist die Wahrscheinlichkeit, dass bei einer zufälligen Wahl des Klassenchefs und seinem Stellvertreter Martin als Chef und ein Mädchen als Stellvertreterin gewählt wird? WK4) Ein Zug besteht aus je einem Erst- und einem Zweitklasswagen. a) Auf wie viele Arten können 15 Personen sich auf die zwei Wagen verteilen? b) Auf wie viele Arten können sie sich verteilen, wenn im Erstklasswagen höchstens noch 3 Personen Platz haben? WK5) Ein Lügendetektor wird zur Verbrechensaufklärung benutzt. Er ist zu 90% zuverlässig, wenn ein Verdächtiger schuldig ist, und zu 99% zuverlässig, wenn ein Verdächtiger unschuldig ist. Aus einer Personengruppe, von denen 5% ein Verbrechen begangen haben, wird eine Person zufällig ausgewählt und vom Lügendetektor als schuldig ausgewiesen. Wie gross ist die Wahrscheinlichkeit, dass die Person dennoch unschuldig ist? WK6) Mr. Burns möchte für sein Werks-Basketball-Team 9 Spieler aus dem Sektor 7G auswählen. Insgesamt arbeiten dort neben Homer Simpson noch 15 weitere Beschäftigte. a) Auf wieviele Arten kann so ein Team zusammengestellt werden? b) Wieviele Möglichkeiten gibt es, falls Homer dabei sein soll? c) Wieviele, wenn er nicht dabei sein soll?
6 WK7) An einem Pferderennen nehmen 12 Pferde teil. a) Ohne die Pferde zu kennen oder etwas vom Sport zu verstehen tippen Sie beim Wetten darauf, dass ein bestimmtes Pferd unter die ersten drei kommt. Mit welcher Wahrscheinlichkeit gewinnen Sie? b) Wieviele Tippmöglichkeiten für den Zieleinlauf der ersten 3 gibt es? c) Wie gross ist die Wahrscheinlichkeit, dass Sie die drei Pferde, die auf dem Podest stehen, richtig tippen (die Reihenfolge ist egal)? WK8) 12 Goldmünzen werden auf 100 Personen verteilt. Auf wieviele Arten kann man dies tun, wenn... a) die Münzen verschieden sind und jeder höchstens eine Münze bekommen kann. b) die Münzen gleich sind und jeder mehrere Münze bekommen darf. WK9) Aus 10 Kühen und 7 Bullen sollen 7 geschlechtergemischte Päärchen gebildet werden. a) Auf wieviele Arten geht das? b) Auf wieviele Arten kann man 5 solche Päärchen bilden? WK10) Am Samstag Abend will eine Gruppe von 14 Leuten in 3 Autos zu einer Part fahren. a) Auf wieviele Arten kann man die 14 Leute auf die drei Autos verteilen? (Dabei ist die Sitzordnung im Auto egal und in jedem Auto können beliebig viele Leute sitzen.) b) Auf wieviele Arten geht es, wenn in jedem der (verschiedenen) Autos höchstens 5 Personen sitzen dürfen? (Dabei ist die Sitzordnung im Auto egal) WK11) Bei einer Aktion des Kantistopp-Teams werden 20 Essensgutscheine unter den 40 Maturanden verlost. Dabei ist es auch denkbar, dass ein Maturand mehrere Bons einstecken kann. a) Wie viele Möglichkeiten gibt es? b) Wie gross ist die Wahrscheinlichkeit, dass Fritz genau 2 Bons bekommt?
7 Analsis Lösungen 21 A1) 4i + 3 = 4i 1 = 4i + 11 i=3 A2) A3) das 12. Glied 22 i=4 19 i=1 A4) f (x) = 2x ( 1 x ) x x 2 ( 1 x) 2 A5) f (x) = 1 sin(x 2 ) + x cos(x 2 ) 2x ( ) ( ) A6) x = ln 1 2 ln 7 4 A7) x = 2 3 A8) x = 1 16 A9) t, wo t die Anzahl Jahre bis 2050 sind A10) = x 1 A11) S( ) A12) W( 1 2) A13) 1 6 A14) 1
8 Vektorgeometrie Lösungen V1) 5; 135 V2) 19 5 V3) M(1 5.3) V4) 5 3 V5) AB ist eine Kathete, AC die andere. Es muss gelten: AB = AC (gleichschenklig) und AB AC = 0 (90 -Winkel). Z.B. C(3 3 3) oder C(7 5 3) V6) C 1 ( 5 4); D 1 ( 2 0) C 2 (3 10); D 2 (6 6) V7) E : 4x 3z +18 = 0 V8) Parametergleichung: g: V9) P (2 2 2) = t 3 2 ; oder Koordinatengleichung g: = 2 3 x V10) g: 1 = t 3 bzw. g: 1 = t 1 V11) S(6 7); V12) S(0 8 15); V13) g : = 29x 17 α = V14) S( ) α = 7.66 V15) k : x z 2 =16 V16) E 1 : 3x = 0 E 2 : 3x = 0 V17) k schneidet E. V18) S 1 ( 3 3 3) ; S 2 (4 4 3)
9 Wahrscheinlichkeitsrechnung Lösungen WK1) WK2) 0.59 WK3) a) b) WK4) a) b) 576 WK5) = 17,4% WK6) a) b) 6435 c) 5005 WK7) a) 3 = 0.25 b) 1320 c) 1 = WK8) a) 100! 88! = b) = WK9) a) b) WK10) a) 3 14 b) ! = WK11) a) = b) : = 0.076
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Herbst mit den Parametern a und b
Herbst 4. Gegeben ist eine Funktion f :f()=a+ b mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(/) verläuft und die Tangente t in B parallel ist zur Geraden
K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung
K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 017 Klasse: g Profil: MN / M Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne
Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :
Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden
a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:
. ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der
K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 2 27.11.2014 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 5 3 2 1 WT Ana A.1a) b) c) Summe P. (max) 6 4 5 15
Passerelle Mathematik Frühling 2005 bis Herbst 2006
Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch [email protected] 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3
MATURITÄTSPRÜFUNGEN 2012
Kantonsschule Romanshorn MATURITÄTSPRÜFUNGEN 2012 MATHEMATIK 3 Std. Maturandin, Maturand (Name, Vorname) Klasse 4 Mcde hcs... Lehrperson... Klasse... Datum: Montag, 11. Juni 2012 Name: Vorname: Punkte:
Passerellen-Prüfungen 2007 Mathematik: 4 Stunden (3 Seiten)
Punkte: Note: BME ISME MfB MSE Berner Maturitätsschule für Erwachsene Interstaatliche Maturitätsschule für Erwachsene St. Gallen/Sargans Maturitätsschule für Berufstätige, Basel Maturitätsschule für Erwachsene,
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe OE1: Ein
K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x
K2 KLAUSUR 2 PFLICHTTEIL 202 Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () Bestimmen Sie die Ableitung von f(x) = 2 x 2 + 4. (2) Berechnen Sie das Integral 4 ( ) x 2 dx. (3) Lösen Sie die
Zu jeder Aufgabe darf nur eine Lösung eingereicht werden. Mehrfache Lösungen für eine Aufgabe werden nicht bewertet.
Kantonsschule Zürcher Oberland Wetzikon Mathematik M6b Maturitätsprüfungen 2012 schriftlich Dauer: 4 Stunden Name: Punkte (max 58): Note: Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Beginnen
Übungsserie 5 Die Gerade
Kantonsschule Solothurn Übungen Vektorrechung RYS Übungsserie Die Gerade Bestimme eine Parametergleichung durch die wei Punkte A( -) und B( -) b) Liegen die Punkte P( -8) und Q( -) auf dieser Geraden?
Mathematik Schlussprüfung Passerelle SG - Herbst 2011
Dauer: Hilfsmittel: Std. Taschenrechner, Formelbuch. 0 Punkte Analsis: Polnomfunktion a.5 Punkte Gegeben ist eine Funktion f x=a x x 3. Bestimmen Sie a so, dass für den Wendepunkt Wx W / W gilt: W =. b
Maturitätsprüfung 2010 Mathematik Teil 1
Maturitätsprüfung 2010 Mathematik Teil 1 Klasse: 4Sa Lehrer: Fi Dauer: 90 Min. Die Formelsammlung der Neuen Kantonsschule Aarau ist als einziges Hilfsmittel zugelassen. Die Lösungen sollen sauber und übersichtlich
Ich wünsche euch allen viel Erfolg!
Klasse 6B, 007 Allgemeine Bemerkungen Im Prüfungsmäppchen sollen enthalten sein: Prüfung bestehend aus diesem Titelblatt und 4 weiteren Seiten Formelsammlung Schreibpapier Bemerkungen zur Prüfung Erlaubte
Lösung Abiturprüfung 1997 Grundkurs (Baden-Württemberg)
Lösung Abiturprüfung 997 Grundkurs (Baden-Württemberg) Analysis I.. a) f x= x5 x = x5 x = x5 x = f x Somit ist f punktsymmetrisch zum Ursprung. f x= x x ; x = ; x = 5 ; x =5 f geht durch den Urpsrung:
Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.)
KANTONSSCHULE KREUZLINGEN MATURITÄTSPRÜFUNGEN 001 / TYPUS MAR MATHEMATIK / 3 Std. Klasse 4 MC / ho Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.) (1) Gegeben ist die Funktion f: y
Jgst. 11/I 2.Klausur
Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,
MATURITÄTSPRÜFUNGEN 2008
Kantonsschule Romanshorn MATURITÄTSPRÜFUNGEN 2008 Mathematik 3 Std. Maturandin, Maturand (Name, Vorname) Klasse 4 Md hcs... Hilfsmittel Taschenrechner Fundamentum Mathematik und Physik oder Formelsammlung
Liechtensteinisches Gymnasium
Schriftliche Matura 2015 Liechtensteinisches Gymnasium Prüfer: Huber Sven Klasse 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Gib die zur Rechnung nötigen Einzelschritte an. 2) Skizzen müssen
Fach Mathematik Grundlagenfach Prüfungsdatum 24. Mai 2013
Kantonsschule Alpenquai Luzern Fach Mathematik Grundlagenfach 013 Prüfende Lehrperson Stefan Müller ([email protected]) Klasse 7Sa Prüfungsdatum 4. Mai 013 Prüfungsdauer 180 Minuten Erlaubte Hilfsmittel
5.3. Abstrakte Anwendungsaufgaben
Aufgabe.. Abstrakte Anwendungsaufgaben In den Raum zwischen der x-achse und dem Graphen von f(x) = x x + soll ein Rechteck möglichst großer Fläche gelegt werden, dessen Ecken auf dem Graphen liegen. Wie
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe
Maturitätsprüfung 2012 Mathematik Teil 1
Maturitätsprüfung 2012 Mathematik Teil 1 Klasse: 4NP Lehrer: Fi Dauer: 90 Min. Die im Unterricht verwendete Formelsammlung ist als einziges Hilfsmittel zugelassen. Alle Lösungen müssen ordentlich und nachvollziehbar
P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.
Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.
K2 ÜBUNGSBLATT 2 F. LEMMERMEYER
K2 ÜBUNGSBLATT 2 F. LEMMERMEYER Aufgabe 1. Hier ein knappes Beispiel, wie man einen Punkt P an einer Geraden g spiegelt (Wer sich gerne was merkt: Lotfußpunkte auf Ebene mit Lotgerade, Lotfußpunkte auf
Gymnasium Oberwil / Maturitätsprüfung Mathematik
Mathematik Verwenden Sie bitte für jede Aufgabe eine neue Seite. Dauer: Hilfsmittel: Bewertung: Vier Stunden Formeln, Tabellen, Begriffe (DMK), Taschenrechner TI-83, TI-83+, TI-84, TI-84+, TI-84+ Silver
b) Berechnen Sie die Koordinaten des Punktes D so, dass die Punkte A, B, C und D ein Quadrat bilden.
Aufgabe 1: 12 Punkte Gegeben sind die Punkte A(12 / -6 / 2), B(10 / 2 / 0) und C(4 / 2 / 6). a) Zeigen Sie, dass die Punkte A, B und C die Eckpunkte eines rechtwinkligen und gleichschenkligen Dreiecks
Übungsklausur Analysis & Geometrie Bevölkerungsdichte & Pyramide Pflichtteil (ohne Hilfsmittel)
Pflichtteil (ohne Hilfsmittel) ) Berechne die erste Ableitung. 3x a) f(x) e cos(x x) b) 3x f(x) e cos(x x) (5VP) ) Berechne und vereinfache. a) cos x dx b) 5 dx (4VP) x 3) Bestimme die Lösungsmenge der
Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten
Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten Die im Unterricht verwendete Formelsammlung ist als einziges Hilfsmittel zugelassen. Alle
MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte
MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen
ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK
ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 210 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben
Gymnasium Bäumlihof, Basel Maturitätsprüfung Taschenrechner TI-83 Plus inkl. Applikation CtlgHelp
Fach Klassen Mathematik alle 5. Klassen Dauer der Prüfung: Erlaubte Hilfsmittel: 4 Std. Fundamentum Mathematik und Physik Taschenrechner TI-83 Plus inkl. Applikation CtlgHelp Vorbemerkungen: 1. Ergebnisse
K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung
K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne
MATURITÄTSPRÜFUNGEN 2006
KANTONSSCHULE ROMANSHORN MATURITÄTSPRÜFUNGEN 2006 MATHEMATIK 3 Std. Klasse 4 Ma hcs Hilfsmittel: Taschenrechner Fundamentum Mathematik und Physik oder Formelsammlung DMK Beachten Sie:Jede Aufgabe ist auf
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)
MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert
Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben
Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde
Kursarbeit Nr.1 LK Mathematik NAME :
Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen
Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung
Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit
MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte. (1) Bestimmen Sie die erste Ableitung folgender Funktionen: a) f(x) = 2x 3 cos(x) + x
MATHEMATIK K 06.0.206 Aufgabe 2 3 4 5 6 7 8 Punkte (max 8 2 3 5 4 3 3 2 Punkte Gesamtpunktzahl /30 Notenpunkte ( Bestimmen Sie die erste Ableitung folgender Funktionen: a f(x 2x 3 cos(x + x b g(x 2 3x
Passerellen Prüfungen 2009 Mathematik
Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.
Übungsblatt 3 (Vektorgeometrie)
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Übungsblatt (Vektorgeometrie Roger Burkhardt 08 Mathematik. Aufgabe Gegeben seien die Vektoren
Grundlagenfach Mathematik. Prüfende Lehrpersonen Mitkova Teodora
Schriftliche Maturitätsprüfung 016 Fach Prüfende Lehrpersonen Mitkova Teodora [email protected] Müller Stefan [email protected] Shafai Esfandiar [email protected] Klassen Prüfungsdatum
Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)
Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig
K2 - Klausur Nr. 1. Lage von Geraden und Ebenen zueinander. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.
K2 - Klausur Nr. 1 Lage von Geraden und Ebenen zueinander Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Matura Mathematik schriftlich
Kantonsschule Zofingen Matura 014 Mathematik schriftlich Abteilungen 4ABCD Hilfsmittel: Formelsammlung Taschenrechner TI84 Zeit: vier Stunden, d.h. 40 Minuten Bewertung: Aufgabe 1 16 Punkte (++3+3+6) Aufgabe
ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK
ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: grafikfähig) Tafelwerk 270 Minuten Taschenrechner (nicht programmierbar, nicht Der Prüfungsteilnehmer wählt von den Aufgaben
K2 MATHEMATIK KLAUSUR 4. Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K MATHEMATIK KLAUSUR 4 17.03.017 Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max 0 0 10 10 60 Punkte Notenpunkte PT 1 3 4 5 6 7 * Summe P. (max 3 3 4 4 0 Punkte WT Ana A.1a b c A 1. Summe P. (max 6
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:
Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: [P] Bestimmen
Gymnasium Oberwil / Mathematik 2014 / Grundlagenfach Seite 1 von 6
Gymnasium Oberwil / Mathematik 2014 / Grundlagenfach Seite 1 von 6 Aufgabe 1: 14 Punkte Gegeben ist die Funktion f durch die Gleichung 1 3 3 2 f ( x) = x + x. 2 2 a) Berechnen Sie die Nullstellen, die
Mathematik Maturaprüfung ISME 2013
Hilfsmittel: CAS Taschenrechner, Formelsammlung Abgabe: Nach 3 Stunden. Gegeben ist die Funktionsschar y = f a = a a e a mit a >. a Es sei a =. Berechnen Sie i. die Nullstellen. ii. die lokalen Etrema
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, 19.1.201 von 9:00 bis 11:00 Seite 1 von 2 Der Rechenvorgang ist ausführlich darzustellen! Maximale Punkteanzahl: 20 1. ( Punkte)
Selbsteinschätzungstest
D-MATH ETHZ-Semesterbeginn HS 0 Selbsteinschätzungstest Dieser Test bietet Ihnen die Möglichkeit, Ihre mathematischen Schulkenntnisse abzurufen und zu überprüfen. Die Teilnahme ist freiwillig. Bei jeder
TYPUS MAR. Blutgruppe AB negativ B positiv A positiv Anteil 1
KANTONSSCHULE KREUZLINGEN MATURITÄTSPRÜFUNGEN 2004 TYPUS MAR MATHEMATIK / 3 Std. Klasse 4 MC / ho Zeit: Hilfsmittel: Beachten Sie: 180 Minuten Taschenrechner, Formelsammlung DMK Jede Aufgabe ist auf ein
Gymnasium Oberwil / Maturitätsprüfung Mathematik
Mathematik Verwenden Sie bitte für jede Aufgabe eine neue Seite Dauer: Hilfsmittel: Bewertung: Vier Stunden Formeln, Tabellen, Begriffe (DMK), Taschenrechner TI-84 Plus Die maximal möglichen Punktzahlen
Aufgabe 2 Die Abbildung zeigt den Graphen einer ganzrationalen Funktion f.
Aufgabe 1 Die Abbildung zeigt den Graphen G f einer für 1 x 3 mit x R definierten Funktion f, die bei x= 1; x=1und x=3 Nullstellen besitzt. Die Funktion F mit F( x)= 1 6 ( x2 +2 x+3 ) 3 ist eine Stammfunktion
Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )
Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede
Mit e 0 für alle x IR ergeben sich aus 2 x+ x = 0 die Nullstellen 0 und 2. 2 b) Ableitung mit der Produktregel und Ausklammern der e-funktion 3
Aufgaben aus dem Aufgabenpool. Analysis A_ Gegeben ist die Funktion f mit x f(x) = e ( x + x ) (x IR). a) Bestimmen Sie die Nullstellen der Funktion f. ( ) x b) Zeigen Sie, dass die Funktion F mit F(x)
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit eine blaue Kugel zu
K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung
K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 203 Klasse: Profil: Lehrperson: f M Rolf Kleiner MATHEMATIK Zeit: Erlaubte Hilfsmittel: Bemerkungen: 3 Stunden Grafiktaschenrechner
lautet y = x 4x 8. Bestimme die Komponenten von v. 2 Maturitätsprüfung Punkte Aufgabe 1 Welche Lage hat die Gerade 2 Punkte Aufgabe 2
Maturitätsprüfung 008 Mathematik Teil 1 Klasse: 4L Lehrer: Fi Dauer: 90 Min. Die Formelsammlung der Neuen Kantonsschule Aarau ist als einziges Hilfsmittel zugelassen. Die Lösungen sollen sauber und übersichtlich
Algebra 4.
Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen
Gymnasium Liestal Maturitätsprüfungen 2004
Gymnasium Liestal Maturitätsprüfungen 2004 Mathematik Klasse 4LM Bemerkungen: Hilfsmittel: Punkteverteilung: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner
Gymnasium Oberwil / Maturitätsprüfung Mathematik
Mathematik Verwenden Sie bitte für jede Aufgabe eine neue Seite. Dauer: Hilfsmittel: Bewertung: Vier Stunden Formeln, Tabellen, Begriffe (DMK), Taschenrechner TI-83, TI-83+, TI-84, TI-84+, TI-84+ Silver
Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten
Abiturprüfung 1998 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - 0 GM1. INFINITESIMALRECHNUNG x
Selbsteinschätzungstest
D-MATH ETHZ-Semesterbeginn HS 05 Selbsteinschätzungstest Dieser Test bietet Ihnen die Möglichkeit, Ihre mathematischen Schulkenntnisse abzurufen und zu überprüfen. Die Teilnahme ist freiwillig. Bei jeder
Testprüfung (Abitur 2013)
Testprüfung (Abitur 2013) Steve Göring, [email protected] 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:
Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung
Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
ABITURPRÜFUNG 2009 GRUNDFACH MATHEMATIK
ABITURPRÜFUNG 009 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Bearbeitungszeit: 10 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk
Selbsteinschätzungstest Auswertung und Lösung
Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor
ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)
ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben
Abituraufgaben Analytische Geometrie Wahlteil 2014 BW
Abituraufgaben Analytische Geometrie Wahlteil 24 BW Aufgabe B Gegeben sind die Punkte 5 5, 5 5, 5 5 und 5 5. Das Quadrat ist die Grundfläche einer Pyramide mit der Spitze 2. a) Die Seitenfläche liegt in
Gymnasium Liestal Maturitätsprüfungen 2006
Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung
Abitur - Übung 1 Glege 9/11
Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente
Abschlussprüfung 2012 Mathematik 1. Serie
Abschlussprüfung 01 Mathematik 1. Serie 1. a) Löse folgende Gleichung nach x auf: 5 x x 6 x 6x HN : x( x 6) ( x6) 5x HN HN HN x18 5x HN 18 8x 16 :8 x L b) Nenne die drei grössten ganzen Zahlen, welche
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit
BITTE WENDEN ETH-AUFNAHMEPRÜFUNG Mathematik II (Geometrie / Statistik)
ETH-AUFNAHMEPRÜFUNG 08 aufrunden). Mathematik II (Geometrie / Statistik) Die Note N berechnet sich für die Punktzahl P gemäss der Formel N = P /9 +, wobei auf halbe Noten zu runden ist (Viertelnote Aufgabe
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrale schriftliche Abiturprüfung 009 Mathematik Aufgabenstellung A und A (Wahl für Prüflinge) Aufgabenstellung A3 (siehe Extrablatt) (wird durch die Lehrkraft
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U
Maturitätsprüfungen 2011 Mathematik schriftlich
schriftlich Klassen: (Er, Fr, Hg, Mo, Ug, Wn) Prüfungsdauer: 4 h Erlaubte Hilfsmittel: Formelsammlung "Fundamentum" und Taschenrechner TI 89 resp. TI Voyage 200. Alle Aufgaben ergeben je maximal 10 Punkte.
Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E
Übungen Klasse 9 Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E Gesucht: a) Wörter aus 3 Buchstaben b) Wörter aus 5 Buchstaben
Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten
Mathematik Abiturprüfung 2018 Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,
Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind
