Wirtschaftsmathematik
|
|
|
- Arthur Beutel
- vor 9 Jahren
- Abrufe
Transkript
1 Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA
2
3
4 m+1 re = r m + i 2
5 Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche zu verschiedenen Zeitpunkten anfallen. Vereinfachende Annahmen: Prinzip Zinseszinsliche Verzinsung Zahlungen stets am Anfang oder am Ende einer Zinsperiode Vergleich von 2 oder mehreren zu verschiedenen Zeitpunkten anfallende Geldbeträge: Beziehen auf den gleichen Zeitpunkt durch geeignetes Auf- oder Abzinsen. Wahl des Zeitpunktes dabei unerheblich. Meist: Zeitpunkt t = 0 oder t = n (Ende der Laufzeit) t = 0 den Anfang des ersten Zinszeitraums ( heute ). t = 1 Beginn des 2. Zinszeitraums (1.1. des 2. Jahres). t = 2 Beginn des 3. Zinszeitraums (1.1. des 3. Jahres). t = n Ende des letzen Zinszeitraumes ( des n-ten Jahres) Einfache Verzinsung Zinseszinsen Gemischte Verzinsung Nominal- und Effektivzins Stetige Verzinsung Zeitwert 24
6 Äquivalenzprinzip: Herleitung Zwei Zahlungen, A im Zeitpunkt t A und B im Zeitpunkt t B, sind dann gleichwertig (A B), wenn ihre Zeitwerte in jedem Zeitpunkt t übereinstimmen. Beispiel Gegeben: A = , t A = 2, p = 7% Gesucht: B mit t B = 5 so, dass A B. Lösung: B = ,07 (5 2) = ,43 Eine Zahlung von ,43 nach 5 Jahren ist also gleichwertig zu einer Zahlung von nach 2 Jahren. Der Barwert ( Wert heute ) beider Zahlungen ist übrigens ,07 2 = ,43 1,07 5 = 8 734,39 [ ]. Einfache Verzinsung Zinseszinsen Gemischte Verzinsung Nominal- und Effektivzins Stetige Verzinsung Zeitwert 25
7 Zahlungsströme, Barwert, Endwert Ein Zahlungsstrom (A 0,..., A n ) ist eine Folge von Zahlungen mit Zahlungszeitpunkten t = 0,..., n. Summe aller auf t = 0 abgezinsten Zahlungen (Kapitalwert): K 0 = n t=0 A t q t n = A t q t t=0 Einfache Verzinsung Zinseszinsen Gemischte Verzinsung Nominal- und Effektivzins Stetige Verzinsung Zeitwert Summe aller auf t = n abgezinsten Zahlungen (Endwert): K n = n t=0 q n A t q t n = A t q n t t=0 26
8 Gleichheit zweier Zahlungsströme Zwei Zahlungsströme (A t ), (B t ), t = 0,..., n sind genau dann äquivalent, wenn sie zu einem beliebigen Zeitpunkt T den gleichen Zeitwert besitzen: (A t ) (B t ) n t=0 A t q T t = n t=0 B t q T t q T n t=0 A t q t = q T n t=0 B t q t n t=0 (A t B t ) q t = 0 Einfache Verzinsung Zinseszinsen Gemischte Verzinsung Nominal- und Effektivzins Stetige Verzinsung Zeitwert (A t ) (B t ) n (A t B t ) q t = 0 t=0 27
9 Investitionsrechnung: Beispiel Beispiel Kalkulationszinssatz gleich 5 %. Welches Projekt ist zu bevorzugen? Lösung: Kapitalwert von (A t ): 5 t=0 Jahr t A t B t A t 1,05 t = 0 1, , , ,05 3 Kapitalwert von (B t ): 5 t= , ,05 5 = 2599,74 B t 1,05 t = 400 1, , , , , ,05 5 Einfache Verzinsung Zinseszinsen Gemischte Verzinsung Nominal- und Effektivzins Stetige Verzinsung Zeitwert = 2625,80 Alternative B ist der Alternative A vorzuziehen. 28
10 Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen zeitlichen Abständen und (meistens) in konstanter Höhe Unterscheidung zwischen Renten mit Zahlung am Ende einer Rentenperiode (nachschüssig) mit Zahlung zu Beginn einer Rentenperiode vorschüssig) mit endlicher Laufzeit (endliche Renten) mit unendlicher Laufzeit (ewige Renten) 29
11 Rentenrechnung: Symbole Symbol Bezeichnungen r t Rentenrate in Periode t n Laufzeit (t = 1,..., n) m Anzahl der Rentenzahlungen pro Zinsperiode q Zinsfaktor R 0 Barwert der Rente Endwert der Rente R n 30
12 Nachschüssige konstante (endliche) Renten Rentenzahlung jeweils am Ende einer Zinsperiode, jeweils in Höhe von r 1 = r 2 = = r n = const. = r Rentenendwert R n : R n = r q n 1 + r q n r q + r = r (q n 1 + q n q + 1 ) = r n 1 t=0 q t = r qn 1 q 1 (geometrische Reihe) 31
13 Rentenendwert und Rentenbarwert Endwert R n der Rente: R n = r qn 1 q 1 = r NREF p,n NREF: Nachschüssiger Rentenendwertfaktor für endliche konstante Rente. Barwert der Rente: R 0 = R n q n = r q n 1 q n (q 1) = r q n 1 q n+1 q n = r NRBF p,n NRBF: Nachschüssiger Rentenbarwertfaktor 32
14 Beispiel Rentenendwert Beispiel Genau 10 Jahre lang wurde jeweils zum Jahresende ein Betrag von zum Zinssatz von 4% angelegt. Wieviel kann zu Beginn des 11. Jahres (entspricht dem Ende des 10. Jahres) abgehoben werden? Lösung: Mit n = 10, q = 1,04 und r = gilt Folgendes: R 10 = , ,04 1 = , = ,28 [ ] 33
15 Beispiel Rentenbarwert Beispiel Aus welchem zum Zeitpunkt 0 eingezahlten Betrag kann 10 Jahre lang bei 4% Zins eine konstante nachschüssige Rente von bezahlt werden? Lösung: Frage nach dem Barwert einer Rente. Mit n = 10, q = 1,04 und r = gilt: R 0 = , , , , ,75 [ ] 34
16 Umformung der Rentenbar- und -endwertformel Je nach Fragestellung: Laufzeit n, Rentenzahlung r, Verzinsungsfaktor q. Rentenzahlung r: r = R 0 = R 0 qn+1 q n NRBF p,n q n 1 = R n NREF p,n = R n q 1 q n 1 Laufzeit n aus R n : n = ( ) ln 1 + R n i r ln q Laufzeit n aus R 0 : n = ln ( ) 1 R 0 i r ln q q aus R 0 : R 0 q n+1 (R 0 + r)q n + r! = 0. q aus R n : r q n R n q + R n r! = 0. Berechnung von q im Allgemeinen nur näherungsweise (iterativ) möglich 35
17 Beispiel nachschüssige Rente Beispiel Ein Steuerberater kauft die Kanzlei eines älteren Kollegen und muss als Kaufpreis 10 Jahre lang jährlich nachschüssig je zahlen. Durch welchen Betrag könnte der Steuerberater diese Zahlungsverpflichung sofort bei Vertragsabschluss ablösen, wenn mit 8% Zinsen kalkuliert wird? Lösung: Gesucht ist der Rentenbarwert mit r = , q = 1,08 und n = 10. Es gilt dann: R 0 = , , ,08 10 = , = ,01 [ ] 36
18 Beispiel nachschüssige Rente Beispiel Der Barwert einer über 15 Jahre laufenden nachschüssigen Jahresrente beträgt bei 5%-iger Verzinsung Wie hoch sind die jährlichen Rentenzahlungen? Lösung: Gesucht sind die Rentenzahlungen r mit R 0 = , q = 1,05 und n = 15. Es gilt dann: r = ,0516 1, , = , = 1 000,03 [ ] 37
19 Vorschüssige konstante Renten Rentenbetrag wird jeweils zu Beginn der Zinsperiode in Höhe von r 1 = r 2 = = r n = r bezahlt. äquivalenzprinzip Endwert der Rente: vorschüssige Rentenzahlung r nachschüssige Rentenzahlung r r = r q R n = r q qn 1 q 1 = r VREF p,n VREF: Vorschüssiger Rentenendwertfaktor Barwert der Rente: R 0 = R n q n = r q q n 1 q n (q 1) = r q n 1 q n q n 1 = r VRBF p,n VRBF: Vorschüssiger Rentenbarwertfaktor 38
20 Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich lange Rentenperioden, d.h. m Rentenzahlungen pro Zinsperiode (= Jahr). Dazu: Rechnung mit einfacher Verzinsung innerhalb der Zinsperiode Rentenzahlungen nachschüssig (also am Ende jeder unterj. Rentenperiode) oder vorschüssig möglich Lösung: Errechnung von konformen (gleichwertigen) jährlich nachschüssigen Ersatzzahlungen zu den m unterjährigen Zahlungen. Definition r e heißt konforme jährlich nachschüssige Ersatzrentenrate einer nachschüssigen (oder vorschüssigen) unterjährigen Rentenrate r. 39
21 Konforme jährliche nachschüssige Ersatzrentenrate Berechnung von r e : falls unterjährige Rente nachschüssig: r e = r + r (1 + 1m ) i + r (1 + 2m ) i = r m + i r 1 m r e = r [ m + i m 1 2 ] falls unterjährige Rente vorschüssig: r e = r (1 + 1m ) i + r (1 + 2m ) i +... ( + r 1 + m 1 ) +... m i + r (1 + m ) m i = r m ( (m 1)) + i r 1 ( m) m r e = r [ m + i m + 1 ] 2 Aus Ersatzrentenrate r e : Weiterrechnen mit Formeln für jährliche nachschüssige Rente 40
22 Beispiel konforme Ersatzrentenraten Beispiel Ein Sparer legt monatliche nachschüssig auf ein Konto. Wie hoch ist der Kontostand nach 10 Jahren bei einem Zinssatz von 4%? Lösung: Gesucht ist der Rentenendwert auf Basis der konformen Rentenraten. Mit n = 10, m = 12, q = 1,04 und r = ergibt sich Folgendes: R 10 = [ ] 0, }{{} 12,22 1, ,04 1 = , = ,63 Beim Zinssatz von i = 4% kann eine monatlich nachschüssige Rente von durch eine jährlich nachschüssige Rentenzahlung von gleichwertig ersetzt werden. Der Kontostand nach 10 Jahren beträgt ,63. 41
23 Eine Rente heißt ewige Rente, wenn Anzahl n der Ratenzahlungen nicht begrenzt, n also beliebig groß wird (n ). Berechnung des Rentenendwertes dann nicht möglich Rentenbarwert R 0 existiert jedoch: R 0 = lim (r NRBF) = r lim n ( ) 1 1 q = r lim n = r n q 1 n 1 q n qn 1 q 1 1 q 1 = r i Damit: Rentenbarwert einer nachschüssigen ewigen Rente: R 0 = r i 42
24 : Beispiel Beispiel Wie groß ist der Barwert einer ewigen nachschüssigen Rente von pro Jahr, wenn der Zins bei 8% liegt? Lösung: R 0 = ,08 = Anmerkung: Geht man von einer vorschüssigen ewigen Rente aus, so ergibt sich für den Rentenbarwert: R 0 = r + r i 43
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Sommersemester 2015 Prof. Dr. Stefan Etschberger HSA Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen zeitlichen Abständen und (meistens) in
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Unterjährige einfache Verzinsung In Deutschland Einteilung des Zinsjahres
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n heißt
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich lange Rentenperioden, d.h.
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
3. entenrechnung Definition: ente = laufende Zahlungen, die in regeläßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzatheatisch sind zwei Gesichtspunkte
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch
Finanzmathematik - Grundlagen
Finanzmathematik - Grundlagen Formelsammlung Zugelassene Formelsammlung zur Klausur im Sommersemester 2005 Marco Paatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Zinsrechnung Symbole
Finanzmathematik. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät HW.
Finanzmathematik Klaus Schindler ML a t he m at ik e h r st a b 0 Universität des Saarlandes Fakultät HW http://www.mathe.wiwi.uni-sb.de Mathematik Grundlagen& Grundbegriffe Ziel der Finanzmathematik:
Wirtschaftmathematik. Prof. Dr. Roland Jeske Tel.: Büro: W 313 Sprechstunde: MO
Wirtschaftmathematik Prof. Dr. Roland Jeske Email: [email protected] Tel.: 0831-2523-612 Büro: W 313 Sprechstunde: MO 17.30-18.30 Uhr Vorlesung: DO 14.00-15.30 AM (alle) Jeske Übungen: MO 11.30-13.00
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Ewige Renten Eine Rente heißt ewige Rente, wenn Anzahl n der Ratenzahlungen nicht begrenzt, n also beliebig groß wird (n ). Berechnung
FINANZMATHEMATIK. Einführung. Weitere Begriffe. Einfache Verzinsung (unter 1 Jahr) Zinseszinsen
FINANZMATHEMATIK Einführung Wenn man Geld auf die Bank legt, bekommt man Zinsen, wenn man sich Geld von der Bank ausleiht, muss man Zinsen bezahlen. Grundsätzlich unterscheidet man zwischen einfachen Zinsen
n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)
1 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
Taschenbuch der Wirtschaftsmathematik
Taschenbuch der Wirtschaftsmathematik Bearbeitet von Wolfgang Eichholz, Eberhard Vilkner 6., aktualisierte Auflage 013. Buch. 396 S. Kartoniert ISBN 978 3 446 43535 3 Format B x L): 1,7 x 19,5 cm Gewicht:
Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38
Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder
Elementare Zinsrechnung
Elementare Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p =Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q = 1 + i Diskontfaktor (Abzinsungsfaktor) v = 1/(1 + i) = q 1 Laufzeit n Zinsperioden (Zeitintervalle)
Finanzmathematik. Aufgabe 71
Finanzmathematik Aufgabe 71 Finanzmathematik: Einfach (FIMA.1) Eine Rechnung über 3.250 wird nicht sofort bezahlt. Daher sind Verzugszinsen in Höhe von 144,45 zu bezahlen. Für welche Zeitspanne wurden
Wirtschaftsmathematik für International Management (BA)
Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6
Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage. Seite 1
Finanzmathematik Aufgaben einfach gelöst mit FinCalcPro 1. Auflage von Francesco Grassi www.educationalapps.ch Seite 1 Inhaltsverzeichnis VORWORT... 3 SYMBOLLISTE...4 FORMELSAMMLUNG... 5 Kap.1 Prozentrechnung...7
Finanzmathematik. Intensivkurs. Von Prof. Dr. Holger Ihrig. und Prof. Dr. Peter Pflaumer. 6., verbesserte und erweiterte Auflage
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Finanzmathematik Intensivkurs Von Prof. Dr. Holger Ihrig und Prof.
n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)
2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals für
Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10
Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das
Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui
Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen
Grundlagen der Finanzmathematik
Kapitel 8 Grundlagen der Finanzmathematik In der Finanzmathematik spielt neben Geld (in Form von Zahlungen) der Faktor Zeit (als Zeitpunkt, zu dem die Zahlungen erfolgen, bzw. als Zeitraum zwischen Zahlungen)
Zinsen, Zinseszins, Rentenrechnung und Tilgung
Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins
Leistungen des Mähdreschers: 50 ha eigene Mähdruschfläche: Bisher wurden die eigenen Flächen durch einen Lohnunternehmer
Ein Betriebsleiter erwägt den Kauf eines Mähdreschers, um im Nebenerwerb als Lohnunternehmer tätig zu werden. Folgende Daten für das Investitionsprojekt sind gegeben: Mähdrescher (100 kw, 3,80 m, 4.400
33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung.
1 Lösungsvorschläge zu der Zinsaufgaben 33 37 (bzw. 6 10): 33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung. I) monatliche Zinsgutschrift: m
ˆ zwei gleich große Rückzahlungen am und am
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zu QM II Finanzmathematik) Gemischte Verzinsung
Aufgabe 82. Für den Kauf einer Maschine stehen folgende Zahlungsalternativen zur Auswahl:
Aufgabe 82 Finanzmathematik: Maschine (FIMA.) Für den Kauf einer Maschine stehen folgende Zahlungsalternativen zur Auswahl: a) 8. sofort, 4 jährliche Raten zu je 2., zahlbar am Ende eines jeden Jahres
SS 2016 Torsten Schreiber
SS 2016 Torsten Schreiber 303 TILGUNGSRECHNUNG: DEFINITION: Unter der Tilgungsrechnung versteht man einen Zahlungsstrom, der zur Rückführung eines geliehen Betrags (Schuld) dient. Die mathematischen Grundlagen
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren
Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.
Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche
Vorlesungsskript. Finanzmathematik. Prof. Dr. Günter Hellmig
Vorlesungsskript Finanzmathematik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Finanzmathematik Erstes Kapitel Das erste Kapitel beschäftigt sich mit den mathematischen und ökonomischen
4 Reihen und Finanzmathematik
4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2014 Hochschule Augsburg Vorlesungsbegleitende Unterlagen Arbeitsmaterial: Foliensatz, Aufgabenskript, Mitschrift
KV Glarus/BM Bs/97 Mathematik. Paul Bischof. Mathe-BM Seite 1
Mathe-BM Seite 1 Definition Folgen und Reihen Besteht der Definitionsbereich D einer Funktion ƒ nur aus den aufeinanderfolgenden natürlichen Zahlen 1, 2, 3, 4,... bzw. 0, 1, 2, 3,... oder aus einem Abschnitt
Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte
Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht
Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe
Formelsammlung mit Beispielen
Formelsammlung mit Beispielen Mathematik Dozent: Thomas Rochow erstellt von Marek Saß 2004 Inhaltsverzeichnis 1. Folgen und Reihen... 1 1.1. Arithmetische Folgen... 1 1.2. Geometrische Folgen... 1 2. Finanzmathematik...
Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1.
(K + R ) q 1 n = ln K 0 + R / ln(q) (nachschüssig) q 1 n = ln ( K q + R ) q 1 K 0 + R / ln(q) (vorschüssig) q 1 Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung
Inhaltsverzeichnis. Vorwort
Inhaltsverzeichnis Vorwort ix 1 Grundlagen 1 1.1 Zahlbereiche 1 1.2 Rundungen 3 1.3 Prozentrechnung 4 1.4 Potenzen 6 1.5 Wurzeln 10 1.6 Logarithmen 13 1.7 Spezielle Funktionen 17 1.7.1 Lineare Funktionen
Finanzmathematik Übungen (Gurtner 2009)
Finanzmathematik Übungen (Gurtner 2009) 1. Kapitalverzinsung bei der Bank mit linearen (einfachen) Zinsen während des Jahres K E = K 0 (1+ p/100*d/360) mit d = Tage 1. Ein Betrag von 3000 wird bei einer
Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;
1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit
Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung
4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112
Finanzwirtschaft. Teil II: Bewertung
Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende
Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1
Finanzmathe Formelsammlung v.2.3 1 Inhaltsverzeichnis I Zinsrechnung 1 I.1 Jährliche Verzinsung..................................... 1 I.1.1 Einfache Verzinsung................................. 1 I.1.2
3.3. Tilgungsrechnung
3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es
Problemstellung worum geht es in diesem Kapitel? Kapitel 1 Zinsrechnung. Beispiel Anlage für ein Jahr. Ein einfaches Beispiel
Kapitel 1 Zinsrechnung Problemstellung worum geht es in diesem Kapitel? 1 Verschiedene Verzinsungsverfahren 2 Häufig auftretende Fragestellung: Wenn man heute einen Betrag X anlegt, wie viel hat man dann
Praktische Finanzmathematik
Die wichtigsten Lehrbücher bei HD Praktische Finanzmathematik Mit Futures, Optionen, Swaps und anderen Derivaten von Andreas Pfeifer überarbeitet Praktische Finanzmathematik Pfeifer schnell und portofrei
III. Dynamische Investitionsrechnung
III Bewertung von Investments Dynamische Investitionsrechnung Investition und Finanzierung - Wintersemester 2012/13 1 Die dynamische Investitionsrechnung betrachtet Zahlungsströme... Im Vergleich zum traditionellen
Finanzmathematik mit Excel
Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz
F-Mathe-Klausur am
F-Mathe-Klausur am 19.07.2017 Aufgabe 1 Jemand zahlt bei 4% Zinsen p.a. im Zeitraum vom 01.01.2010 bis 31.12.2015 jeweils zu Beginn eines Monats 200 und im Zeitraum vom 01.01.2016 bis 31.12.2018 jeweils
= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 =
1 Lösungsvorschläge zu den Aufgaben 28, 29, 30 b), 31, 32, 33, 35, 36 i) und 37 a) von Blatt 4: 28) a) fx) := x 3 10! = 0 Wir bestimmen eine Näherungslösung mit dem Newtonverfahren: Als Startwert wählen
a) Welche Aufgabe hat der Zinssatz im Rahmen der Finanzmathematik wahrzunehmen? b) Was versteht man unter dem Begriff Wertstellungspraxis?
1 Klausur SoSe 2007 Aufgabe 1: Fragen zur Finanzmathematik (7 Punkte) a) Welche Aufgabe hat der Zinssatz im Rahmen der Finanzmathematik wahrzunehmen? (2 Punkte) b) Was versteht man unter dem Begriff Wertstellungspraxis?
.nzinn. :mni. Dldenbourg Verlag München Wien. 7, unveränderte Auflage. von Prof. Dr. Karl Bosch
.nzinn :mni von Prof. Dr. Karl Bosch 7, unveränderte Auflage Dldenbourg Verlag München Wien Inhaltsverzeichnis Vorwort IX Kapitel 1: Mathematische Grundlagen 1 1.1. Die arithmetische Zahlenfolge 2 1.2.
1 Systematisierung der Verzinsungsarten
1 Systematisierung der Verzinsungsarten 4 Stetige Verzinsung 5 Aufgaben zur Zinsrechnung Dr. A. Brink 1 1..Syse Systematisierung seugdeve der Verzinsungsarten sugs e Jährliche Verzinsung a Einfache Zinsen
Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1
Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z
Exponentialfunktion. e x+y = e x e y. Insbesondere ist e x = 1/e x. Exponentialfunktion 1-1
Exponentialfunktion Die Potenzfunktion y = e x = exp(x) mit der Eulerschen Zahl e = 2.71828... wird als Exponentialfunktion bezeichnet. Sie ist für alle x R positiv und erfüllt die Funktionalgleichung
Übungsserie 6: Rentenrechnung
HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine
Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe =
Aufgabe : [6 Punkte] Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe 0 i i über die Summenformel der geometrischen Reihe ( Nachkommastellen).
Dynamische Investitionsrechenverfahren. Charakteristika Verfahren Kritische Beurteilung
Dynamische Investitionsrechenverfahren Charakteristika Verfahren Kritische Beurteilung Charakteristika Sie basieren auf Zahlungsströmen genauer: auf Aus- und Einzahlungen. Sie beziehen sich auf MEHRERE
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zeitwert des Geldes Strukturkongruente Refinanzierung Rendite Zinskurve 2 Das
Expertengruppe A: Die Annuitätenmethode
Expertengruppe A: Die Annuitätenmethode Besprecht und berechnet in eurer Gruppe das Musterbeispiel und löst anschließend das neue Beispiel. Kapitalwertmethode (= Goodwill = Net Present Value NPV) Kapitalwert
Tobias Martin. Mathematik-Studienhilfen. Grundlagen Prinzipien Beispiele. Finanzmathematik. 2., aktualisierte Auflage
Tobias Martin Mathematik-Studienhilfen Finanzmathematik Grundlagen Prinzipien Beispiele 2., aktualisierte Auflage Inhaltsverzeichnis Häufig verwendete Symbole... 8 1 Mathematische Grundlagen... 9 1.1 Prozentrechnung...
6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung
6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion
Investitionsmanagement
Investitionsmanagement - Vorlesung 12 am 31012017 - Laura Gerke-Teufel, MA, LLM Ausgewählte Verfahren der unterjährigen Verzinsung - 2 - Unterjährige Effektivzinsberechnung Investitionsmanagement Vorlesung
Investitionsrechnung: Rentabilitätsrechnung
Investitionsrechnung: Rentabilitätsrechnung Rentabilitätsvergleichsrechnung Erweiterung des Kosten- und Gewinnvergleichs um die Berücksichtigung des Kapitaleinsatzes Kostenvergleich: nur Kosten Gewinnvergleich:
Über die Autoren 9. Einführung 21
Inhaltsverzeichnis Über die Autoren 9 Einführung 21 Über dieses Buch 21 Konventionen in diesem Buch 22 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 22 Teil I: Einfache Algebra 23 Teil
Übungen zur Vorlesung Mathematik 1
Fachbereich Technische Betriebswirtschaft Übungen zur Vorlesung Mathematik S. Hochgräber N. Hüser T. Skrotzki S. Böcker Mathe Übungsaufgaben V5..docx Übung Mathematik Böcker/Hochgräber Übung Grundlagen
Auswahl an Musteraufgaben für KLR- Teil: Wirtschaftlichkeitsanalysen
Name: Seite 1 (inkl. Musterlösung) (inkl. Musterlösung) Steffen Vollbrecht Auswahl an Musteraufgaben für KLR- Teil: Wirtschaftlichkeitsanalysen A. Multiple-Choice 1) Prüfen Sie folgende Aussagen auf ihre
b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?
Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche
Bibliografische Information der Deutschen Nationalbibliothek
Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
Investierung und Finanzierung
Investierung und Finanzierung Vermögen Kapital Investierung Finanzierung Desinvestierung Definanzierung Bestandesgrössen Stromgrössen Investitionsbegriff Investition Im weiteren Sinn Im engeren Sinn materiell
Übungsblatt 1 Finanzmathematik
Übungsblatt 1 Finanzmathematik 1. Können bei einfacher Verzinsung von 6% und einer Anlagedauer von einem halben Jahr aus 1.000 e mehr als 1.030 e werden? 2. Ein fester Anlagebetrag wird bei der Privatbank
Zinseszins- und Rentenrechnung
Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz
Mathematik-Klausur vom Finanzmathematik-Klausur vom
Mathematik-Klausur vom 05.07.2012 Finanzmathematik-Klausur vom 11.07.2012 Studiengang BWL DPO 2003: Aufgaben 1,2,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 1,2,4 Dauer der Klausur:
Kapitalwert und Endwert
4-0 Kapitel Kapitalwert und Endwert 4-1 Kapitelübersicht 4.1 Der Ein-Perioden-Fall 4.2 Der Mehr-Perioden-Fall 4.3 Diskontierung 4.4 Vereinfachungen 4.5 Der Unternehmenswert 4.6 Zusammenfassung und Schlussfolgerungen
QM I (W-Mathe)-Klausur am
QM I (W-Mathe)-Klausur am 06.07.206 Aufgabe a) Berechnen Sie den folgenden Grenzwert: 3 2 36+05 lim 5 4 20 b) Die Preis-Absatz Funktion eines Unternehmens sei gegeben durch: (p) = 8 0,6p. Bestimmen Sie
LÖSUNGEN Zinsrechnung
M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 6. Januar 2016 LÖSUNGEN Zinsrechnung Aufgabe 1. Am 3. März eines Jahres erfolgt eine Einzahlung von 3.500 e. Auf welchen Endwert
Klassische Finanzmathematik (Abschnitt KF.1 )
Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.
Prüfungsklausur Mathematik I für Wirtschaftsingenieure am
HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 0.02.206 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P. 5
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zeitwert des Geldes Strukturkongruente Refinanzierung Rendite Zinskurve 2 Das
Finanzmathematik. Zinsrechnung I 1.)
Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen
UNIVERSITÄT HOHENHEIM
UNIVERSITÄT HOHENHEIM INSTITUT FÜR LANDWIRTSCHAFTLICHE BETRIEBSLEHRE FACHGEBIET: PRODUKTIONSTHEORIE UND RESSOURCENÖKONOMIK Prof. Dr. Stephan Dabbert Planung und Entscheidung (B 00202) Lösung Aufgabe 7
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 [email protected] Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe
