Kapitalwert und Endwert
|
|
|
- Gitta Voss
- vor 10 Jahren
- Abrufe
Transkript
1 4-0 Kapitel Kapitalwert und Endwert
2 4-1 Kapitelübersicht 4.1 Der Ein-Perioden-Fall 4.2 Der Mehr-Perioden-Fall 4.3 Diskontierung 4.4 Vereinfachungen 4.5 Der Unternehmenswert 4.6 Zusammenfassung und Schlussfolgerungen
3 Der Ein-Perioden-Fall: Endwert Wenn man zu 5% Zinsen für ein Jahr anlegt, wächst der angelegte Betrag auf Zinsen ( ,05) ist die Rückzahlung der Hauptschuld ( ) ist der Gesamtbetrag. Er kann auch wie folgt berechnet werden: = ,05. Der am Periodenende fällige Gesamtbetrag der Investition heißt der Endwert (FV).
4 Der Ein-Perioden-Fall: Endwert Im Ein-Perioden-Fall kann die Formel für FV so geschrieben werden: FV = C 0 (1 + r) wobei C 0 der Zahlungsstrom heute (Zeitpunkt 0) und r der betreffende Zinssatz sind.
5 Der Ein-Perioden-Fall: Barwert Wenn einem , fällig in einem Jahr, bei heute herrschenden Zinsen in Höhe von 5% geboten werden, ist das Investment 9 523,81 in heutigen wert. 9523, = 1, 05 Der Betrag, den ein Schuldner heute beiseite legen müsste, um eine zugesagte Zahlung von in einem Jahr leisten zu können, heißt der Barwert (PV) von Man bemerke, dass = ,05 gilt.
6 Der Ein-Perioden-Fall: Barwert Im Ein-Perioden-Fall kann die Formel für PV so geschrieben werden: PV C1 = 1 + r wobei C 1 der Zahlungsstrom im Zeitpunkt 1 und r der betreffende Zinssatz sind.
7 Der Ein-Perioden-Fall: Kapitalwert Der Kapitalwert (NPV) einer Investition ist der Barwert des erwarteten Zahlungsstromes abzüglich der Kosten der Investition. Angenommen, eine Investition verspreche in einem Jahr und stehe für zum Verkauf. Der Zinssatz betrage 5%. Sollte man zugreifen? NPV = , 05 NPV = ,81 NPV = 23,81 Ja!
8 Der Ein-Perioden-Fall: Kapitalwert Im Ein-Perioden-Fall kann die Formel für NPV so geschrieben werden: NPV = Kosten + PV Wenn wir das Projekt der letzten Folie mit dem positiven NPV nicht durchgeführt und statt dessen unsere anderweitig zu 5% investiert hätten, wäre unser FV niedriger als , die die Investition vesrpricht und wir wären zweifelsfrei schlechter dran in Bezug auch auf FV: ,05 = 9975 <
9 Der Mehr-Perioden-Fall: Endwert Die allgemeine Formel für den Endwert einer Investition über viele Perioden kann so geschrieben werden: FV = C 0 (1 + r) Wobei gilt C 0 ist der Zahlungsstrom im Zeitpunkt 0, r ist der betreffende Zinssatz und ist die Anzahl der Perioden, über die das Geld investiert wird.
10 Der Mehr-Perioden-Fall: Endwert Angenommen, Jürgen Ritter hätte bei der Aktienemission der Modigliani AG Aktien erworben. Gegenwärtig zahlt MAG eine Dividende von 1,10 je Aktie. Man erwartet, dass die Dividende in den nächsten fünf Jahren um 40% pro Jahr wächst. Wie groß wird die Dividende in fünf Jahren sein? FV = C 0 (1 + r) 5,92 = 1,10 1,40 5
11 4-10 Endwert und Zinseszins Man bemerke, dass die Dividende im fünften Jahr, 5,92, ersichtlich höher ist als die Summe der ursprünglichen Dividende zuzüglich von fünf Anstiegen von 40% auf die ursprüngliche 1,10 Dividende: 5,92 > 1, [1,10 0,40] = 3,30 Das liegt am Zinseszinseffekt.
12 4-11 Endwert und Zinseszins 3 1,10 1, ,10 1,40 1,10 1, ,10 1, ,10 1,40 1,10 1,54 2,16 3,02 4,23 5,
13 4-12 Barwert und Zinseszins Wieviel muss ein Investor heute beiseite legen, um über in fünf Jahren verfügen zu können, wenn der Zinssatz 15% beträgt? PV ,53 = ,15
14 4-13 Wie lange muss man warten? Wie lange dauert es, bis erreicht sind, wenn man 5000 heute auf ein Konto bei einem Zinssatz von 10% einzahlt,? FV = C ( + r) = , ,10 = = ( ) ( ) log 1,10 = log 1,10 = log 2 log = = = log 1, ( ) 7,27 Jahre
15 4-14 Welcher Zinssatz reicht aus? Angenommen, die Gesamtkosten eines Universitätsstudiums betrügen 50000, wenn Ihr Kind in 12 Jahren Abitur macht. Sie haben heute 5000 zur Investition zur Verfügung. Wie hoch muss der Anlage-Zinssatz sein, um die betreffende Summe bereit zu stellen? = ( + ) = 5000 ( 1+ r) 12 FV C r 0 1 ( 1+ r) = = 10 ( r) Ungefähr 21,15%. 1+ = r = 10 1= 1,2115 1= 0,
16 Zinsperioden Eine Investition m mal je Jahr für Jahre zu verzinsen, bedeutet für den Endwert: FV m 1 r 0 = C + m Beispiel: Wenn man 50 für 3 Jahre zu 12% bei halbjährlicher Zinsgutschrift anlegt, wächst das Investment auf FV 23 0, ,06 70,93 = + = = 2
17 4-16 Jährlicher Effektivzins Mit Bezug auf das angeführte Beispiel ist eine naheliegende Frage die nach der effektiven jährlichen Verzinsung? 0, FV = 50 (1 + ) = 50 1,06 = Der jährliche Effektivzins (EAR) ist der jährliche Zinssatz, der nach 3 Jahren zu demselben Endwert führen würde: = 70,93 ( EAR) 3
18 4-17 Jährlicher Effektivzins (Fortsetzung) FV = = 70,93 ( EAR) 3 ( 1+ EAR) 3 = 70,93 50 Also: Zu 12,36% bei jährlicher Zinsgutschrift zu investieren, ist dasselbe, wie zu 12% mit halbjährlicher Zinsgutschrift zu investieren ,93 EAR = 1= 0,
19 4-18 Jährlicher Effektivzins (Fortsetzung) Gesucht sei der jährliche Effektivzins (EAR) eines Kredits mit 18% nominal p.a. bei monatlicher Zinsbelastung. Damit liegt ein Kredit mit einem Monatszins von 1½ Prozent vor. Der ist äquivalent zu einem Kredit mit einem jährlichen Zins in Höhe von 19,56 Prozent. nm 12 r 0, = 1+ = 1,015 = 1, m 12
20 4-19 Stetige Verzinsung (Fortgeschritten) Die allgemeine Formel für den Endwert einer Investition mit stets unmittelbarer Zinsgutschrift ergibt sich zu: FV = C 0 e r Hierbei ist C 0 die Zahlung im Zeitpunkt 0, r der Zinssatz p.a., die Anzahl der Perioden, über die die Zahlung investiert wird e die Eulersche Zahl, ungefähr 2,718. e x finden Sie als Funktion auf jedem aschenrechner.
21 4-20 Stetige Verzinsung (Fortgeschritten) Die allgemeine Formel für den Endwert einer Investition mit stets unmittelbarer Zinsgutschrift ergibt sich aus folgender Überlegung: Der Endwert im Zeitpunkt t ändert sich durch Zuschreibung der Zinsen über den Zeitraum Δt zu FV t t FV = t r +Δ FV Δ t t FV t+δt FVt = r FV Δt t
22 4-21 Stetige Verzinsung (Fortgeschritten) Grenzübergang führt auf eine Differentialgleichung Grenzübergang führt auf eine Differentialgleichung FVt+Δ t FVt dfvt limλ t 0 = = r FV Δt dt mit der Lösung FV t = c e rt FV = C d.h. FV = C e 0 0 t 0 rt t
23 Vereinfachungen Ewige Rente Ein konstanter Zahlungsstrom, der für immer fließt. Ewig wachsende Rente Strom von Zahlungen, die mit einer konstanten Rate ewig wachsen. Annuität konstante Zahlung über eine feste Anzahl von Perioden. Wachsende Annuität Strom von Zahlungen, die mit einer konstanten Rate über eine feste Anzahl von Perioden wachsen.
24 Vereinfachungen (fortgesetzt) Allgemein gilt für den Barwert einer Zahlungsreihe PV = t= 1 1 C t ( + r) t
25 Vereinfachungen (fortgesetzt) Gleiche Zahlungen Gleiche Zahlungen PV = C t= 1 1 ( 1+ r) t Wachsende Zahlungen Wachsende Zahlungen PV = C t= 1 ( 1+ g) ( 1+ r) t t
26 Vereinfachungen (fortgesetzt) Allgemeine Formel ( geometrische Reihe ) Allgemeine Formel ( geometrische Reihe ) + 1 t t+ 1 t ; t= 1 t= 1 t= 2 S = q S q= q = q + 1 S q S = q q S = 1 q + q q 1
27 Vereinfachungen (fortgesetzt) geometrische Reihe : Anwendung Annuität geometrische Reihe : Anwendung Annuität S 1 () = q + 1 q q q r 1+ r 1+ r = S = = 1+ r 1 1 r 1+ r
28 Vereinfachungen (fortgesetzt) geometrische Reihe : Anwendung Wachsende Annuität S + 1 q q = q g g g g 1 r 1 r 1 r = = = + 1+ r 1+ g 1 r g 1+ r ( 2 ) q S ( 1 g)
29 4-28 Ewige Rente Ein konstanter Strom von Zahlungen, der ewig dauert. Ein konstanter Strom von Zahlungen, der ewig dauert. C C C 0 PV 1 2 C C C ( 1+ r) (1 + r) (1 + r) = 3 Die Formel für Barwert einer ewigen Rente lautet: r C PV = C lim = r r 3 +
30 4-29 Ewige Rente: Beispiel Welchen Wert hat ein Britischer Konsolen-Bond, der verspricht, jedes Jahr 15 zu zahlen, jedes Jahr, bis die Sonne zum roten Riesen wird und die Erde in einen Knusper-Chip verwandelt? Der Zinssatz ist 10% PV = = 0,
31 4-30 Ewig wachsende Rente Endlos wachsender Strom von Zahlungen. Endlos wachsender Strom von Zahlungen. C C (1+g) C (1+g) ( g) 2 2 C C 1 + C (1 + g) PV = (1 + r) (1 + r) (1 + r) 1 g r + C = C lim = r> g r g r g ( ) Die Formel für den Barwert einer ewig wachsenden Rente lautet: PV = C r g 3
32 4-31 Ewig wachsende Rente : Beispiel Die heutige Dividende beträgt 1,30 ; es wird ein dauerhaftes Wachstum der Dividende in Höhe von 5% erwartet. Der Diskontierungssatz ist 10%; wie hoch ist der Wert dieses versprochenen Dividendenstroms? 1,30 1,05 1,30 (1.05) 2 1,30 1, , 30 PV = 1, 05 = 27,30 0,10 0, 05
33 4-32 Annuität Konstanter Strom von Zahlungen mit festem Horizont. Konstanter Strom von Zahlungen mit festem Horizont. PV C 0 1 C C C = (1 + r) (1 + r) (1 + r) (1 C + r Die Formel für den Barwert einer Annuität ist: PV C r C (1 + r) = C 3 ) C
34 4-33 Annuität (Intuition) Eine Annuität kann als Differenz zweier ewiger Renten aufgefasst werden: Die erste beginnt im Zeitpunkt 1, die zweite beginnt im Zeitpunkt + 1 C 0 1 PV C 2 ( 1+ r) C 3 C 1 1 C r + = = C r r ( 1 r) C
35 4-34 Annuität: Beispiel Wenn Sie monatlich 400 Ratenzahlung für ein Auto erübrigen können: Wieviel Auto können Sie sich leisten bei einem Ratenkredit von 36 Monaten bei 7% Zinsen? $400 $400 $400 $ PV = 1 = ,07 /12 ( 1 0,07 12) 36 +
36 4-35 Annuitäten in Excel Wechsel zum Excel-Blatt Wechsel zum Excel-Blatt Die gefundene Formel für die Annuität heißt Rentenbarwertfaktor RBF = = + ( r) ( r) r r ( 1 r) Der Kehrwert heißt Wiedergewinnungsfaktor WGF = = ( 1+ r) r ( 1+ r ) r ( + r ) 1 1
37 4-36 Wie hoch ist der Barwert einer 4-jährigen Annuität in Höhe von 100 pro Jahr, deren erste Zahlung in, von heute aus gesehen, zwei Jahren erfolgt (Zinssatz 9% p.a.)? PV = = = 323,97 1 t t= 1 1, 09 1, 09 1, 09 1, 09 1, ,22 323, ,97 PV = = 297, , 09
38 4-37 Wachsende Annuität Ein wachsender Strom von Zahlungen mit fester Laufzeit. Ein wachsender Strom von Zahlungen mit fester Laufzeit. C C C ( 1+ g) C ( 1+ g) PV = ( 1+ r) ( 1+ r) ( 1+ r) Die Formel für den Barwert einer wachsenden Annuität: PV C (1+g) C (1+g) 2 C 1+ g = 1 r g + r ( 1 ) C (1+g) -1 1
39 4-38 Barwert einer wachsenden Annuität Sie bewerten Mieteigentum, das steigende Mieten abwirft. Die Nettomiete ist jeweils am Ende des Jahres zahlbar. Die erste Jahresmiete soll 8500 betragen, die Miete soll jedes Jahr um 7% steigen. Wie hoch ist der Barwert des abzusehenden Einkommensstroms über die ersten 5 Jahre bei einem Zinssatz von 12%? ,07 = ,07 = ,07 = ,07 = , , , ,26
40 4-39 Wachsende Annuität Eine Betriebsrentenvereinbarung garantiere pro Jahr für 40 Jahre mit einem Inflationsausgleich von drei Prozent pro Jahr. Wie hoch ist der Barwert bei Eintritt in den Ruhestand bei einem Zinssatz von 10 percent? , , ,03 PV = 1 = ,57 0,10 0,03 1,10 40
41 4-40 Barwert einer verzögerten wachsenden Annuität Ihr Unternhmen plant eine ordentliche Kapitalerhöhung; Sie sollen eine Schätzung für einen angemessenen Emissionspreis vorlegen. Es ist folgende Dividendenprognose gegeben: Jahr: Dividende pro Aktie 1,50 1,65 1,82 5% Wachstum danach Welcher Preis ist angemessen, wenn Investoren bei diesem Risikoniveau 10% Rendite auf ihre Investition erwarten?
42 4-41 Barwert einer verzögerten wachsenden Annuität Jahr Zahlung 1,50 1,65 1,82 1, Erster Schritt: Zeitstrahl zeichnen. Zweiter Schritt: Was ist gegeben und was soll gesucht und gefunden werden?
43 4-42 Barwert einer verzögerten wachsenden Annuität Jahr Zahlung 1,50 1,65 1,82 Dividende + P = 1, ,22 PV der Zahlungen 32,81 P 3 1,82 1,05 = = 38, 22 0,10 0,05 P 1,50 1,65 1, , 22 = + + = 32,81 1,10 1,10 1,
44 Was ist ein Unternehmen wert? Im Prinzip sollte ein Unternehmen den Barwert seiner Cashflows wert sein. Die Schwierigkeiten liegen in der Bestimmung der Höhe, der zeitlichen Verteilung und des Risikos dieser Cashflows.
45 Zusammenfassung und Schlussfolgerungen Zwei grundlegende Konzepte, Barwert und Endwert, wurden in diesem Kapitel eingeführt. Zinssätze werden üblicherweise auf Jahresbasis (p.a.) ausgedrückt, aber es gibt auch halbjährliche, vierteljährliche, monatliche und sogar stetig verrechnende Zinsarrangements. Formel für den Netto-Barwert (Kapitalwert) einer Investition, die C t für die t=0,1,,n Perioden (ein-)zahlt: N C1 C2 CN C NPV = C = C N ( 1 r) ( 1 r) ( 1 r) t= 1 ( 1 r) t t
46 Zusammenfassung und Schlussfolgerungen (fortgesetzt) Wir haben vier vereinfachende Formeln kennen gelernt: C Ewige Rente : PV = r C Wachsende ewige Rente : PV = r g C 1 Annuität : PV = 1 r ( 1+ r) C 1+ g Wachsende Annuität: PV = 1 r g 1 + r
47 4-46 Problem 1 Sie haben Verbindlichkeiten aus Studiengebühren, die Sie monatlich innerhalb von 10 Jahren zurück zahlen sollen sind zu 7% p.a. finanziert sind zu 8% p.a. finanziert sind zu 15% p.a. finanziert. Wie hoch ist der Zinssatz für Ihr Portfolio insgesamt? Hint: don t even think about doing this: = 15,000 7% 30, ,000 30,000 8% + 7,000 30,000 15%
48 4-47 Problem 2 Sie überlegen den Kauf einer auf US-Dollar lautenden Ausbildungsversicherung für Ihre 8-jährige ochter. Sie soll ihr Studium in genau 10 Jahren an einem amerikanischen College beginnen, wobei die erste Gebührenzahlung von $12,500 am Beginn des Jahres fällig ist. In den folgenden Studienjahren werden $15,000, $18,000 und $22,000 fällig. Wieviel ist heute einzuzahlen, um die Gebühren vollständig zu finanzieren? Der Rechnungszins ist 14%.
49 4-48 Problem 3 Sie überlegen, ein neues Auto zu kaufen. Das jetzige haben Sie für vor genau drei Jahren gekauft und zu 7% p.a mit einer Laufzeit von 60 Monaten finanziert. Sie wollen abschätzen, mit welcher Summe Sie den Kredit ablösen könnten, um den benötigten Verkaufserlös für Ihr gebrauchtes Auto zu bestimmen.
50 4-49 Problem 4 Sie haben gerade Ihre erste Arbeitsstelle angetreten und wollen den Eigenkapitalanteil für einen Hauskauf anzusparen beginnen. Sie planen 20% des Kaufpreises anzusparen und den Rest durch Bankdarlehen zu finanzieren. Sie haben eine Investitionsgelegenheit, die 10% p.a verspricht. Häuser Ihrer Vorstellung kosten gegenwärtig Die Immobilienpreise steigen z.z. um 5% pro Jahr und Sie schätzen, dass dieser rend vorerst anhält. Wieviel müssen Sie monatlich sparen, wenn Sie in 5 Jahren das benötigte Eigenkapital beisammen haben wollen?
Finanzwirtschaft. Teil II: Bewertung
Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und
Finanzwirtschaft. Teil II: Bewertung
Zeitwert des Geldes 1 Finanzwirtschaft Teil II: Bewertung Zeitwert des Geldes Zeitwert des Geldes 2 Bewertung & Zeitwert des Geldes Finanzwirtschaft behandelt die Bewertung von Real- und Finanzwerten.
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Zinsen, Zinseszins, Rentenrechnung und Tilgung
Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins
ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme
Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt
Übungsklausur der Tutoren *
Übungsklausur der Tutoren * (* Aufgabenzusammenstellung erfolgte von den Tutoren nicht vom Lehrstuhl!!!) Aufgabe 1 - Tilgungsplan Sie nehmen einen Kredit mit einer Laufzeit von 4 Jahren auf. Die Restschuld
Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung
4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor
Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1
Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende
Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten
Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch
Wirtschaftsmathematik für International Management (BA)
Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6
Korrigenda Handbuch der Bewertung
Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz
1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate
1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00
Mathematik-Klausur vom 4.2.2004
Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ
b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?
Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen
Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 [email protected] Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe
Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:
Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten
Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,
Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.
Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche
11. April 2011. Geldtheorie und -politik. Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4)
Geldtheorie und -politik Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4) 11. April 2011 Überblick Barwertkonzept Kreditmarktinstrumente: Einfaches Darlehen, Darlehen mit konstanten Raten,
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 [email protected] Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe
Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10
Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das
Finanzwirtschaft Teil III: Budgetierung des Kapitals
Finanzmärkte 1 Finanzwirtschaft Teil III: Budgetierung des Kapitals Kapitalwertmethode Agenda Finanzmärkte 2 Kapitalwertmethode Anwendungen Revolvierende Investitionsprojekte Zusammenfassung Kapitalwertmethode
2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?
Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind
R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013
R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 SEK I Lösungen zur Zinseszinsrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Zinseszinsen I. Zinseszins Rechenaufgaben
Hochschule Rhein-Main. Sommersemester 2015
Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,
A n a l y s i s Finanzmathematik
A n a l y s i s Finanzmathematik Die Finanzmathematik ist eine Disziplin der angewandten Mathematik, die sich mit Themen aus dem Bereich von Finanzdienstleistern, wie etwa Banken oder Versicherungen, beschäftigt.
Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011
Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:
Dynamische Investitionsrechnung Umsetzung und Beispiele. Teil 3
Dynamische Investitionsrechnung Umsetzung und Beispiele Teil 3 Eingrenzung: Es werden ausschliesslich die Methoden der Pflichtliteratur ab Seite 135 bis Beispiel 12 besprochen. Kapitalwertverfahren (NPV
Übungsaufgaben Tilgungsrechnung
1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf
Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.
Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines
Definition Gegenwartswert (Barwert) Der Wert des Geldes ist, über den man in der Gegenwart verfügen kann, ist grösser als der Wert des Geldes, den man in der Zukunft erhalten/zahlen wird. Diskontierung
Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf?
Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Andreas Rieder UNIVERSITÄT KARLSRUHE (TH) Institut für Wissenschaftliches Rechnen und
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre
Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)
Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und festverzinsliche Wertpapiere
Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe Sommersemester 20 Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und
Warum Sie dieses Buch lesen sollten
Warum Sie dieses Buch lesen sollten zont nicht schaden können. Sie haben die Krise ausgesessen und können sich seit 2006 auch wieder über ordentliche Renditen freuen. Ähnliches gilt für die Immobilienblase,
Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:
Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn
Kapitalerhöhung - Verbuchung
Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.
Übungsserie 6: Rentenrechnung
HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine
n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.
Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren
Zinsrechnung A: Die Zinsen
Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K 2400 2400 2400 2400 2400 2400 i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr
Zinsrechnung 2 leicht 1
Zinsrechnung 2 leicht 1 Berechne! a) b) c) Kapital 3 400 a) 16 000 b) 24 500 c) Zinsen 2,5% 85 400 612,50 Kapital 3 400 16 000 24 500 KESt (25% der Zinsen) 21,25 100 153,13 Zinsen effektive (2,5 Zinsen
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Attraktive Zinsen für Ihr Geld mit der Captura GmbH
Attraktive Zinsen für Ihr Geld mit der Captura GmbH Was wollen die meisten Sparer und Anleger? à Vermögen aufbauen à Geld so anlegen, dass es rentabel, besichert und kurzfristig wieder verfügbar ist Die
Tablet & ipadverleih. Ready to Rent.
Tablet & ipadverleih Ready to Rent. 1 Kurzinformationen Unter 200 bis 300 Geschäftsideen befinden sich vielleicht 1 oder 2 wahre "Perlen": Das sind solche, die ein oft unglaublich hohes Potential haben
Fakultät für Wirtschaftswissenschaft
Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Fakultät für Wirtschaftswissenschaft 2. Einsendearbeit zum Kurs 00091: Kurseinheit: Finanzierungs- und entscheidungstheoretische
Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements
Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen
Aufgaben zur Finanzmathematik, Nr. 1
Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!
Mathematik-Klausur vom 16.4.2004
Mathematik-Klausur vom 16..200 Aufgabe 1 Die Wucher-Kredit GmbH verleiht Kapital zu einem nominellen Jahreszinsfuß von 20%, wobei sie die anfallenden Kreditzinsen am Ende eines jeden Vierteljahres der
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 1 (Modul) Termin: Februar
Was ist eine Aktie? Detlef Faber
Was ist eine Aktie? Wenn eine Firma hohe Investitionskosten hat, kann sie eine Aktiengesellschaft gründen und bei privaten Geldgebern Geld einsammeln. Wer eine Aktie hat, besitzt dadurch ein Stück der
Aufgabe 1: Finanzmathematik (20 Punkte)
Aufgabe 1: Finanzmathematik (20 Punkte) Im Zusammenhang mit der Finanzmarktkrise entschließt sich der Autohersteller LEPO zusätzlich zu der vom Staat unter bestimmten Voraussetzungen bewilligten Abwrackprämie
Senkung des technischen Zinssatzes und des Umwandlungssatzes
Senkung des technischen Zinssatzes und des Umwandlungssatzes Was ist ein Umwandlungssatz? Die PKE führt für jede versicherte Person ein individuelles Konto. Diesem werden die Beiträge, allfällige Einlagen
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?
Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht
Finanzmathematik. Zinsrechnung I 1.)
Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen
Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1)
1 Lösungshinweise zur Einsendearbeit 1: SS 2012 Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1) Fristentransformation 50 Punkte Die Bank B gibt im Zeitpunkt t = 0 einen Kredit mit einer Laufzeit
Regeln zur Beurteilung von Investitionen
6-0 Kapitel Regeln zur Beurteilung von Investitionen 6-1 Kapitelübersicht 6.1 Kapitalwert: Warum? 6.2 Payback-Periode (statisch) 6.3 Payback-Periode (dynamisch) 6.4 (Durchschnittliche) Buchrendite 6.5
Kreditmanagement. EK Finanzwirtschaft
EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften [email protected] Kreditmanagement 1 Kreditmanagement
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Sparen. Mind-MapArbeitsblatt 1. Vorschau
Sparen Mind-MapArbeitsblatt 1 Aufgabe Anlageformen Arbeitsblatt 2 Anlageform Rendite / Kosten Liquidität Risiko Girokonto Sparbuch Aktien Edelmetalle Immobilien Zuordnung Anlageformen Arbeitsblatt 3 Meine
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%.
R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen zur Prozent und Zinsrechnung I se: E1 E E3 E4 E5 E6 E7 E8 E9 E10 E11 E1 E13 E14 E15 Nach 9 Monaten und 10 Tagen belaufen sich die anfallenden
Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de
1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht
n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)
3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen
Investition und Finanzierung. Investition Teil 1
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Investition Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Inhaltsverzeichnis. - Beschreibung - Rendite - Kaufpreis - Stückzinsen - Verzinsung - Rendite - Berechnung. - Fazit. Beschreibung
Inhaltsverzeichnis - Beschreibung - Rendite - Kaufpreis - Stückzinsen - Verzinsung - Rendite - Berechnung - Fazit Beschreibung Die US-Dollar Bundesanleihe ist eine Schuldverschreibung der Bundesrepublik
Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.
Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)
NRW EONIA-Anleihe. Schatzanweisung des Landes Nordrhein-Westfalen
NRW EONIA-Anleihe Schatzanweisung des Landes Nordrhein-Westfalen EONIA Beschreibung EONIA = Euro OverNight Index Average Stellt den offiziellen Durchschnittstageszinssatz dar, der von Finanzinstituten
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich
Aufgaben Brealey/Myers [2003], Kapitel 21
Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs
VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern
VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Andreas Rühl. Investmentfonds. verstehen und richtig nutzen. Strategien für die optimale Vermögensstruktur. FinanzBuch Verlag
Andreas Rühl Investmentfonds verstehen und richtig nutzen Strategien für die optimale Vermögensstruktur FinanzBuch Verlag 1. Kapitel Wollen Sie Millionär werden? Kennen Sie die Formel zur ersten Million?
Finanzmathematik mit Excel
Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz
Kurzinformationen Stand: 1. Mai 2006
Stand: 1. Mai 006 Ausgewählte Fragen zum Entgeltsystem: Normierungsprozess im mittel-/langfristigen Bereich Die Publikation Prämien regelt die grundlegenden Fragen des deutschen Entgeltsystems. Eine Fragestellung,
Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012
Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60
Wie funktioniert eine Bank?
Wie funktioniert eine Bank? Prof. Dr. Curdin Derungs 09. September 2015 Mitglied der FHO Fachhochschule Ostschweiz Seite 1 Eine kleine Aufgabe zum Einstieg Begrüssungsaufgabe 1. Nimm Deine Namenstafel.
Financial Engineering....eine Einführung
Financial Engineering...eine Einführung Aufgabe 1: Lösung Überlegen Sie sich, wie man eine Floating Rate Note, die EURIBOR + 37 bp zahlt in einen Bond und einen Standard-Swap (der EURIBOR zahlt) zerlegen
Aufgabensammlung Grundlagen der Finanzmathematik
Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf
Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)
(K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung
Berechnung des Grundwertes 27. Zinsrechnung
Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.
2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6)
Geldtheorie und -politik Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) 2. Mai 2011 Überblick Bestimmung des Zinssatzes im Markt für Anleihen Erklärung der Dynamik von Zinssätzen Überblick
Bausparen vermögensaufbau. Die eigene. Immobilie einfach. bausparen. Weil jeder seinen FREIraum braucht.
Bausparen vermögensaufbau Die eigene Immobilie einfach bausparen. Weil jeder seinen FREIraum braucht. Schaffen Sie jetzt den FREIraum für Ihre eigenen Ideen. Ein eigenes Dach über dem Kopf gibt Ihrer Kreativität
Übungsaufgaben. zur Vorlesung ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft. Dr. Horst Kunhenn. Vertretungsprofessor
Übungsaufgaben zur Vorlesung FINANZIERUNG UND CONTROLLING ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft Dr. Horst Kunhenn Vertretungsprofessor Institut für Technische Betriebswirtschaft (ITB)
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Ihre private Gesamtrente setzt sich zusammen aus der garantierten Rente und der Rente, die sich aus den über die Garantieverzinsung
a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate
Zinsrechnung 2 1 leicht Monatszinsen Berechne jeweils die Zinsen! a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit:
Anspar-Darlehensvertrag
Anspar-Darlehensvertrag Zwischen Name: Straße: PLZ, Ort: Tel.: Mobil: E-Mail: Personalausweisnummer: - nachfolgend Gläubiger genannt und der Wilms, Ingo und Winkels, Friedrich, Florian GbR vertreten durch:
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge
