Tag 6 Statistik A) ZUFALLSZAHLEN UND WAHRSCHEINLICHKEITSVERTEILUNGEN

Größe: px
Ab Seite anzeigen:

Download "Tag 6 Statistik A) ZUFALLSZAHLEN UND WAHRSCHEINLICHKEITSVERTEILUNGEN"

Transkript

1 Tag 6 Statistik A) ZUFALLSZAHLEN UND WAHRSCHEINLICHKEITSVERTEILUNGEN Hintergrund: Mit Hilfe von experimentellen Messungen versucht man, allgemeingültige Aussagen zu treffen und Regeln für untersuchte Zusammenhänge aufzustellen. Man variiert einen Parameter (z.b. Menge an Dünger) und beobachtet den dadurch hervorgerufenen Effekt auf eine Messgröße. Dies wäre sehr einfach, wenn grundsätzlich jede Beobachtung immer gleich ausfallen würde, wenn man sie mehrfach wiederholt. In der Realität ist dies allerdings nicht der Fall: Messdaten hängen grundsätzlich zumindest in einem bestimmten Rahmen vom Zufall ab, denn in einem Experiment können niemals alle Zufallsfaktoren ausgeschlossen werden. (z.b. könnte es bei einer Studie über die Wirksamkeit eines Medikaments einen Einfluss haben, wie viel die Patienten geraucht haben oder ob sie gerade Stress hatten.) Auch wenn es eine eindeutige Abhängigkeit zwischen dem variierten Parameter und der gemessenen Größe gibt, werden die Messwerte unterschiedlich ausfallen, sie streuen um den erwarteten Wert. Wahrscheinlichkeitsverteilung: Wiederholt man ein Experiment in genau gleicher Weise sehr häufig, ergibt sich eine Häufigkeitsverteilung. Diese gibt an, wie häufig ein bestimmter Messwert beobachtet wurde und dient dazu, die Wahrscheinlichkeit dieses Messwertes abzuschätzen. Für Messdaten (auch künstlich vom Computer erzeugte Zufallszahlen) werden Häufigkeitsverteilungen empirisch ermittelt, um dadurch auf die zugrundeliegende Wahrscheinlichkeitsfunktion zu schließen. Dafür benutzt man Histogramme. Diese teilen den gesamten Wertebereich der Variablen in mehrere Bereiche auf. Das Histogramm gibt für jeden der Bereiche an, wie häufig der Wert der Variable in einer Messung innerhalb des jeweiligen Bereichs lag. Dazu wird für jeden Teilbereich (sogenannte Klassen) ein Rechteck dargestellt, dessen Fläche die gemessene Häufigkeit repräsentiert. In Matlab werden Histogramme mit dem Befehl hist erzeugt. Dieser kann vielfältig eingesetzt werden: hist(v) h=hist(v) hist(v,nbins) hist(v,centers) [h,xout]=hist(v) Teilt den Wertebereich des Vektors v in 10 gleich große Klassen ein. Wenn hist ohne Ausgabeargument aufgerufen wird, stellt es die Häufigkeit des Auftretens der Klassen als Balkengrafik dar. Wenn hist mit einem Ausgabeargument aufgerufen wird, produziert es keine grafische Ausgabe, sondern gibt den Vektor der Häufigkeiten zurück. (Kann mit mehreren Eingabeargumenten kombiniert werden.) Teilt den Wertebereich des Vektors v in nbins gleich große Klassen ein. (Mit oder ohne Ausgabeargument verwendbar) Benutzt den Vektor centers als Mittelpunkte der Klassen, in die die Elemente von v aufgeteilt werden. Wenn hist ohne Ausgabeargument aufgerufen wird, stellt es die Häufigkeit des Auftretens der Klassen als Balkengrafik dar. (Mit oder ohne Ausgabeargument verwendbar) Wenn hist mit zwei Ausgabeargumenten aufgerufen wird, produziert es keine grafische Ausgabe, sondern gibt zwei Vektoren zurück: den Vektor h der Häufigkeiten und den Vektor xout der Klassenmittelpunkte. (Kann mit mehreren Eingabeargumenten kombiniert werden) Normalverteilung: Die meisten biologischen Daten lassen sich durch eine Normalverteilung (auch Gauß-Verteilung genannt) beschreiben, bei der Messwerte umso häufiger auftreten, je näher sie am Erwartungswert, dem Mittelwert der Verteilung liegen.

2 Für eine normalverteilte Zufallsvariable x entspricht die Wahrscheinlichkeitsdichte folgender Formel: wobei µ den Mittelwert und σ die Standardabweichung der Wahrscheinlichkeitsverteilung angibt. Für normalverteilte Messwerte (oder auch mit einem Zufallsgenerator erzeugte Zufallszahlen) kennt man diese Kennwerte der den Daten zugrunde liegenden Normalverteilung nicht. Man kann sie jedoch näherungsweise aus den Messwerten x 1 bis x n ermitteln: Empirischer Mittelwert: Empirische Standardabweichung: Auch wenn es keine schlechte Übung ist, diese Formeln einmal in Matlab umzusetzen, kann man stattdessen auch einfach die Befehle mean und std benutzen. Achtung: Die Berechnung von empirischem Mittelwert und empirischer Standardabweichung macht ausschließlich für NORMALVERTEILTE Werte Sinn! Eine andere wichtige Verteilung, die in diesem Kurs auch betrachtet wird, ist die Gleichverteilung, bei der alle Werte in einem bestimmten Bereich mit gleicher Wahrscheinlichkeit auftreten. (Für gleichverteilte Werte ist es absolut sinnlos, Mittelwert und Standardabweichung zu berechnen.) Stichprobengröße: Bei der Berechnung und Interpretation des empirischen Mittelwerts und der empirischen Standardabweichung ist Vorsicht geboten: Man kennt nur eine begrenzte Stichprobe, die nicht unbedingt die gesamte Population repräsentieren muss. Je größer diese Stichprobe ist, desto sicherer kann man sich sein, den tatsächlichen Werten der ganzen Population nahe zu kommen. Um abzuschätzen, wie gut verwendete Stichprobengrößen eine Population charakterisieren, verwendet man den Standardfehler des Mittelwerts (standard error of the mean, SEM). Dieses Maß gibt die Streuung der Mittelwerte von verschiedenen, zufällig aus der Population gezogenen gleich großen Stichproben um den Erwartungswert (den wahren Populationsmittelwert) an. Der Standardfehler der Mittelwerte ist definiert als Wobei n die Größe der Stichproben angibt (nicht die Anzahl der Stichproben!) und σ die Standardabweichung der Verteilung (diese ist normalerweise nicht bekannt und muss aus den Daten empirisch geschätzt werden).

3 Grafische Darstellung: Sowohl für die Standardabweichung als auch für den Standardfehler des Mittelwertes ist es üblich, Kurven mit Fehlerbalken zur graphischen Darstellung zu nutzen. In Matlab lautet der Befehl, um eine Kurve mit Fehlerbalken zu zeichnen, errorbar(x,mw,fehler). Dabei ist x der Vektor der x-werte, gegen die Mittelwert und Fehler aufgetragen werden sollen mw der Vektor der Mittelwerte, fehler der Vektor der Standardabweichungen bzw der Standardfehler der Mittelwerte Die Fehler werden als symmetrische Balken zu beiden Seiten des Mittelwerts aufgetragen. (Falls Sie asymmetrische Fehlerbalken brauchen, schauen Sie in der Hilfe nach). Da Fehlerbalken für die Darstellung unterschiedlicher Größen (insbesondere Standardabweichung und Standardfehler, teilweise auch Quartile...) verwendet werden, ist es unbedingt notwendig, in der Abbildungsunterschrift zu schreiben, was die Fehlerbalken bedeuten - und beim Lesen von wissenschaftlichen Veröffentlichungen auf diese Angabe zu achten. Zufallszahlen: Bevor wir uns mit der statistischen Auswertung von echten Messdaten beschäftigen, erzeugen wir zunächst einmal selber "Messdaten" mit Matlab, nämlich Zufallszahlen. Diese werden beispielsweise gebraucht, wenn man Experimente plant, in denen bestimmte Reize in zufälliger Reihenfolge präsentiert werden sollen. Eine weitere wichtige Anwendung von Zufallszahlen sind Simulationen biologischer Prozesse. Wenn man Zufallszahlen künstlich erzeugt, ist (im Gegensatz zur Auswertung von Messdaten) die Wahrscheinlichkeitsverteilung bekannt (also die Wahrscheinlichkeit dafür, dass eine Zufallsvariable einen bestimmten Wert annimmt). Im Rahmen des Kurses erzeugen wir folgende Zufallszahlen: M1=randn(Z,S) erzeugt eine ZxS-Matrix mit normalverteilten Zufallszahlen mit Mittelwert 0 und Standardabweichung 1 M2=rand(Z,S) erzeugt eine ZxS-Matrix mit gleichverteilten Zufallszahlen zwischen 0 und 1 v=randperm(n) liefert einen Vektor der ganzen Zahlen von 1 bis n in zufälliger Reihenfolge. Aufgaben: T6A1) Probieren Sie die Funktionen randn und rand aus: Erzeugen Sie einige Beispiele normalverteilter und gleichverteilter Zufallszahlen: Was passiert, wenn man die gleiche Funktionen mehrfach hintereinander in gleicher Weise aufruft? In welchen Bereich liegen die Werte für die beiden Funktionen? T6A2) Erzeugen Sie jeweils einen sehr langen Vektor (z.b Elemente) mit jeder der beiden Funktionen rand und randn. Schauen Sie sich die jeweilige Verteilung der Zufallszahlen mit dem Befehl hist an. Was sind die Unterschiede zwischen den beiden Verteilungen? Mit hist(v,n) teilt hist den Vektor v in n gleich große Bereiche ein. Sehen Sie sich die Verteilungen für verschiedene Werte von n an. Schätzen Sie aus der Abbildung ab: Was ist der Mittelwert? Was die Standardabweichung? Berechnen Sie Mittelwerte, Standardabweichungen, Varianzen, Minima und Maxima Ihrer beiden Vektoren mit mean, std, var, min und max. T6A3) Modifizieren Sie Ihre Zufallsvektoren, indem Sie diese mit verschiedenen Faktoren multiplizieren verschiedene Zahlen hinzuaddieren Wie wirken sich diese Änderungen auf die Verteilungen aus? Wie wirken sie sich auf Mittelwert, Standardabweichung, Minimum und Maximum aus? T6A4) Laden Sie den Vektor mit den Anzahlen an Sonnenblumenkernen von 100 Blumen [sbkerne.mat]. Berechnen Sie Mittelwert, Varianz und Standardabweichung. Wie habe ich diesen Vektor erzeugt? (Nein, ich habe mich nicht in den Garten gesetzt und gezählt...) *T6A5) Setzen Sie die oben angegebenen Formel für die Wahrscheinlichkeitsdichte einer

4 Normalverteilung in Matlab um. Schreiben Sie eine Funktion, die drei Eingabeargumente bekommt einen Vektor, der den Definitionsbereich angibt, z.b. x=-4:0.01:4, den gewünschten Mittelwert und die gewünschte Standardabweichung Als Ausgabeargument soll die Funktion die berechnete Wahrscheinlichkeitsdichteverteilung als Vektor zurück geben Die Funktion soll die Wahrscheinlichkeitsdichte außerdem als Kurve grafisch darstellen (bitte mit Titel und beschrifteten Achsen). Variieren Sie die Parameter Mittelwert und Standardabweichung. Wie verändern diese die Kurve? T6A6) Schreiben Sie eine Funktion wuerfel, die Ihnen jeweils eine ganze Zahl zwischen 1 und 6 zurückgibt. T6A7) Benutzen Sie diese Funktion in einer weiteren Funktion wuerfel_verteilung, die als Eingabewert bekommt, wie oft gewürfelt wird, und als Ausgabe die Verteilung (als in einem Vektor gespeichertes Histogramm) der erzielten Würfelergebnisse zurückliefert. T6A8) Sie haben die Aufgabe, das Fressverhalten von Mäusen zu charakterisieren, wobei die Mäuse ausschließlich mit genormten Futterpellets gefüttert werden, deren gefressene Anzahl jeden Tag notiert wird. Schreiben Sie eine Funktion, die diese Datenerhebung für eine Maus simuliert: Die Funktion bekommt als Eingabeargument die Anzahl der zu simulierenden Tage übergeben. Die Funktion erzeugt für jeden Tag eine Zufallszahl, die die Anzahl der von der Maus gefressenen Pellets darstellen soll. Dabei soll der Mittelwert der pro Tag gefressenen Pellets 30 betragen und die Standardabweichung 5. Die Funktion gibt den Vektor der gefressenen Pellets zurück. T6A9) Benutzen Sie die Funktion aus T6A8 in einer weiteren Funktion: Als Eingabeargument bekommt die Funktion die Anzahl betrachteter Tage (Stichprobenöße). Ausgaben sind die errechneten Werte für Mittelwert, Standardabweichung, und Standardfehler des Mittelwerts. Außerdem soll diese Funktion die Verteilung der Werte grafisch als Histogramm darstellen. Lassen Sie diese Funktion für verschiedene Stichprobengrößen (also Anzahlen der Tage) laufen, z.b. N=1; N=3; N=5; N=10; N=20; N=50; N=100; N=1000. (Dafür könnten Sie ein Skript schreiben, das die Funktion mit den jeweiligen Stichprobengrößen aufruft.) Wie wirkt sich die Stichprobengröße auf Mittelwert, Standardabweichung, Standardfehler des Mittelwertes und Histogramm aus? *T6A10) Programmieren Sie eine Funktion, die für Sie eine ganze Messreihe des Mäusefressverhaltens steuert. Die Funktion bekommt als Eingabeargumente die Anzahl der Mäuse, die pro Tag beobachtet werden sollen (Anzahl Stichproben) und die Anzahl der Tagen, an denen die gefressenen Pellets gezählt werden sollen (Stichprobengröße). Rückgabewert ist der Standardfehler des Mittelwerts. Außerdem zeigt sie die Verteilung der erzielten Mittelwerte als Histogramm grafisch an. Probieren Sie diese Funktion für verschiedene Kombinationen aus Stichprobengröße und Anzahl der Stichproben aus, z.b. 3 Tage mit 3 Tieren, 10 Tage mit 3 Tieren, 3 Tage mit 10 Tieren, 10 Tage mit 10 Tieren, 10 Tage mit 100 Tieren, 100 Tage mit 10 Tieren, 100 Tage mit 100 Tieren, 1000 Tage mit 10 Tieren, 10 Tage mit 1000 Tieren. Wie wirken sich die beiden Parameter auf den Standardfehler des Mittelwerts aus? Wie wirken sie sich auf die Verteilung der Mittelwerte aus? T6A11) Die vorige Aufgabe war insofern unrealistisch, als alle Tiere statistisch gleich viel Hunger hatten. Natürlich gibt es aber bei echten Tieren individuelle Unterschiede. In folgender Matrix sind die Messungen von 30 Tieren an 30 Tagen dargestellt, wobei die Werte eines Tieres jeweils in der gleichen Zeile stehen: [pellets.mat]

5 Schreiben Sie ein Skript, das die Mittelwerte und Standardabweichungen einerseits zwischen den Tagen, andererseits zwischen den Tieren berechnet. Stellen Sie die beiden Verläufe von Mittelwert und Standardabweichung in zwei Abbildungen mit Fehlerbalken grafisch dar. (Vergessen Sie nicht die Beschriftungen, damit Sie sich später beim Vergleich der Abbildungen zurecht finden.) Inwiefern unterscheiden sich die Ergebnisse für die beiden Arten, Mittelwerte und Standardabweichungen zu berechnen (zwischen Tagen vs. zwischen Tieren)? Berechnen Sie für beide Wege den resultierenden Standardfehler des Mittelwerts und stellen Sie auch diesen in gesonderten Abbildungen mit Fehlerbalken dar. Wie unterscheiden sich die Abbildungen? Welche Aussagen kann man jeweils daraus ableiten? T6A12*) Führen Sie die gleichen Berechnungen noch einmal für folgende Messreihe durch [pellets2.mat], in der ebenfalls die Daten eines Tieres jeweils in einer Zeile stehen. Was sind die Unterschiede? B) MEDIAN UND QUANTILE Zwar gibt es viele Datensätze, die sich gut durch Normalverteilungen erklären lassen. Aber bei manchen Datensätzen ist diese Bedingung eben doch nicht erfüllt, sondern man misst schiefe Verteilungen. Das kommt insbesondere dann zustande, wenn es im Datensatz Ausreißer gibt (also besonders große oder besonders kleine Werte, s.u.). Diese verfälschen den Mittelwert. Deshalb ist es in diesen Fällen häufig ratsamer, statt des Mittelwertes den Median zu berechnen, um den typischen Messwert zu betrachten. Der Median gibt denjenigen Wert an, bei dem die Hälfte der Messwerte kleiner und die andere Hälfte größer ist, unabhängig davon, wie groß oder klein die Werte sind. Diese Sortierung der Daten nach Größe und anschließende Unterteilung in Klassen mit gleich vielen Datenpunkten nennt man Quantile. Neben dem Median (Aufteilung in 50%-Stücke) spielen insbesondere die Quartile (Aufteilung in 25%-Stücke) und Perzentile (Aufteilung in 1%-Stücke) eine Rolle. Beispielsweise sind das 3% und das 97%-Perzentil übliche Größen für die Auswertung, um zu entscheiden, ob ein Messwert normal oder auffällig ist. Eine übliche graphische Darstellung der Datenauswertung basierend auf Medianen und Quantilen ist der Boxplot. Dieser enthält folgende Angaben: für jeden gegebenen x-wert wird der Bereich vom 25% bis zum 75% Perzentil der y-werte als ein Kasten dargestellt innerhalb dieses Kastens wird der Median mit einer weiteren Linie markiert. Balken nach oben und unten (im Englischen bezeichnet als "whiskers", also Fühler) geben den Bereich an, in dem die restlichen Datenpunkte liegen, die nicht als Ausreißer zu betrachten sind. Im Boxplot werden Ausreißer als einzelne Datenpunkte ober- bzw unterhalb der "whiskers" eingezeichnet. Daten als Ausreißer betrachtet, wenn sie größer als q *(q 75 -q 25 ) oder kleiner als q *(q 75 -q 25 ) sind, wobei q 25 das 25% und q 75 das 75% Perzentil bezeichnen. Für normalverteilte Daten entspricht das einem Wert von etwa +/-2.7*Standardabweichung, was etwa 99.3% aller Daten entspricht. Matlab: mx=median(x) berechnet den Median des Vektors x. mm=median(m) berechnet für jede Spalte der Matrix M den Median. mm2=median(m,2) berechnet für jede Zeile der Matrix M den Median. Z=prctile(x,p) berechnet für den Datenvektor x (bzw für jede Spalte der Matrix x) das p-te Perzentil. Allerdings ist diese Funktion nicht im Standardumfang von Matlab enthalten, sondern in der Statistics Toolbox. (Sie lässt sich aber einfach selber schreiben, s.u.). boxplot(x) erzeugt einen Boxplot. Wenn X eine Matrix ist, wird für jede Spalte Median, Perzentile und Ausreißer berechnet und als eigene "box" aufgetragen. Aufgaben: T6B1) Schiefe Verteilungen sieht man oft bei der Messung von Reaktionszeiten. Sehen Sie sich die Verteilung der Reaktionszeiten (in ms) dieser Versuchsperson an: [rt_vp5.mat] (Hinweis: wenn Sie ein Histogramm mit vielen Klassen nehmen, sehen Sie mehr!) Warum ist das keine Normalverteilung?

6 T6B2) Berechnen Sie für den gleichen Datensatz den Mittelwert und den Median der Reaktionszeiten. Warum unterscheiden sich diese so stark? T6B3) Erstellen Sie für die Daten einen Boxplot. Dieser wird Ihnen zeigen, dass es einen einzelnen extrem großen Wert gibt. Löschen Sie diesen aus dem Datensatz und vergleichen Sie noch einmal Mittelwert und Median. T6B4) Wiederholen Sie die Betrachtung von Verteilung, Boxplot, Mittelwert und Median noch einmal für den gesamten Datensatz [rt_all.mat], bei dem jeweils 180 Reaktionszeiten von 24 Versuchspersonen gemessen wurden. Betrachten Sie dabei zunächst den gesamten Datensatz gemeinsam, ohne auf individuelle Unterschiede zwischen den Versuchspersonen zu achten. T6B5) Machen Sie eine Statistik darüber, wie stark sich Mittelwerte und Mediane für die Versuchspersonen unterscheiden. Sollte man hier mitteln? T6B6) Wie stark unterscheiden sich Mittelwerte und Mediane bei dem Beispiel der Sonnenblumenkerne [sbkerne.mat]? T6B7) Schreiben Sie eine Funktion perzentil, die als Eingabeparameter einen Datenvektor und eine Zahl N bekommt und den Wert des N%-Perzentils des Datenvektors zurückgibt. C) SIGNIFIKANZTEST Sehr häufig ist bei der Auswertung biologischer Daten nach Signifikanz gefragt. Wir haben im Kurs leider keine Zeit dafür umfangreich auf Signifikanztests und ihren mathematischen Hintergrund einzugehen. Wir werden aber mit zwei einfachen Beispielen die Anwendung von Signifikanztests in Matlab ausprobieren. Signifikanztests sind nicht im Standard-Programmumfang von Matlab enthalten, sondern finden sich in der Toolbox "statistics" (die hoffentlich auf allen Rechnern im Raum installiert sein sollte). Achtung: Die Anwendung von Signifikanztests macht nur Sinn, wenn die Stichprobe groß genug ist! (Wikipedia gibt n>30 als Faustregel an - aber es kommt auch auf die Standardabweichung der Verteilung an, wie groß die Stichprobe sein muss, um sinnvolle Ergebnisse zu liefern.) Das erste Beispiel ist der t-test für den Erwartungswert einer normalverteilten Stichprobe. Bei diesem Test ist die Nullhypothese, dass eine Menge von n Messwerten (unabhängige, normal verteilte Zufallsvariablen) einer Verteilung mit einem gegebenen Mittelwert µ 0 und unbekannter Varianz entstammt, also dass µ 0 = µ. Dafür wird mit dem empirischen Stichprobenmittelwert und der empirischen Stichprobenstandardabweichung s (siehe oben, dort als s x bezeichnet) die Testprüfgröße t berechnet: Wie man sieht, geht hier (ebenso wie beim Standardfehler des Mittelwerts) die Stichprobengröße n zusätzlich zur empirischen Standardabweichung s und dem Abstand zwischen gemessenem und zu testendem Mittelwert ein. Je größer die Stichprobe, je größer der Abstand zwischen den Mittelwerten und je kleiner die Standardabweichung ist, desto größer ist der Betrag der Testprüfgröße t. Die Nullhypothese µ 0 = µ wird zum Signifikanzniveau α abgelehnt wenn also der Betrag von t größer als das (1-α/2)-Quantil der t-verteilung mit n 1 Freiheitsgraden ist (diese Werte sind normalerweise in Tabellen abgelegt und Matlab natürlich bekannt). Wenn die Nullhypothese zum Beispiel zum Signifikanznivieau 5% abgelehnt wird, bedeutet das, dass die Messwerte mit 95% Wahrscheinlichkeit nicht einer Normalverteilung mit dem Mittelwert µ 0 entstammen, also die Werte wirklich verschieden sind. In 5% der Fälle kann der signifikante Unterschied aber durch Zufall innerhalb der Verteilung zustande gekommen sein. Wenn die Nullhypothese nicht abgelehnt wird, ist es nicht zulässig daraus zu schliessen, dass die Messwerte der zu testenden Verteilung entstammen.

7 Das zweite Beispiel ist ein t-test für zwei unabhängige Stichproben. Bei diesem lautet die Nullhypothese, dass zwei Stichproben x und y zwei Normalverteilungen mit gleichem Mittelwert entstammen, also H 0 : µx = µy. Hierzu wird mit den empirischen Stichprobenvarianzen und Stichprobenmittelwerten die sogenannte gewichtete Varianz bestimmt, um damit die Prüfgröße zu berechnen. Mittels der Ungleichung wird überprüft, ob die Nullhypothese zum Signifikanzniveau α abgelehnt werden kann und somit von einem signifikanten Unterschied der beiden Stichproben ausgegangen werden kann. Matlab: h=ttest(vektor,mittelwert) testet, ob die Nullhypothese abgelehnt werden kann, dass die im Vektor vektor gespeicherten Messdaten einer Normalverteilung mit dem Mittelwert mittelwert entstammen. Das Standard-Signifikanznivieau ist 5%. h=ttest(vektor,mittelwert,alpha) wie oben, aber mit Angabe des Signifikanznivieaus alpha h=ttest2(vektor1,vektor2) testet, ob für zwei Stichproben vektor1 und vektor2zum Standard- Signifikanzniveau 5% die Nullhypothese abgelehnt werden kann, dass beide Stichproben der gleichen Verteilung entstammen. h=ttest2(vektor1,vektor2,alpha) wie oben, aber mit Angabe des Signifikanznivieaus alpha Für alle ttest-funktionen gilt: Der Rückgabewert ist 1 wenn die Nullhypothese abgelehnt wird (also wenn der erwartete und der empirische Mittelwert mit 100-α% Wahrscheinlichkeit verschieden sind). 0 wenn die Nullhypothese nicht abgelehnt werden kann. Eine gute Hilfe für die Einschätzung von Signifikanz bietet wiederum der Boxplot. Diesen kann man in Matlab mit der Option 'notch' aufrufen, so dass eine Einkerbung der Box das 5% Konfidenzintervall darstellt (unter der Annahme, dass es sich um normalverteilte Daten handelt). Überlappen sich die Einkerbungen zweier Boxen, sind die Daten wahrscheinlich nicht auf einem 5% Niveau signifikant verschieden. boxplot(matrix,'notch','on') Aufgaben: T6C1) Ein superschlauer Futtermittelhersteller behauptet, dass eine Maus im Durchschnitt 32 Futterpellets am Tag frisst. Überprüfen Sie diese Aussage für ein Signifikanzniveau von 5% für Ihre gesamte Mäusepopulation anhand der Messdaten [pellets.mat] und [pellets2.mat]. Wie sieht es bei einem Signifikanzniveau von 10% aus? *) Trifft die Behauptung auf irgendeine der Mäuse zu? Für welches Niveau? Sehen Sie sich die Daten im Boxplot an. Bestätigen sich dort Ihre Testergebnisse? T6C2) Untersuchen Sie für einen Ihrer beiden Datensätze: Haben die ersten beiden Mäuse signifikant unterschiedliche Mengen gefressen?

8 Sind am ersten und am fünften Tag von der gesamten Mäusegruppe signifikant unterschiedlich viele Pellets gefressen worden? *) Gibt es Unterschiede zwischen irgendeinem Mäusepaar? *) Gibt es Unterschiede zwischen irgendeinem Paar von Tagen? HAUSAUFGABEN: T6H1) Im Programm [vogelfang.m] werden drei verschiedene Arten von Zufallszahlen benutzt. Vollziehen Sie dieses Programm nach. Nehmen Sie schrittweise folgende Änderungen vor: a) Bei Amseln gibt es 60% Weibchen. b) Bei Spatzen streut das Gewicht von Weibchen 3 Mal mehr als das Gewicht von Männchen. c) Es kommen 25% Meisen und 25% Spatzen in der Gegend vor. T6H2) Generieren Sie mit Ihrer auf [vogelfang.m] aufbauenden Lösung von T4H7 (oder wahlweise der Musterlösung [vogeltabelle_insa.m]) 10 Vogelfang-Matrizen und berechnen Sie für jede Kombination von Art und Geschlecht jeweils Mittelwerte und Standardabweichungen des Gewichts, sowie den Standardfehler Ihrer Gewichtsmessungen. Ist das Gewicht der Arten signifikant verschieden? Ist das Gewicht der Geschlechter einer der Arten signifikant verschieden? T6H3) In einem psychophysikalischen Experiment sollen einem Versuchstier drei verschiedene Töne in zufälliger Reihenfolge vorgespielt werden, aber jeder Ton soll genau 5 Mal vorkommen. Wir kümmern uns erstmal nicht um die Generierung der Töne, sondern nennen sie einfach Bedingung 1, 2 und 3. Überlegen Sie sich einen Algorithmus, der die Reizbedingungen in die richtige Reihenfolge bringt und setzen Sie diesen in ein Programm um. Testen Sie das Programm, indem Sie es mehrfach laufen lassen. Macht es immer, was es soll? Sind die Ergebnisse jedes Mal gleich? Erweitern Sie Ihr Programm so, dass es N (eine beliebige Anzahl) Reize, die M mal (also beliebig oft) vorgespielt werden sollen, in eine Reihenfolge bringt. Tipp: Benutzen Sie für diese Aufgabe die Funktion repmat. Diese erzeugt eine große Matrix durch mehrfache Wiederholung einer kleineren. Z.B. B = repmat(a,2,5) erzeugt eine Matrix B, in der insgesamt 10 Kopien der Matrix A enthalten sind, wobei A zweimal untereinander und fünfmal nebeneinander angeordnet wird. (B hat also die doppelte Zeilen- und fünffache Spaltenzahl von A.) *T6H4) Die Messwerte einer Apparatur ist selbst ohne biologisches Präparat nicht perfekt rauschfrei. Um das Geräterauschen abzuschätzen, wurden im Elektrophysiologie-Praktikum für die Apparatur mit einer Modellzelle (einem elektronischen Schaltkreis, der die Membraneigenschaften einer Nervenzelle nachbaut) 100 Messungen mit dem gleichen Reiz [stimulus1khz.mat] durchgeführt und die Antworten als Matrix unter [antworten1khz.mat] abgespeichert. Schauen Sie sich eine beliebige einzelne Messung zusammen mit dem Reiz an (entsprechend Aufgabe C3). Berechnen und plotten Sie in ein neues Grafikfenster den Zeitverlauf der über die 100 Messungen gemittelten Antwort. Berechnen und plotten Sie in ein neues Grafikfenster den Mittelwert und die Standardabweichung der jeweils letzten 300ms für jede Messung (Mittelung über die Zeit). Gibt es eine Tendenz? Gibt es Ausreißer? Berechnen und geben Sie als Textausgabe im Kommandofenster aus: Sind Mittelwert und / oder Standardabweichung vor, während und nach der Reizung unterschiedlich? *T6H5) (Für mathematisch Interessierte) Häufig sehen Messdaten zunächst recht kompliziert verteilt aus. Bei genauerer Untersuchung stellt sich dann manchmal heraus, dass sie aus zwei überlappenden Verteilungen stammen. Beispielsweise überlappen sich die Verteilungen der Körpergrößen von Männern und Frauen (denn es gibt Frauen, die größer sind als viele Männer). Stellen Sie sich vor, Sie bekommen die Aufgabe, aus der Körpergröße auf das Geschlecht zurückzuschließen und kennen die Verteilungen der Körpergrößen. Für solche Aufgaben wird oft das

9 Prinzip "Maximum Likelihood" verwendet: Tippe auf die Verteilung mit der höheren Wahrscheinlichkeit für den gegebenen Wert. Mit dieser Idee lässt sich ein Schwellwert bestimmen, unterhalb dessen man auf die Verteilung mit dem kleineren Mittelwert tippen sollte. Dieser Schwellwert ist der Schnittwert der Verteilungen. Erzeugen Sie sich zwei Zufallszahlen, die verschiedenen Normalverteilungen entstammen, die eine mit Mittelwert 5 und Standardabweichung 2, die andere mit Mittelwert 3 und Standardabweichung 1. Berechnen Sie mit der gestern eingeführten Formel der Wahrscheinlichkeitsdichte für jede der beiden Zufallszahlen die Wahrscheinlichkeiten, dass sie der einen oder der anderen Verteilung entstammten. Erweitern Sie dieses Programm für zwei Vektoren aus Zufallszahlen aus den oben genannten Verteilungen. Berechnen Sie den Anteil der Zufallszahlen, die nach dem Maximum Likelihood Prinzip der falschen Verteilung zugeordnet würden. Schauen Sie sich die beiden Verteilungen grafisch an. Wo sollte man die Grenze ziehen? Variieren Sie Mittelwerte und Standardabweichungen der beiden Verteilungen. Wann gibt es mehr und wann weniger Fehler? **T6H6) (Für mathematisch Interessierte) Erweitern Sie die letzte Aufgabe zu einer Funktion, die für die Angabe von zwei Mittelwerten und zwei Standardabweichungen ausgibt, bei welchem Wert man die Grenze ziehen sollte, um die Verteilungen optimal zu trennen.

Tag 7: Statistik. A) Stichprobengröße

Tag 7: Statistik. A) Stichprobengröße Tag 7: Statistik Stand: 11.9.2011 Downloads: T7A4) und T7C1) [pellets.mat] *T7A4b) und T7C1) [pellets2.mat] T7B1) [rt_vp5.mat] *T7B4) [rt_all.mat] *T7B6) [sbkerne.mat] T7H1) [spikedaten_kurz.mat] *T7H4)

Mehr

Tag 6: Statistik. Version vom Wobei

Tag 6: Statistik. Version vom Wobei Tag 6: Statistik Version vom 8.10.2012 A) Stichprobengröße Die Berechnung von Mittelwert und Standardabweichung ist die wahrscheinlich am häufigsten benutzte Methode der Datenanalyse. Allerdings ist bei

Mehr

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe Tag 7: Statistik Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe A) Standardfehler des Mittelwerts Die Berechnung von Mittelwert und Standardabweichung

Mehr

Tag 7: Beschreibende Statistik

Tag 7: Beschreibende Statistik Tag 7: Beschreibende Statistik A) Mittelwert und Standardabweichung B) Standardfehler des Mittelwerts C) Median und Quantile D) Hausaufgabe Z) Zusatzthema: Signifikanztest A) Mittelwert und Standardabweichung

Mehr

A) Zufallszahlen, Wahrscheinlichkeitsverteilungen, Mittelwert und Standardabweichung

A) Zufallszahlen, Wahrscheinlichkeitsverteilungen, Mittelwert und Standardabweichung Tag 6: Zufallszahlen Stand: 8.9.2011 ACHTUNG: Ich hatte vergessen, die aktuelle Version des Skripts als pdf und doc hochzuladen. Falls Sie das Skript am Samstag runtergeladen haben, laden Sie die aktuelle

Mehr

Tag 5: Suchen, Sortieren und Zufallszahlen

Tag 5: Suchen, Sortieren und Zufallszahlen Tag 5: Suchen, Sortieren und Zufallszahlen Version vom 4.10.2012 A) Suchen und Sortieren Wissenschaftlichen Datenauswertung erfordert es häufig, Daten nach bestimmten Kriterien zu durchsuchen, um dann

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Einführung in die biologische Datenanalyse mit Matlab SS 2009 Tag8

Einführung in die biologische Datenanalyse mit Matlab SS 2009 Tag8 Tag 8: Modellbildung A) Kurvenanpassung B) Variation von Modellparametern C) Hausaufgaben A) Kurvenanpassung Kurvenanpassung dient dazu, Messdaten durch eine Kurve - also einen mathematisch beschreibbare

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Tag 6: Datenformate, Datenaufnahme und Zufallszahlen

Tag 6: Datenformate, Datenaufnahme und Zufallszahlen Tag 6: Datenformate, Datenaufnahme und Zufallszahlen A) Datenformate Wie wir bereits wissen speichert Matlab seine Daten standardmäßig als.mat Dateien ab, die ausschließlich von Matlab selber vernünftig

Mehr

Ferienkurse Mathematik Sommersemester 2009

Ferienkurse Mathematik Sommersemester 2009 Ferienkurse Mathematik Sommersemester 2009 Statistik: Grundlagen 1.Aufgabenblatt mit praktischen R-Aufgaben Aufgabe 1 Lesen Sie den Datensatz kid.weights aus dem Paket UsingR ein und lassen sie die Hilfeseite

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Konfidenzintervalle Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Münzspiel Experiment 100 Münzwürfe: Stefan gewinnt bei "Kopf" Hypothesen H 0 : Stefan wird so oft gewinnen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Martin Hutzenthaler & Dirk Metzler http://www.zi.biologie.uni-muenchen.de/evol/statgen.html 27. April 2010 1 Eine kurze Wiederholung

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Wiederholung der Hauptklausur STATISTIK

Wiederholung der Hauptklausur STATISTIK Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst.

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst. Übungsblatt 2 - Varianz, Standardabweichung, Kovarianz Das zweite Übungsblatt umfasst die Themen Varianz, Standardabweichung und Kovarianz. Hinter den Aufgaben steht wie gewohnt in Klammern die durchschnittliche

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Kurze Zusammenfassung der letzten Vorlesung Schätzung und Modellentwicklung Überblick Statistische Signifikanztests

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Populations-Mittelwert 100 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 131/2006, 19-21

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 131/2006, 19-21 Der T-Test in Excel NORBERT BRUNNER und MANFRED KÜHLEITNER Ein häufiges Problem ist der Vergleich eines beobachteten Stichprobenmittelwerts mit einem Sollwert. Dabei wird der T-Test angewandt. Wir zeigen

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 3.1 3.1 Punktschätzer für Mittelwert µ und Varianz σ 2 Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr