Lernzettel Nr Definition eines Zufallsversuchs und die Begriffe rund um diesen

Größe: px
Ab Seite anzeigen:

Download "Lernzettel Nr Definition eines Zufallsversuchs und die Begriffe rund um diesen"

Transkript

1 - Definitin eines Zufallsversuchs und die Begriffe rund um diesen Begriff Bedeutung / Beispiel / Frmel Stichprbe Zufällige entnahme einer kleinen Menge aus einer grßen Menge (Klasse) Merkmal Ist charakteristisches Kennzeichen eines Merkmalträgers (Zahlen beim Würfel) Merkmalträger Objekt, welches das Merkmal trägt Qualitative Merkmal Ergebnisse, die nicht zählbar sind; (Bei rten Pullvern ist das qual. Merkmal rt) Quantitatives Zählbares Merkmal (Geld im Prtemnnaie) Merkmal Rangmerkmale Srtierbare Merkmale (Namenliste, alphabet. Reihenflge) (=skalierte Merkmale) Grundgesamtheit Menge aller ptentieller Untersuchungsbjekte (70 Äpfel ) Abslute Häufigkeit Anzahl des Auftreffens des Ereignisses X bei n Bebachtungen eines Zufallsversuches Relative Häufigkeit H abs H rel = Grundgesamtheit Häufigkeitsverteilung Beschreibung eines Merkmals in einer Frmel / Diagrammen / Tabellen in eines Merkmals Bezug auf die Häufigkeit Zufallsversuch Versuch, in dem die Ereignisse unabhängig vneinander sind. (zufällig, beliebig ft wiederhlbar, gleiche Anfangszustände) Ergebnis Auftreten eines Merkmals in einem Zufallsversuch Ergebnismenge Menge aller möglichen Ergebnisse :Ω Ereignis Teilmenge der ergebnismenge zu einem Zufallsversuch. (Ergebnis beim Würfeln: 6; Ereignis: 6,3,4,5 gewürfelt; smit ist das Ergebnis nur einmal vrgekmmen) Wahrscheinlichkeit Rechnerisch ermittelter Wert. Gesetz der grßen Zahlen: lim H rel Anza hl der Ergebnisse Laplace-Versuch Alle Ergebnisse bei einem Vrgang mit zufälligem Ergebnis sind gleich wahrscheinlich. Bernulli Versuch Nur zwei mögliche Ergebnisse; Anzahl der möglichen Ergebnisse müssen bekannt sein; Jedem Ergebnis wird eine Wahrscheinlichkeit zugerdnet; Ergebnisse müssen unabhängig vneinander sein (Erflg u. Misserflg) - Abslute / relative Häufigkeit und das Gesetz der grßen Zahlen Bei einem Würfelversuch wurde insgesamt 20 mal gewürfelt. Das Ereignis sah flgendermaßen aus: 1,5,4,3,5,5,2,6,1,2,4,3,5,1,6,1,1,3,2,5. Gebe die abs. Häufigkeit, und die relative Häufigkeit an. Gefallene zahl Anzahl H abs 1 5 5/ / / / / /20 H rel 1

2 Unter dem Gesetz der grßen Zahlen versteht man, dass je mehr Versuche man durchführt, dest mehr nähert sich der Versuch einem festen Wert an, welche die relative Häufigkeit ist. Dies ist nur möglich, wenn ein wirklicher Zufallsversuch vrliegt, als zum Beispiel ein Münzwurf mit einer regulären Münze). Dann flgt: lim Anzahl der Ergebnisse H rel - Wahrscheinlichkeit eines Ereignisses A als Qutient aus günstigen durch mögliche Fälle Die Wahrscheinlichkeit, für ein Ereignis, welches aus mehreren möglichen Fällen zusammengesetzt ist berechnet man als Qutient aller Treffer durch alle denkbaren Ereignisse Bsp.: In einem Versuch hat man einen regulären Würfel. Als gewünschtes Ereignis wählt man nun gerade Zahlen. Das heißt, es gibt als günstige Ereignisse die Zahlen 2, 4 und 6, insgesamt als 3 Stück. Mit dem Würfel lassen sich insgesamt 6 verschiedene Zahlen erreichen. Als Wahrscheinlichkeit, eine gerade günstige Fälle Zahl zu würfeln gilt als: P gerade = = 3 = 1 = 0,5. Die alle möglic hen Fälle 6 2 Wahrscheinlichkeit, eine gerade Zahl zu würfeln liegt als bei 0,5. - Laplace-Versuch In einem Laplace-Versuch haben alle Ereignisse die selbe Wahrscheinlichkeit Diese lässt sich berechnen aus 1 Anza hl der Ereignisse Im Urnen-Mdel ist ein Laplace-Versuch gleichzusetzen mit einem Versuch mit Zurücklegen, wbei für jedes Ereignis dieselbe Menge an Kugeln in der Urne befinden muss. Bsp. für einen Laplace Versuch: Regulärer Würfel Münze Gleichviele verschiedenfarbige Kugeln in einer Urne 2

3 P J = 0,6 P M = 0,4 - Mehrstufiger Zufallsversuch, Baumdiagramm, Vierfeldertafel, umgekehrtes Baumdiagramm Beispiel: In einem Klassenraum wird eine Umfrage durchgeführt. Die herumfragende Gruppe vn blöden Studenten, die nichts Besseres zu tun hat, als kmische Umfragen in die Welt zu setzen, ist zu flgendem Ergebnis gekmmen. In der Klasse gibt es 60% Jungen. Außerdem haben 30% der Befragten blaue. Wie wahrscheinlich ist es, dass man auf ein Mädchen trifft, wenn man nur grüne sieht? Junge Mädchen blaue P T bl = 0,3 P J bl = 0,18 P T gr = 0,7 P T bl = 0,3 P T gr = 0,7 grüne blaue grüne P J gr = 0,42 P M bl = 0,12 P M gr = 0,28 Nun erflgt die Erstellung der Vier-Felder-Tafel Merkmal Junge Mädchen Summe Blaue 0,18 0,12 0,3 Grüne 0,42 0,28 0,7 Summe 0,6 0,4 1 3

4 Anhand der umgefrmten Pfadregeln lassen sich die Wahrscheinlichkeiten errechnen. P bl = 0,3 blaue Junge P T J = 0,6 P J bl = 0,18 P T M = 0,4 Mädchen P M bl = 0,12 P gr = 0,7 grüne P T J = 0,6 P T M = 0,4 Junge Mädchen P J gr = 0,42 P M gr = 0,28 Die Frage war ja, wie wahrscheinlich es ist, dass wenn man grüne sieht, es sich um ein Mädchen handelt. Die Antwrt: Es ist zu 40% wahrscheinlich, dass es sich um ein Mädchen handelt. Auffällig ist es bei diesem Experiment, dass es nicht ntwendig war, ein Baumdiagramm usw. zu erstellen, da es sich hier um unabhängige Wahrscheinlichkeiten handelt. Um welche Art vn Wahrscheinlichkeit es sich handelt, kann man anhand der 4-Feldertafel bestimmen: Teilt man hier die Spalte durcheinander und kmmt ein festes Ergebnis heraus, s handelt es sich um unabhängige Wahrscheinlichkeiten. Teilt man hier die Spalte durcheinander und kmmt kein gleicher Wert heraus, s handelt es sich um bedingte Wahrscheinlichkeiten. Hier: 0,18 / 0,42 = 0, ,12 / 0,28 = 0,42857 als Unabhängigkeit. 4

5 - Kmbinatrik (d.h. Ziehen mit / hne Zurücklegen; in Klassen; gerdnet) Unter Kmbinatrik versteht man das Ausrechnen der Kmbinatinsmöglichkeiten vn Ergebnissen eines Zufallsversuches. K-faches Ziehen mit Zurücklegen; Mit Unterscheiden n k Beispiel: Man greift 3 mal nacheinander in eine Urne, in der 7 nummerierte Kugeln liegen (vn 1 bis 7). Nach jedem Zug legt man die Kugel wieder hinein. 7 3 = 343 Kmbinatinsmöglichkeiten Fakultät beim GTR: K-faches Ziehen hne Zurücklegen; Mit Unterscheiden ZAHL_OPTN_F6_Prb_F1 Zieht man s ft, wie es Elemente gibt, dann n! Zieht man nur k-mal (k<n), dann n k! Beispiel: Man greift 5 mal in eine Urne, in der es 15 durchnummerierte Kugeln gibt. 15! = Kmbinatinsmöglichkeiten 15 5! K-faches Ziehen mit Zurücklegen; Ohne unterscheiden n + k 1 k Beispiel: Man greift 4 mal in eine Urne mit 7 durchnummerierten Kugeln. Nach jedem Ziehen wird zurückgelegt, die aufgenmmene Reihenflge ist egal n über k beim GTR: = K-faches Ziehen hne Zurücklegen; Ohne Unterscheiden n k n! ZAHL_OPTN_F6_Prb_nCr _ZAHL Beispiel: Man hat eine Klasse mit 37 Schülern. Wie viele Möglichkeiten gibt es, diese Schüler auf 19 Stühle zu setzten, selbst wenn einige nicht sitzen können? = 37! = 1,76 19! 37 19! 1010 Kmbinatinsmöglichkeiten = viele 5

6 - Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeiten treten dann auf, wenn man bereits ein Vrwissen besitzt und nun in Bezug auf ein zweites Merkmal, welches allerdings vm ersten abhängig ist, die Wahrscheinlichkeit bestimmt. Als Beispiel gilt hier: In einem Feriengebiet gibt es Einheimische und Turisten. Zudem gibt es Leute, die einen aufhaben und welche die hne Kpfbedeckung durchs Leben schlendern. Dabei kann man flgenden Sachverhalt feststellen: Im Drf halten sich fünf mal s viele Turisten, wie Einheimische auf. In einer Umfrage knnte man feststellen, dass 60% der Turisten ihren Schädel mit einem schmücken. 4 der Einheimischen hingen sind nicht des 5 Tragens einer traditinsreichen Mütze zugetan. Trifft an nun beim Drfrummel auf einen Verrückten mit Kpfschmuck, mit welche Wahrscheinlichkeit handelt es sich dann um einen Einheimischen? (Sehr interessant für die Drfjugend, wenn sie gerade auf der Suche nach einem neuen Lver ist) Kmmen wir nun wieder zum ernsten Teil. Man erstellt ein Baumdiagramm mit flgenden Werten. P T = 0,833 Turist P T TH = 0,6 P T TH = 0,5 P T TH = 0,4 kein P T TH = 0,333 P T = 0,167 kein Turist P T TH = 0,2 P T TH = 0,8 kein P T TH = 0,0333 P T TH = 0,133 Nun erflgt die Erstellung der Vier-Felder-Tafel Merkmal Kein Summe Turist 0,5 0,333 0,833 Kein Turist 0,0333 0,133 0,167 Summe 0,533 0,466 1 Aus diesen Ergebnissen kann nun das umgekehrte Baumdiagramm gezeichnet werden. Um die Bedingten Wahrscheinlichkeiten zu erhalten, muss man den Satz vn Bayes anwenden. Dabei wird auf die Pfadregel zurückgegriffen und einfachh umgefrmt, sdass man erhält: P TH T = P TH T P TH 6

7 P TH = 0,533 Turist P TH T = 0,938 P TH T = 0,5 P TH T = 0,062 kein Turist P TH T = 0,0333 P TH = 0,466 kein P TH T = 0,715 P TH T = 0,285 Turist kein Turist P TH T = 0,333 P TH T = 0,133 Hieraus kann man sehen, dass man nur sehr geringe Chancen hat, auf einen Einheimischen zu treffen, wenn man jemanden mit anspricht. Die Wahrscheinlichkeit liegt bei gerade mal 6%. Wenn einen Einheimischen sucht, sllte man es vielleicht mal bei den hne versuchen, w die Wahrscheinlichkeit bei immerhin 28,5% liegt. - Definitin einer Zufallsgröße, eines Erwartungswertes einer Zufallsgröße, einer Varianz einer Zufallsgröße bzw. einer Standardabweichung einer Zufallsgröße Eine Zufallsgröße rdnet man einem Ergebnis eines Zufallsversuches zu. Jede Zufallsgröße tritt mit einer bestimmten, vrher bekannten Wahrscheinlichkeit auf. Den Erwartungswert bestimmt man durch: E(X)= k i x i p i = μ Der Erwartungswert gibt eine Beurteilung der Datenmengen im Hinblick auf die Vrhersage vn zukünftigen Daten. k Die Varianz lässt sich errechnen durch: V X = i (x i μ) 2 p i Die Varianz stellt eine Beurteilung der Sicherheit dar, mit der das zukünftige Ergebnis in er Nähe des Erwartungswertes liegt. Je kleiner die Varianz, dest größer die Sicherheit! Die Streuung / Standardabweichung lässt sich errechnen durch: σ = V(X) Die Standardabweichung beurteilt, inwiefern die zukünftigen Ergebnisse quantitativ (plus / minus) vm Erwartungswert abweichen 7

8 0,3 Zufallsgröße 0,25 0,2 0,15 0,1 0, Beispiel: Eine Urne enthält 4 Kugeln, die vn 1 bis 4 durchnummeriert sind. Man zieht nacheinander hne Zurücklegen 2 Kugeln und rdnet jedem Zug die Summe X der gezgenen Zahlen zu. Berechnen Sie E(X), V(X), und σ(x) Es gibt flgende Möglichkeiten: Z1 Z2 X P(x) P(X) /6 1/ /6 1/ /6 2/ / /6 1/ /6 1/6 k 7 E X = i x i p i = 3 x i p i = = 5 7 V X = 3 (x i 5) 2 p i = (3 5) (4 6 5)2 1 + (5 6 5) (6 5) (7 5)2 1 6 = 1,66666 GTR im STAT-MENU: In Liste 1 X eingeben; in Liste 2 die Wahrscheinlichkeiten eingeben, _Calc_bei 1Var XList muss :List1 stehen und bei 1Var Freq muss List 2 stehen_exit_1var (F1) x gibt E(X) an und xσn gibt die Streuung an. Diesen Wert quadrieren für V(X) σ = V(X) = 1, = 1,29099 Aus dem Ergebnis lässt sich ablesen, dass man als nächsten Zug wahrscheinlich eine 5 zieht. Mit Einbeziehung der Streuung ist es jedch wahrscheinlicher, dass man etwa eine 6 der eine 4 zieht in der Summe. Da man allerdings eine relativ grße Varianz hat, ist es zudem unsicher, auf eine bestimmte Zahl zu tippen. Es ist deshalb ratsam, das Spiel nch etwas zu bebachten und nach dem Gesetz der grßen Zahlen dann eine Entscheidung zu treffen. 8

9 MATH - Wahrscheinlichkeitsverteilung und Wahrscheinlichkeitsfunktin Die Wahrscheinlichkeitsverteilung gibt an, welche Wahrscheinlichkeiten den unterschiedlichen Zufallsgrößen zugerdnet werden. Dies kann swhl tabellarisch, der auch grafisch erflgen. Bsp.: 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 x P 0,2 0,4 0,1 0,25 0, Die Wahrscheinlichkeitsfunktin beschäftigt sich mit der Summe dieser Wahrscheinlichkeiten. Die Grafik dazu sieht dann wie flgt aus. 1,2 1 0,8 0,6 0,4 0, Binmialverteilung Die Binmialverteilung ist die Verteilung des Ausgangs eines Bernulli-Versuches bzw. einer Bernulli-Kette. 9

10 Es handelt sich dabei um eine diskrete Wahrscheinlichkeit, da die Wahrscheinlichkeiten für die beiden Ausgänge de Versuches bekannt seien müssen. Die Verteilung gibt nun an, welche Anzahlen vn Treffen mit welchen Wahrscheinlichkeiten eintreten, wenn die Wiederhlungsrate bekannt ist. Um einen bestimmten Wert zu erhalten muss man flgende Frmel anwenden: P X = k = n k Pk (1 p) n k Dies kann nun für weitere k wert Wiederhlt werden, sdass sic h dann eine kmplette Binmialverteilung ergibt. Bsp.: In einer Nippelfabrik werden Nippel hergestellt. Dabei erfährt man aus regelmäßigen Nippelqualitätstets, das ca. 3% der prduzierten Nippel einen Nippelschaden aufweisen. In einer Nippelstichprbe vn sage und schreibe 50 Nippeln sll nun die Wahrscheinlichkeit ermittelt werden, dass mehr als 3 Nippel einen Nippelschaden aufweisen. Zunächst legt man die Größen n und p fest. Es gilt: n=50, da 50 Nippel in der Stichprbe sind und p=0,03, da 3% der Nippel defekt sind. Es flgt die Binmialverteilung in grafischer Auswertung 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0, Um nun eine Antwrt auf die Frage zu stellen, addiert man alle Wahrscheinlichkeitswerte mit k>3. Man erhält einen Wert vn 6,4%. Mit dem GTR ist das Prblem wie flgt zu lösen: STAT_ben auf Liste 1(unterlegt)_OPTN_F1_F5_X,X,Startwert,Endwert, Schrittweite(1),)_EXE_EXIT_EXIT_DIST(evt. vrher F6 zum Scrllen)_F5(BINM)_F1(BPD)_Data:List ; List:List1 ; Numtrail:n ; p: Wahrscheinlichkeit_EXE_EXIT_Oben auf List 2(unterlegt)_OPTN_F1(List)_F1(List)_SHIFT_ANS_EXE Um zu summieren: ben auf List3(unterlegt)_OPTN_F1(List)_F6_F6_F3(Cuml)_F6_F1(List)_2_EXE 10

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

( ) ( ) ( ) Mehrstufige Zufallsversuche

( ) ( ) ( ) Mehrstufige Zufallsversuche R. Brinkmann http://brinkmann-du.de Seite 1 19.11.2009 Mehrstufige Zufallsversuche Häufig müssen Zufallsversuche untersucht werden, die aus mehr als einem einzigen Experiment bestehen. Diese Versuche setzen

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Stochastik. Grundwissenskatalog G8-Lehrplanstandard

Stochastik. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Stochastik Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik Grundlagen der Stochastik Johannes Recker / Sep. 2015, überarbeitet Nov. 2015 Fehlermeldungen oder Kommentare an recker@sbshh.de Inhalt 1. Grundlegende Begriffe der Wahrscheinlichkeitsrechnung... 2 1.1.

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Stochastik. Inhaltsverzeichnis

Stochastik. Inhaltsverzeichnis Stochastik Inhaltsverzeichnis 1. Allgemeine Definition... 2 2. Laplace-Wahrscheinlichkeit... 2 3. Gegenereignis (häufig bei mindestens -Aufgaben)... 3 4. Vereinigung von 2 Ereignissen ( oder -Formulierungen)...

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Name: 3. MATHEMATIKKLAUSUR

Name: 3. MATHEMATIKKLAUSUR Name: 3. MTHEMTIKKLUSUR 03.04.2003 M3 Mathe 12 K () Bearbeitungszeit: 135 min Seite 1 ufgabe 1: rundlagen der Wahrscheinlichkeitsrechnung a) Seine und B zwei Ereignisse mit den Wahrscheinlichkeiten P()

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Station 1 Das Galtonbrett, Realmodelle

Station 1 Das Galtonbrett, Realmodelle Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Übersicht Wahrscheinlichkeitsrechnung EF

Übersicht Wahrscheinlichkeitsrechnung EF Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Rechnen mit Wahrscheinlichkeiten 16. Juni 2009 Dr. Katja Krüger Universität Paderborn 1 Inhalt Ereignisse i und deren Wahrscheinlichkeit h hk i Laplace-Regel Baumdiagramm

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

2.4. Mehrstufige Zufallsexperimente

2.4. Mehrstufige Zufallsexperimente 2.4. Mehrstufige Zufallsexperimente Zufallsexperimente können einstufig, also einmalig, durchgeführt werden oder auch mehrstufig, also wiederholt. Wirft man einen Würfel z.b. nur einmal, dann ist das Zufallsexperiment

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Diskrete Zufallsvariable*

Diskrete Zufallsvariable* Diskrete Zufallsvariable* Aufgabennummer: 1_37 Aufgabentyp: Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: WS 3.1 Typ 1 T Typ Die unten stehende Abbildung zeigt die Wahrscheinlichkeitsverteilung

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Lernsituation 2: Stochastik (40 UStd.) Titel: Umgang mit Zufall und Wahrscheinlichkeit

Lernsituation 2: Stochastik (40 UStd.) Titel: Umgang mit Zufall und Wahrscheinlichkeit Bildungsgang: Zweijährige Höhere Berufsfachschule Wirtschaft und Verwaltung (Höhere Handelsschule) Lernsituation 2: Stochastik (40 UStd.) Titel: Umgang mit Zufall und Wahrscheinlichkeit Einstiegsszenario

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

KOMPETENZHEFT ZUR STOCHASTIK II

KOMPETENZHEFT ZUR STOCHASTIK II KOMPETENZHEFT ZUR STOCHASTIK II Inhaltsverzeichnis 1. Aufgabenstellungen 1 2. Binomialverteilung 4 3. Erwartungswert und Standardabweichung 10 1. Aufgabenstellungen Aufgabe 1.1. Milchverpackungen werden

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 43) [3 Punkte] Sei φ(t) die charakteristische Funktion der Verteilungsfunktion F (x). Zeigen Sie, dass für jedes

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - S I - Lösung

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - S I - Lösung Abschlussprüfung Berufliche Oberschule 20 Mathematik 12 Nichttechnik - S I - Lösung Im Folgenden werden relative Häufigkeiten als Wahrscheinlichkeiten interpretiert. Teilaufgabe 1.0 Ein neues Medikament

Mehr

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1 SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Grundwissen Stochastik Leistungskurs 10. Februar 2008

Grundwissen Stochastik Leistungskurs 10. Februar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Leistungskurs 10. Februar 2008

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr

Übungen Abgabetermin: Freitag, , 10 Uhr Universität Münster Institut für Mathematische Statistik Stochastik für Lehramtskandidaten SoSe 015, Blatt 1 Löwe/Heusel Übungen Abgabetermin: Freitag, 10.7.015, 10 Uhr Hinweis: Dies ist nur eine Beispiellösung.

Mehr

Aufgaben zur Stochastik

Aufgaben zur Stochastik Aufgaben zur Stochastik Wahrscheinlichkeiten über Baumdiagramme und bei Binomialverteilung bestimmen 1) Laura und Xenia gehen auf ein Fest. a) An einem Losestand gibt es 2 Gefäße mit Losen. Im ersten Gefäß

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten?

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten? 1 Überblick æ Beschreibende Statistik: Auswertung von Experimenten und Stichproben æ Wahrscheinlichkeitsrechnung: Schlüsse aus gegebenen Wahrscheinlichkeiten, Hilfsmittel: Kombinatorik æ Beurteilende Statistik:

Mehr

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente Kursthemen 11. Sitzung Folie I - 11-1 Spezielle diskrete Verteilungen: Auswahlexperimente Spezielle diskrete Verteilungen: Auswahlexperimente A) Kombinatorik (Folien bis 5) A) Kombinatorik (Folien bis

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 21.02.2014 Holger Wuschke B.Sc. Glücksspiel auf der Buchmesse Leipzig, 2013 Organisatorisches 1. Begriffe in der Stochastik (1)

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ==================================================================

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Ein Zufallsexperiment heißt zusammegesetzt, wenn es es die Kombination

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr