The Status of the LHC

Größe: px
Ab Seite anzeigen:

Download "The Status of the LHC"

Transkript

1 The Status f the Dr. Verena Kain, Engineer in Charge Operatins 1

2 7 TeV prtn-prtn cllider...mit einer Luminsität vn Vergleich: LEP: , Tevatrn: L = cm -2 s km Umfang: im ehemaligen LEP Tunnel : 27 km lng 100m undergrund ATLAS CMS +TOTEM ALICE 2

3 CERN Beschleunigerkmplex als Injektren The CERN acceleratr cmplex: injectrs and transfer Beam Beam TI2 2 SPS TI8 8 prtns LINAC Ins Bster CPS 1 LEIR Injektinsenergie in den : 450 GeV 12 Injektinen vm SPS pr Ring, um zu füllen 3

4 Wie funktiniert ein Beschleuniger? Geladene Teilchen werden in elektrischen Feldern beschleunigt Für eine Energie vn 7 TeV Spannung vn 7 TV durchlaufen Man schafft ca. 10 MV/m (supraleitende Kavitäten): erfrderliche Länge für Linearbeschleuniger: 350 km (20 MV/m) Kreisförmige Beschleuniger: ftmaliges Durchlaufen derselben Beschleunigerstrecke. Die geladenen Teilchen werden mit Magnetfeldern auf der Bahn gehalten, fkussiert und in Kllisin gebracht. Teilchenbahnkrrektur: Diplmagnet Strahlgrößekrrektur: Quadruplmagnet... Je höher die Energie der Teilchen, dest höher das benötigte Magnetfeld Synchrtrn 4

5 Beschleunigung mit Hchfrequenzfeldern Zylindrische Kavität. 400 MHz wie im zeitlich veränderliche Spannung Nach 1.25 ns E r (t) 2a z E(z) g E 0 z -E 0 : 2 Mdules per beam 4 Cavities per mdule 5

6 Beschleunigung mit Hchfrequenzfeldern Um beschleunigt zu werden muss die Phase des Feldes richtig sein. Zeitlich veränderliche Spannung: U() t := U 0 sin ( 2πf rf t + dt) Frequenz : f rf = 100 MHz Maximale Spannung: U 0 = V In einem HF Feld kann kein kntinuierlicher Strahl beschleunigt werden. TEILCHENPAKETE Spannung U(t) beschleunigt gebremst Zeit Teilchenpaket hat endliche Länge. Nicht alle Teilchen werden gleich beschleunigt. Phasenfkussierung. Frequenz des Feldes muss Vielfaches der Umlauffrequenz sein. Umlauffrequenz: ~ 11 khz, RF Frequenz: ~ 400 MHz 6

7 Magnetfelder - Überblick Strahllenkung: Diplfelder Fkussierung: Warum: Teilchen mit leicht unterschiedlichen Injektinsparametern separieren mit der Zeit. Beispiel: 10-6 rad Unterschied im Injektinswinkel Nach 10 6 m lngitudinal, Teilchen sind 1 m transversal vneinander entfernt. Im (Umfang 27 km): nach 50 Umdrehungen. (5 ms)!!! Fkussierung passiert mit Quadruplmagneten Kntrlle der Strahlgröße N B y = B y x x S Teilchen würden nach unten fallen: Gravitatin Andere Multiple: S N Sextuplmagneten zur Krrektur der Trajektrien vn ff-mmentum Teilchen Octuple, Decaple,...um Strahlinstabilitäten auszugleichen der Feldfehler zu krrigieren. 7

8 Ein bißchen Therie... 8

9 Auf dem Weg zur Bewegungsgleichung...!!...!! ) (...!! ) ( = = = z z 2 0 z 0 z0 0 z z z 2 z z0 z x 3 1 x m 2 1 x k R 1 x dx 3 d p e x dx 2 d p e x dx d p e p e x p e : sich damit Es ergibt multipliziert. p e und mit x dx 3 d x dx 2 d x dx d x : Das Magnetfeld wird um die Sllbahn entwickelt B B B B B B B B B B 9

10 Bewegungsgleichung Die Bewegungsgleichung in Beschleunigerkrdinaten ergibt sich mit F = m a Mit der relativist ischen Masse m = m γ ergibt sich : 0 2 d z(t) m γ = q v B (s) 0 2 x dt mit ds = dt v ergibt sich : 2 2 d z qb (s) qb (s) x x m γ v = q v B (s) => z''(s) = => z''(s) = 0 2 x ds m γ v p 0 Im Quadruplm agnet ist die Stärke des Magnetfeld s prprtin al zur Teilchenau slenkung : db (s) x B (s) = z(s) x dz e db (s) 0 x mit k(s) = ergibt sich die Bewegungsg leichung z''(s) k(s) z(s) p dz = 0 10

11 Lösung - Betafunktin Für Teilchen hne Impulsabweichung,und für Strecken hne Ablenkmagnet gilt die Differentialgleichung vm Hill' schen Typ : x''(s) k( s) x( s) = 0 Lösungsansatz : x(s) = A u(s) cs( ψ( s) + φ) mit Einsetzen flgt : A 2 [ u' ' uψ' k( s) u ] cs( ψ + φ) A [ 2u' ψ ' + uψ' ' ] sin( ψ + φ) = 0 Mit Einführung der 2 β(s): = u ( s) β -Funktin: und der Emittanz eines einzelnen Teilchens ε ergibt sich für die Teilchenbahn: i x(s) = ε i β(s) cs( ψ( s) + φ) Ausserdem gilt für die Betatrnphase: s ψ(s) = 0 1 dσ β( σ) 11

12 Transprtmatrizen und Orbitkrrektur General case fr a transfrmatin f particle crdinates frm s 0 t s 1 (with phase advance in between ψ) M := β 1 cs( ψ) α β ( + 0 sin ( ψ) ) 0 ( α 0 α 1 ) cs( ψ) 1 + α 0 α 1 β 1 β 0 ( ) sin ψ ( ) β 1 β 0 sin( ψ) β 0 cs( ψ) α β ( 1 sin ( ψ) ) 1 Orbitkrrektrmagnet: Winkel θ x r r = x r r θ Orbit-/Trajektrienkrrektur: messe x an Strahlpsitinsmnitren: finde R -1 θ = R -1 x Verschiedene Algrithmen: MICADO, SVD,... 12

13 Dispersin Andere wichtige Funktin der Strahlptik neben Betafunktin: Dispersin Wird erzeugt vn Diplmagneten 13 p p s 1 s x s 1 x''(s) : dann flgt 0 s 1 im Quadruple und daher Keine Ablenkung im Quadrupl, p p s 1 s x s k s 1 x''(s) 2 2 Δ ρ = ρ + ρ Δ ρ = ρ + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( s 1 D s s 1 D''(s) s 1 s x s 1 x''(s) die Dispersinsbahn D(s): die Differentialgleichung für flgt damit 1 p p Lösungsansatz : 2 2 ρ ρ ρ ρ = + = + = Δ ) sin( ) cs( ) sin( ) '( )) cs( (1 ) sin( ) cs( ) ( ρ ρ ρ ρ ρ ρ ρ ρ ρ s s s s D s s s s D + + = + + = ' D D ' D D

14 Die Superlative: Magnetfeld Welches Magnetfeld braucht man, um die Prtnen auf einer Kreisbahn zu halten? Kreisbahnradius vrgegeben: LEP Tunnel Energie 7 TeV r F = e m v R 0 2 r r v B = e 0 v B B = e 0 p R Antwrt: 8.33 T Erdmagnetfeld: 50 ut = 50/ T Herkömmliche Elektrmagnete: maximum 2 T supraleitende Elektrmagnete für den 14

15 Supraleitende Magnete für den Supraleitende Kabel: Supraleiter Nibium-Titan Strand Cable Filament Daraus werden die Magnetspulen gewickelt. Die Arbeitstemperatur dieser Leiter: 1.9 K ~ - 271º C I I I Kühlflüssigkeit: supraflüssiges Helium B Magnete sind in He-Bad 15

16 (Fast) 27 km kälter als das Weltall Temperatures arund the ring. Pr Sektr: 3 Wchen cl-dwn, 3 Wchen warm-up 16

17 Prtn-Prtn Kllisinen im Unterschiedliche Felder für die beiden Strahlen Prtnen Antiprtnen B Ein Kreisbeschleuniger für zwei Stahlen mit gleichen Teilchen erfrdert Magnete entgegengesetzter Feldrichtung B Daher viele Cllider mit Prtnen / Antiprtnen und e+e- 17

18 supraleitender Dipl 18

19 Die Superlative Insgesamt haben wir ~ 8000 Magnete 7600 km supraleitendes Kabel ~ 1200 t 8.3 T entspricht A Bei 7 TeV sind 11 GJ Energie in den Magneten gespeichert. Preis der Maschine (hne Experimente und Cmputing): 5 Mrd. CHF Benötigte Leistung 180 MW Verbrauch ~ 700 GWh/yr (10 % vm Kantn Genf) 19

20 Erster Crydipl wurde am 7. März 2005 in den Tunnel hinabgelassen Hauptdipl: 35 t, 15 m lang. Insgesamt 1232 in der Maschine 20

21 Magnettransprt im Tunnel Bis zu 15 km wurden Magnete damit transprtiert Mit 3 km/h. 21

22 Dipl installiert im Tunnel 22

23 Die -Bögen Der ist in 8 Sektren eingeteilt. Ein Sektr befindet sich zwischen 2 Punkten. An den Punkten hat man GERADE STRECKEN Jeder Sektr kann unabhängig gepwert und gekühlt werden. Zwischen den geraden Strecken befinden sich die Bögen. ca. 3 km lang Die Bögen haben eine FODO-Struktur nett Fkussierung QF diple decaple QD sextuple QF magnets magnets magnets small sextuple crrectr magnets Cell - Length abut 110 m (schematic layut) 23

24 Gerade Strecken mit Experimenten Punkt 1, 2, 5 und 8 haben gerade Strecken dieser Art: Die beiden Strahlen werden in EINE Vakuumkammer geführt mit Rekmbinatinsdiplen, D1 und D2. Der Strahl wird fkussiert in den Interaktinspunkt (IP) mit den Tripletquadruplen. Kreuzungswinkel mit Hilfe vn Orbitkrrektrmagenten. Während der Injektin und Rampe sind die Strahlen auf Separatinsbeulen keine Kllisin. 24

25 Die Superlative: Strahl Eventrate = 10 9 Events pr Sekunde. Eventrate = Wirkungsquerschnitt der Prtnen (E) Luminsität Luminsität hängt ab vn Anzahl der Teilchenpakete und Anzahl der Teilchen pr Teilchenpaket ab Ausserdem Größe der Strahlen am Interaktinspunkt und Kreuzungswinkel Für die nminelle Eventrate braucht man 2808 Teilchenpakete mit je Prtnen Prtnen bewegen sich quasi mit Lichtgeschwindigkeit 2 N f n L = b 4 π σ σ x y Bei 7 TeV entspricht das 360 MJ gespeichert im Strahl 25

26 360 MJ entsprechen Britischer Flugzeugträger mit 12 Knten...der einem Aut (3200 kg) mit 1700 km/h Ein Strahl mit nur einem 1/400 der gespeicherten Energie bhrt Löcher in Metall 6 cm Experiment in der Injektinslinie des 25 cm 26

27 Der Zyklus 12 Injektinen vm SPS, um den zu füllen MB current Physics Beam dump Ramp dwn Preinjectin plateau Injectin 2000 Prepare Physics B [T] 0 Ramp -3000dwn Mins Pre-Injectin Plateau 15 Mins Injectin Ramp Squeeze Prepare Physics Physics 15 Mins 28 Mins 20 Mins 10 Mins 0-20 Hrs Time [s] Start ramp Im Vergleich dazu: SPS Strahl: Injektin + Beschleunigung + Extraktin = 20 s 0 27

28 Was passiert am Ende des Zyklus mit dem Strahl? Nach 10 Stunden Datennehmen ist die Luminsität nur mehr 1/3 ihres Anfangswertes. Dann aber nch immer zwischen 200 MJ 300 MJ im Strahl. Nur ein Element kann den Impakt des Strahles überleben: der BEAM DUMP Der Strahl wird drthin extahiert. Beam dump blck 8 m Beam dump blck: Graphitkern 28

29 - Rückblick 1982 : Erste Studien zu Prjekt 1989 : Start der LEP Operatin (Z-factry) 1994 : Genehmigung des s durch den CERN Cuncil 1996 : Endgültige Entscheidung für Bau des s 1996 : LEP Operatin bei 100 GeV (W-factry) 2000 : Ende der LEP Operatin 2002 : LEP aus dem Tunnel entfernt 2003 : Start der Installatin 2005 : Start des Hardware Cmmissinings 2008 : Erste Inbetriebnahme mit Strahl : START-UP 29

30 Üben für den 10. September Injektinstests 30

31 Injectin Tests #1 BEAM 1 8 th f August t 10 th f August Beam was stpped n mmentum cllimatrs (graphite and tungsten) in pint 3. Cllimatr Injectin test 1 31

32 Injectin Tests #1 BEAM 1 Used beam intensity f > prtns (still belw the PILOT INTENSITY) Reached pint 3 n FIRST SHOT withut any steering with crrectr magnets Picture f the first sht: Al 2 O 3 Screen at pint 3 First beam induced quench in diple magnet: quenchin Cause: large amplitude kick int magnet aperture Quench prtectin system detected vltage increase and fired quench heaters Fr the rest f the beam cmmissining the intensity was limited t The quench limit had been exactly predicted: Prject reprt 44 (1996) 32

33 Injectin Tests #1 BEAM 1 Optics and aperture measurements: Kick respnse measurement Crrectr and BPM plarity and calibratin Phase advance Dispersin (ff-mmentum beam frm the SPS) Aperture arc and injectin regin (fund misalignment f vacuum pump in injectin regin, was crrected afterwards) Dispersin errr clse t pint 3 was traced back t POLARITY ERROR IN ALL ODD QTL magnets in sectr

34 Injectin Test #1 Beam 1 34

35 Injectin Tests #2 BEAM 2 22 nd f August t 24 th f August Beam was stpped n betatrn cllimatrs (graphite and tungsten) in pint 7. Injectin test 2 35

36 Injectin Test # 2 Beam 2 Again...reached pint 7 n first sht Picture f the first sht: Al 2 O 3 Screen at pint 7 Tested INTERLEAVED INJECTIONS: RING 1/ RING 2 n request Cmplex timing/synchrnisatin system: injectin request acrss the whle CERN injectr chain 36

37 Injectin Test #2 Beam 2 Similar measurement prgram Aperture in injectin regin OK Kick respnse in arc OK Discvered dispersin mismatch frm transfer line TI 8 int the Large dispersin beating fr beam 2. Investigatin fr rigin f mismatch still nging. 37

38 Injectin Test #3 Beam 1/ Beam 2 5 th f September t 7 th f September Beam 2 dumped n the beam dump, beam 1 stpped at tertiary cllimatrs at CMS. Injectin test 3 38

39 Injectin Test #3 Beam 1/ Beam 2 Scenari: Inject & Dump First trial with static crrectr magnets, steering int the dump line Then switched n beam 2 dump kickers (MKDs)... Sequencing, arming f beam dump with beam permit lps...worked!! MKD kick and beam Beam n graphite screen in frnt f beam dump blck. 39

40 Injectin Test #3 Beam 1/ Beam 2 Dispersin in Sectr 23 QTL plarity issue slved 40

41 Injectin Test #3 Beam 1/ Beam 2 Discvered ptics prblem in pint 6 fr beam 2: Wrng plarity in Q6 Wrng settings in QTL11.R3B1, QTL8.R3B1, QTL10.R3B1 Kick respnse data fr beam 1 in sectr 34: Measured data in green with nminal mdel in pink Measured data in green with mdel including wrng settings in pink 41

42 10. September 2008 Start-up...und die Medien 42

43 Ziel: 1 x um den Ring Kleine Intensität: 1/ der nminellen Intensität 43

44 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 44

45 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 45

46 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 46

47 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 47

48 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 48

49 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 49

50 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 50

51 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 51

52 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 52

53 Fädeln um den Ring Strahl 2 ~ 50 Minuten Strahl 1 ~ 60 Minuten Strahl 2 53

54 Nach 1 Tag: Stabiler Strahl, Lebensdauer vn Stunden!!! (Bei Injektinsenergie und sehr kleiner Intensität) Einfangen vm Teilchenpaket im elektrmagnetischen Feld der Kavitäten Clsed Orbit 54

55 19. September - Vrzeitige Winterpause für den Während eines Tests für 5 TeV Operatin ist eine Verbindung eines supraleitendes Kabels zwischen 2 Magneten aufgebrchen. 200 MJ in einem Punkt verlren Schmelzen des Kabels an der Stelle und Heliumverlust Start-up erst wieder nächstes Jahr 55

56 Erfindungsgeist der Physiker und Igenieure - Beispiel Prblem mit Plug-in mdules Verbindungsstück zwischen den Strahlvakuumkammern zwischen den Magneten Arc plug-in mdule bei Betriebstemperatur Raumtemperatur Wrng Right RF-Finger hatten zu grßen Winkel beim Wiederaufwärmen vn Sektr 78 ergab sich flgendes Prblem: da passt kein Strahl durch. 56

57 Erfindungsgeist der Physiker und Igenieure - Beispiel Plug-in mdule -Prblem einfach zu reparieren wie detektieren? Lösung: Ping-png Ball durch Sektr Blasen. Strahlpsitinsmnitre können 40 MHz Signale auflösen. Ping-png Ball, der 40 MHz Signal emittiert. Damit wurden 16 prblematische PIMs entdeckt (9 davn unerwartet). 28 PIMs wurden ausgetauscht. Und auch für das Prblem vm 19. September werden wir eine ähnlich geniale Lösung finden. 57

58 Schlusswrt Der ist eine extrem kmplexe Maschine mit Parametern am Rande des Machbaren......eines der aufregendsten Experimente der Geschichte der Menschheit......das die Welt der Physik (unseren Begriff der Wirklichkeit) völlig revlutinieren könnte. 58

59 DANKE FÜR MATERIAL VON... R. Schmidt, F. Brdery, M. Lamnt, CERN Outreach Pages, v.a. 59

Teilchenbeschleuniger

Teilchenbeschleuniger Beschleuniger Teilchenbeschleuniger Linearbeschleuniger Zyklotron Mikrotron Synchroton Speicherringe Stanford Linear Accelerator Center SLAC Röntgenphysik 58 Beschleuniger Linear Beschleuniger Linear Beschleuniger

Mehr

Kreisbeschleuniger IX (Synchrotron)

Kreisbeschleuniger IX (Synchrotron) Kreisbeschleuniger IX (Synchrotron) Höhere Energien wenn B-Feld und ω HF zeitlich variieren 2 qb q c B q cb Energiegewinn/Umlauf: inn/umla ωteilchen = = E = mc Ec ω Extraktion bei B = B max bei höchsten

Mehr

Kerne und Teilchen. Moderne Physik III. 7. Grundlagen der Elementarteilchen-Physik 7.1 Der Teilchenzoo. Vorlesung # 14.

Kerne und Teilchen. Moderne Physik III. 7. Grundlagen der Elementarteilchen-Physik 7.1 Der Teilchenzoo. Vorlesung # 14. Kerne und Teilchen Moderne Physik III Vorlesung # 14 Guido Drexlin, Institut für Experimentelle Kernphysik 6. Detektoren und Beschleuniger 6.2 Teilchenbeschleuniger - Zyklotron - Synchrotron - Internationale

Mehr

Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger

Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger 1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger Prof. Dr. G. Quast Institut für experimentelle Kernphysik Universität Karlsruhe (TH) 2 Ursprung

Mehr

Anwendungen von Diamantdetektoren am LHC und CMS Kurzbericht des Arbeitsgebietes

Anwendungen von Diamantdetektoren am LHC und CMS Kurzbericht des Arbeitsgebietes Anwendungen von Diamantdetektoren am LHC und CMS Kurzbericht des Arbeitsgebietes Maria Hempel Herbstschule für Hochenergiephysik Kloster Maria Laach, 03.09.-13.09.2013 Inhalt > Einführung zum Large Hadron

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest Teilchenphysik Masterclasses Das Leben, das Universum und der ganze Rest 1 Teil 1: Einführung Warum Teilchenphysik? 2 Fundamentale Fragen Wer? Wie? Wieviel? Was? Wo? Wann? Warum? 3 Warum Teilchenphysik?

Mehr

Benno List Universität Hamburg. VL Detektoren für die Teilchenphysik: Detektorkonzepte

Benno List Universität Hamburg. VL Detektoren für die Teilchenphysik: Detektorkonzepte Detektorkonzepte Benno List Universität Hamburg Vorlesung Detektoren für die Teilchenphysik Teil 13: Detektorkonzepte 28.1.2008 Seite 1 ATLAS Länge: 44m Höhe: 22m Magnetfeld: 2T (zentraler Solenoid), 4T

Mehr

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 1.10.10 Fachbereich Elektrtechnik und Infrmatik, Fachbereich Mechatrnik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vrlesung Physik 1 ab WS

Mehr

Ringbeschleuniger und Speicherringe

Ringbeschleuniger und Speicherringe Ringbeschleuniger und Speicherringe Prof. Dr. Oliver Kester Sabrina Geyer Dr. Peter Forck Motivation Ringbeschleuniger 2 Vorlesung mit Übungen: Das Team Prof. Dr. Oliver Kester Dr. Peter Forck Sabrina

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Daten-Qualitätskontrolle am ATLAS Myon-Spektrometer (am Beispiel der MDT-Kammern) Philipp Fleischmann 09. Februar 2010

Daten-Qualitätskontrolle am ATLAS Myon-Spektrometer (am Beispiel der MDT-Kammern) Philipp Fleischmann 09. Februar 2010 Daten-Qualitätskontrolle am ATLAS Myon-Spektrometer (am Beispiel der MDT-Kammern) Philipp Fleischmann 09. Februar 2010 Überblick Der Large-Hadron-Collider Das ATLAS Experiment Die Monitored-Drift-Tube-Kammern

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

III. Experimentelle Methoden. 1. Teilchenbeschleuniger. Kosmische Höhenstrahlung

III. Experimentelle Methoden. 1. Teilchenbeschleuniger. Kosmische Höhenstrahlung III. Experimentelle Methoden 1. Teilchenbeschleuniger Höhere Schwerpunktsenergien Bessere Auflösung von Substrukturen Erzeugung neuer (schwerer) Teilchen Kosmische Höhenstrahlung Für lange Zeit war die

Mehr

Elementarteilchen in der Materie

Elementarteilchen in der Materie Physik Grundlagenforschung - Elementarteilchen Unterlagen für den Physikunterricht (Herausgegeben von RAOnline) Teilchenbeschleuniger LHC im Kernforschungszentrum CERN Das CERN (die Europäische Organisation

Mehr

GOTTTEILCHEN und WELTMASCHINE

GOTTTEILCHEN und WELTMASCHINE Harald Appelshäuser Institut für Kernphysik GOTTTEILCHEN und WELTMASCHINE dem Urknall auf der Spur mit dem Teilchenbeschleuniger am CERN Large Hadron Collider (LHC) 8,6 km Large Hadron Collider (LHC) 1232

Mehr

Das Higgs-Boson wie wir danach suchen

Das Higgs-Boson wie wir danach suchen Das Higgs-Boson wie wir danach suchen Beschleuniger und Detektoren Anja Vest Wie erzeugt man das Higgs? Teilchenbeschleuniger Erzeugung massereicher Teilchen Masse ist eine Form von Energie! Masse und

Mehr

LHC Beschleuniger und Detektoren. Seminarvortrag Philipp Hofmann

LHC Beschleuniger und Detektoren. Seminarvortrag Philipp Hofmann LHC Beschleuniger und Detektoren Seminarvortrag 6.5.2010 Philipp Hofmann Inhalt Allgemeine Fakten Die Beschleuniger Die Detektoren Der LHC in der Öffentlichkeit Der Large Hadron Collider Bildquelle:http://ts-dep.web.cern.ch

Mehr

Beschleuniger-Elemente am

Beschleuniger-Elemente am 24.06.2011 1 / 51 Inhaltsverzeichnis Grundlegende Fragen LHC-Speicherring 2 / 51 Suche nach Higgs und neuer Physik Higgs-Grenzen aus der Theorie des SM. Higgs-Grenzen aus elektroschwachen Fits. Entdeckung

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003 Abschlussprüfung an Fachoberschulen im Schuljahr 00/00 Haupttermin: Nach- bzw. Wiederholtermin: 0.06.00 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 10 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

Unsichtbares sichtbar machen

Unsichtbares sichtbar machen Unsichtbares sichtbar machen Beschleuniger Detektoren Das Z Boson Blick in die Zukunft, Kirchhoff Institut für Physik, Universität Heidelberg Wozu Beschleuniger und Detektoren? Materie um uns herum ist

Mehr

2.2.6 Betafunktion: Behandlung von Teilchenstrahlen als Vielteilchensystem

2.2.6 Betafunktion: Behandlung von Teilchenstrahlen als Vielteilchensystem ..6 Betafnktion: Behandlng von Teilchentrahlen al Vielteilchenytem Literatr: K. Wille, Phyik der Teilchenbechleniger nd Synchrotrontrahlngqellen, Unterkapitel 3. bi 3.3 Vor-nd Nachteile der Bahnberechnng

Mehr

Einblicke in die Teilchenphysik

Einblicke in die Teilchenphysik Einblicke in die Teilchenphysik 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton-

Mehr

Teilchen sichtbar machen

Teilchen sichtbar machen Teilchen sichtbar machen PD Dr. M. Weber Albert Einstein Center for Fundamental Physics Laboratorium für Hochenergiephysik Physikalisches Institut Universität Bern 1 PD Dr. M. Weber Physik Masterclasses

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München

Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München 1 Urknall im Tunnel: das Large Hadron Collider Projekt

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

Der LHC Beschleuniger: Technologie an der Grenze des Machbaren Rüdiger Schmidt - CERN

Der LHC Beschleuniger: Technologie an der Grenze des Machbaren Rüdiger Schmidt - CERN Der LHC Beschleuniger: Technologie an der Grenze des Machbaren Rüdiger Schmidt - CERN Berlin Oktober 2008 Energie und Kollisionsrate Der relativistische Hammerwerfer Technologie und Komplexität Gespeicherte

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Physik V Einführung: Kern und Teilchenphysik

Physik V Einführung: Kern und Teilchenphysik Physik V Einführung: Kern und Teilchenphysik Georg Steinbrück, Dieter Horns Universität Hamburg Winter-Semester 2007/2008 Beschleuniger WS 2007/08 Steinbrück, Horns: Physik V 2 Beschleuniger: Prinzipien

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

The Search for the Higgs Boson

The Search for the Higgs Boson The Search for the Higgs Boson Revealing the physical mechanism that is responsible for the breaking of electroweak symmetry is one of the key problems in particle physics A new collider, such as the LHC

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Physik 4, Übung 2, Prof. Förster

Physik 4, Übung 2, Prof. Förster Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

Das CMS Experiment am Large Hadron Collider (LHC) am. Beispiel für globale Kommunikation in der Elementarteilchen-physik

Das CMS Experiment am Large Hadron Collider (LHC) am. Beispiel für globale Kommunikation in der Elementarteilchen-physik Das CMS Experiment am Large Hadron Collider (LHC) am Beispiel für globale Kommunikation in der Elementarteilchen-physik Übersicht: Am 10. September 2008 wurde am CERN in Genf der weltgrößte Teilchenbeschleuniger

Mehr

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten?

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten? Staatliche Schule für technische Assistenten in der Medizin Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main Testklausur Physik 1. 10 2 10 3 =... 2. 4 10 3 2 10 3=... 3. 10 4 m= cm 4.

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Teilchenbahnen im Magnetfeld

Teilchenbahnen im Magnetfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in

Mehr

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS05 Uni Augsburg T02 Richard Nisius Page 1

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS05 Uni Augsburg T02 Richard Nisius Page 1 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton- und Photonstruktur 8. Elektroschwache

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

2. Schularbeit aus. Mathematik und Angewandte Mathematik

2. Schularbeit aus. Mathematik und Angewandte Mathematik . Schularbeit aus Mathematik und Angewandte Mathematik Freitag,. April 06 5. Jahrgänge NAME: Punkte:. vn 40 Nte:.. Ntenschlüssel Sehr Gut Gut Befriedigend Genügend Nicht Genügend 40 5 0 5 9 6 6 0 0 Löse

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

LHC: Beschleuniger, Experimente, physikalische Ziele. Peter Mättig Bergische Universität Wuppertal

LHC: Beschleuniger, Experimente, physikalische Ziele. Peter Mättig Bergische Universität Wuppertal LHC: Beschleuniger, Experimente, physikalische Ziele Peter Mättig Bergische Universität Wuppertal Das (?) größte Wissenschaftsprojekt LHC Beschleuniger: 26 km Umfang Experimente groß wie 5 Stockwerke 10000

Mehr

Geburt. Produktionsmechanismen (Erzeugung paarweise)

Geburt. Produktionsmechanismen (Erzeugung paarweise) Michael Feindt Geburt B e,q 0 γ, g, Υ ( 4S), Z b e +,q b Produktionsmechanismen (Erzeugung paarweise) B Stammbaum Bewegtes Leben b u,, c t d B 0 W W B 0 d uct,, b Teilchen-Antiteilchen-Oszillationen e

Mehr

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec (1) Zwei Signale liegen im Protonenspektrum bei 1.45 und 4.57 ppm, das Spektrometer hat eine Frequenz von 400.13 MHz. Wieweit liegen die Signale in Hz bzw. in rad/sec auseinander? 4.57 ppm 1.45 ppm = 3.12

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Von Gregor Fuhs. 1. Februar 2011

Von Gregor Fuhs. 1. Februar 2011 Der Delphi Detektor Von Gregor Fuhs 1. Februar 2011 Inhaltsverzeichnis Der LEP-Beschleuniger Technische Daten des DELPHI Experiments Detektortypen Überblick Der LEP-Beschleuniger CERN, Genf 27km Länge

Mehr

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung 1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit Bogenschießen Jan-Patrick Wo hner/jonas Pfeil 30. Januar 2014 Institut fu r experimentelle Physik, Projektpraktikum Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Probe-Klausur zur Physik II

Probe-Klausur zur Physik II Ruhr-Universität Bochum Fakultät für Physik und Astronomie Institut für Experimentalphysik Name Vorname Matrikel-Nummer Fachrichtung, Abschluss Probe-Klausur zur Physik II für Studentinnen und Studenten

Mehr

Klausur zur Physik I für Chemiker. February 23, 2016

Klausur zur Physik I für Chemiker. February 23, 2016 WS 2015/2016 zur Physik I für Chemiker February 23, 2016 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T TOT.../4.../4.../4.../4.../4.../4.../24 R1 R2 R3 R4 R5 R6 R7 R8 R TOT.../6.../6.../6.../6.../6.../6.../6.../6.../48

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency Bernd Jähne, Reinhard Nielsen, Christopher Pop, Uwe Schimpf, and Christoph Garbe Interdisziplinäres Zentrum für Wissenschaftliches Rechnen

Mehr

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 4. 06. 009 Aufgaben. Wie in

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Zweisprachiger Wettbewerb Physik 1. Schuljahr

Zweisprachiger Wettbewerb Physik 1. Schuljahr Zweisprachiger Wettbewerb Physik 1. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Der Urknall im Labor. Experimente mit schweren Atomkernen bei hohen Energien. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Der Urknall im Labor. Experimente mit schweren Atomkernen bei hohen Energien. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Der Urknall im Labor Experimente mit schweren Atomkernen bei hohen Energien Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Aufbau der Materie Materie Kristall Atom Atomkern Protonen

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Particle Physics Quiz Teilchenphysik-Quiz

Particle Physics Quiz Teilchenphysik-Quiz Particle Physics Quiz Teilchenphysik-Quiz Particle Physics Masterclass 2010 Regeln In Zweiergruppen arbeiten 10 multiple-choice Fragen + 2 Stichfragen (+ 1 Entscheidungfrage, falls erforderlich) ~30 Sekunden

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V Bedeutung hoher Teilchenenergien Dann ist die Spannung Die kleinsten Dimensionen liegen heute in der Physik unter d < 10 15 m Die zur Untersuchung benutzten Wellenlängen dürfen ebenfalls nicht größer sein.

Mehr

81 Übungen und Lösungen

81 Übungen und Lösungen STR ING Elektrotechnik 10-81 - 1 _ 81 Übungen und Lösungen 81.1 Übungen 1. ELEKTRISCHES FELD a 2 A α 1 b B Zwischen zwei metallischen Platten mit dem Abstand a = 15 mm herrsche eine elektrische Feldstärke

Mehr

Die Suche nach dem Gottes-Teilchen

Die Suche nach dem Gottes-Teilchen Die Suche nach dem Gottes-Teilchen Helmut Koch Ruhr-Universität Bochum (Für einen Teil der Folien Dank an meinen Kollegen Prof. Wiedner/Bochum) Enkirch,den 7.11.2013 Gliederung Einleitung Aufbau der Materie

Mehr

5 Teilchenbeschleuniger

5 Teilchenbeschleuniger 5 Teilchenbeschleuniger bestehen aus Teilchenquelle Beschleunigungsstruktur Elementen zur Ablenkung und Fokusierung des Strahls Beschleunigung beruht immer auf der Kraft von elektrischen Feldern auf Ladungen.

Mehr

Aktuelle Probleme der experimentellen Teilchenphysik

Aktuelle Probleme der experimentellen Teilchenphysik Beschleunigerphysik Aktuelle Probleme der experimentellen Teilchenphysik 04.11.2008 Lehrstuhl für Physik und ihre Didaktik Historischer Überblick (1) Linearbeschleuniger (Urform Wideröe-Struktur ca. 1930)

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Ist das Higgs entdeckt? erste Ergebnisse der Weltmaschine und wie es weiter geht.

Ist das Higgs entdeckt? erste Ergebnisse der Weltmaschine und wie es weiter geht. Ist das Higgs entdeckt? erste Ergebnisse der Weltmaschine und wie es weiter geht. Öffentlicher Abendvortrag 14. September 2012 Volkshochschule Urania, Berlin Dr. Martin zur Nedden Humboldt-Universität

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Experimente mit Antimaterie

Experimente mit Antimaterie Experimente mit Antimaterie Elementarteilchen heute Antimaterie in der Natur Antimaterie (Positronen) in der Medizin (PET) Beschleunigung von Elementarteilchen Reaktionen zwischen Elementarteilchen und

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Landschaft der Forschungsinfrastrukturen. Lhc der weltgrößte teilchenbeschleuniger

Landschaft der Forschungsinfrastrukturen. Lhc der weltgrößte teilchenbeschleuniger Landschaft der Forschungsinfrastrukturen Lhc der weltgrößte teilchenbeschleuniger ForschungsinFrastruktur: Lhc, stand august 2016 2 LHC der weltgrößte Teilchenbeschleuniger groß, größer, Lhc: der Large

Mehr

Das Higgs- Teilchen: Supersymetrische Teilchen:

Das Higgs- Teilchen: Supersymetrische Teilchen: Das CMS- Experiment Das Compact Muon Solenoid Experiment (CMS) am neugebauten Large Hadron Colider (LHC) am CERN ist ein hochpräziser Teilchendetektor mit dessen Hilfe das bis jetzt nicht experimentell

Mehr