Kapitel 2 Ion-Lösungsmittel Wechselwirkung (Solvatation) Physikalische Chemie III/2 (Elektrochemie)

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2 Ion-Lösungsmittel Wechselwirkung (Solvatation) Physikalische Chemie III/2 (Elektrochemie)"

Transkript

1 Kapitel 2 Ion-Lösungsmittel Wechselwirkung (Solvatation) 1

2 2.1. Allgemeines Elektrochemisches System: elektronischer Leiter(Metall/Halbleiter) in Kombination mit Ionenleiter(Elektrolyt). Wie können die interionischen Kräfte überwunden werden(z.b. in Ionenkristall)? Eine Möglichkeit ist jene mit Hilfe eines Lösungsmittels- das Verständnis dieser Wechselwirkungen hat zentrale Bedeutung für das Verständnis der elektrochemischen Prozesse die darin ablaufen Problem: Wie können diese Wechselwirkungen quantifiziert werden? Ansatz: Änderung der freien Enthalpie zwischen Zuständen mit/ohne Wechselwirkung berechnen Welche Zustände sind dies? - mit Wechselwirkung: Ionen in Lösung - ohne Wechselwirkung: Ionen im Vakuum(großer Abstand, kein LM) 2

3 2.1. Allgemeines Figur 7: Die freie Enthalpie als zentrale Größe zur Bestimmung der Ion-Solvent-Wechselwirkung 3 3

4 2.1. Allgemeines Reaktion: A + (g) A + (aq) Experimentelle Bestimmung über die Lösungswärme eines Salzes, z. B. NaCl(s) NaCl(s) Lösungswärme H solution Na + (aq) + Cl - (aq) - H Gitter H Solvation, Na-Ion + H HSolvation, Cl-Ion Na + (g) + Cl - (g) Figur 8: SchematischerBorn-Haberscher Kreisprozess zur Bestimmung der Lösungswärme eines Salzes 4

5 2.1. Allgemeines Nur die Summe beider Solvatationsenergien bestimmbar (Born-Haber Kreisprozess) für NaCl: ΔH Gitter = -761 kj mol -1, ΔH Solution = 3.9 kj mol -1, ΔH Solvation = -757 kj mol -1 Auch Individual-Ionen experimentell bestimmbar? Figur 9: Abschätzung der Einzelionen-Solvatationsenergien von Individual-Ionen 3 5

6 2.2. Born-Haber Zyklus der Solvatation Simplifiziertes Modell der Berechnung der Freien Enthalpie-, Entropie,- und Enthalpie- Änderungen bei der Wechselwirkung eines Einzel-Ions mit dem Lösungsmittel. Zentrale Idee: Ion wird als starre Kugel mit einer Ladung z i e angesehen, das Lösungsmittel als strukturloses Kontinuum. Die Überlegung konzentriert sich damit auf die Bestimmung der Arbeit des Transfers einer geladenen Kugel vom Vakuum in ein Kontinuum (die Wechselwirkung ist damit nur von der Ladung des Ions abhängig und elektrostatisch) 6

7 2.2. Born-Haber Zyklus der Solvatation Das Born-Modell enthält damit die folgenden Schritte eines thermodynamischen Zyklus (Energieerhaltung!): 1.Reversible Entladung des kugelförmigen Ions im Vakuum: W 1 2. Transfer der entladenen Kugel in das Lösungsmittel: W 2 = 0 weil die Wechselwirkung einzig von der Ladung herrührt. 3. Reversible Aufladung der Kugel im Lösungsmittel: W 3 4. Re-Transfer des geladenen Ions ins Vakuum: W 4 = -ΔG I-S Figur 10: Der Born-Habersche Kreisprozess zur Bestimmung der Solvatationsenergie 3 7

8 2.2. Born-Haber Zyklus der Solvatation Detaillierte Berechnung der einzelnen Schritte: 1. Reversible Aufladungsarbeit eines kugelförmigen Ions: W q dw = Ψ dq = dq πεε 3 z e 0 4 0ri r i...ionenradius q q z e z e 1 = dq = = = 4πεε r 8πεε r 8πεε r 8πε r ε 0 i 0 i 0 i 0 i LM ε LM...Dielektrizitätskonstante des LM 2.EntladungimVakuum( ε = 1) W z e = 8πε 0r i 1 ε Vakuum 2 2 z e 1 Die Gesamtarbeit ist daher: Wges = (1 ) πε r ε 8 0 i LM Freie Enthalpie der Solvatation = Reversible Arbeit/mol, daher: 2 2 NLz e 1 G = (1 ) 8πε r ε 0 i LM 8

9 2.2. Born-Haber Zyklus der Solvatation Figur 11: Zur Erklärung der Dielektrizitätskonstante (Permittivität) 3 Die Entropie ist gegeben durch: d G d G dε N e z 1 dε SSolv = = = dt dε dt πε r ε dt 2 2 LM L LM 2 LM 8 0 i LM ε nimmt mit steigender Temperatur ab, aufgrund verringerter Orientierungspolarisation (=Ladungsverschiebung, u. a. Ausrichtung der permanenten Dipole). dε < 0 Entropieabnahme wenn Teilchen aus Vakuum ins Lösungsmi el, da Bildung dt geordneter Strukturen durch Solvatation Aus der Gibbs-Helmholtz-Gleichung kann die Enthalpieänderung berechnet werden: H Solv = G Solv + T S Solv = N L z 2 8πε r 0 e i 2 1 (1 ε LM ε T 2 LM dε LM dt ) 9

10 2.3. Wie gut ist das Born-Modell? - Fehler des Born-Modells und Verbesserungen Entscheidende Parameter bei der Berechnung: 1) Ionenradius 2) Dielektrizitätskonstante 1) Ionenradius Welcher Radius soll in die Gleichungen eingesetzt werden? Erster Schritt: Ionenradius aus kristallographischen Messungen einsetzen SummebeiderRadien: d=r + +r - Einzelradius bestimmbar bei sehr großem Anion und sehr kleinem Kation z.b.lij,j - -J - Abstand:4.24Å(Jodid-Ionenberühren sich,r(i - )=2.12Å Daraus können dann alle anderen Radien berechnet werden (z. B. für KJ, wo sich die Jodid-Ionen nicht berühren, r(k + ) = 1.31Å). I - I - Li + I - I - Figur 12: Zur Bestimmung der Ionenradien in LiJ 10

11 2.3. Wie gut ist das Born-Modell? - Fehler des Born-Modells und Verbesserungen Weitere Methoden der Bestimmung von Radien: - Goldschmidt-Radius: via Polarisierbarkeit-diese ist proportional seinem Volumen Polarisierbarkeit eines Anions etwa gleich der Polarisierbarkeit der zugehörigen Säuren. Polarisierbarkeit über Messung von ε bestimmbar. Ergebnisse: r(i - ) = 2.10 Å, r(k + ) = 1.33Å -Pauling-Radius: Ionenradius ist Funktion der effektiven Rumpfladung, d.h. r Die effektive Rumpfladung = Kernladung - Abschirmung Abschirmungen durch Innenelektronen: in äußerster Schale: äußerste: 0.85 weiter innen: 1 1 q Rumpf Für K + (Z=19) und Cl - (Z=17) (isoelektronischmit 18 Elektronen): eff. Rumpfladung: Cl - = [K-Schale] [L-Schale]-7*0.35[M-Schale] = 5.75 K + =7.75 A A aus X-ray: d KCl =3.15Å d = A=10.39 (Prop.-Konstante) und daraus die Ionenradien r(k + )=10.39/7.75=1.34Å und r(cl - )=10.39/5.75=1.81Å 11

12 2.3. Wie gut ist das Born-Modell? - Fehler des Born-Modells und Verbesserungen Die inverse Abhängigkeit des Ionenradius von der Solvatations-Enthalpie wird experimentell nicht bestätigt. Man kann jedoch willkürlich für jedes Kation 0.85 Å und für jedes Anion 0.1 Å hinzuzählen, damit die inverse Proportionalität gegeben ist. Figur 13: Fehler des Born-Modells bei der Bestimmung der Solvatationsenergie-Ionenradius-Abhängigkeit (links) und Korrektur durch konstanten Faktor (rechts) 3 12

13 2.3. Wie gut ist das Born-Modell? - Fehler des Born-Modells und Verbesserungen 2) Dielektrizitätskonstante Die gerechneten Solvatations-Enthalpiensind zu hoch, weil mit einer gemittelten Dielektrizitätskonstante des LM gerechnet wurde. Direkt am Ion ist dieser Wert deutlich geringer als der gemittelte Wert. Wird diese effektive Dielektrizitätskonstante in die Rechnung miteinbezogen, sinkt der Wert von ε. Figur 14: Abweichungen des Ionenradius vom Born-Modell bzw. deren Korrektur 3 13

14 2.3. Wie gut ist das Born-Modell? - Fehler des Born-Modells und Verbesserungen Verbesserungen des Born-Modells: 1. Wechselwirkungsenergie der ersten Hydrathülle wird über Ion-Dipol-Wechselwirkungen berechnet(im Vakuum). Das hydratisierte Molekül(mit effektivem Ionenradius) wird wie im Born-Modell ins LM überführt. Modell hat mehr Variable- bessere Übereinstimmung 2. Zusätzlicher Parameter: Hydratationszahl n als Zahl des Wassermoleküle, die im Zeitmittel im dynamischen Gleichgewicht mit dem Ion mitbewegt werden. Der effektive Ionenradius ist damit der Radius des hydratisierten Ions und mit der Hydratationszahl verknüpft. MethodenderBestimmungvonnbzwr eff 1. Dichte der Lösung: Freies Wasser hat voluminöse Struktur(H-Brücken!), Hydratwasser ist kompakt (durch Dipolanlagerung). Hydrathülle bewirkt also Volumenskontraktion, über das partielle Molvolumen kann n berechnet werden. 2. Kompressibilität der Lösung: siehe oben- freies Wasser ist kompressibler, da voluminöser 3. Lösungsentropie des Salzes bzw. Konfigurationsentropie: durch Bindung des Hydratwassers wird die Entropie erniedrigt. Die experimentell messbare Lösungsentropie(Löslichkeit als Funktion der Temperatur) wird mit statistisch berechneter Entropie(ohne Hydrathülle) verglichen. Die Differenz ergibt die Konfigurationsentropie. 4. Ionenbeweglichkeitbzw.Ionenleitfähigkeit 1/r eff Methoden 1-3 erlauben nur die Bestimmung der Summe von Anion und Kation, Methode 4 auch die Einzelbestimmung. 14

15 2.3. Wie gut ist das Born-Modell? - Fehler des Born-Modells und Verbesserungen Figur 15: Übereinstimmung derhydratationszahlen bestimmt via verschiedener Methoden 3 15

Grundlagen der Chemie Ionenradien

Grundlagen der Chemie Ionenradien Ionenradien Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ionenradien In einem Ionenkristall halten benachbarte

Mehr

Grundlagen der Chemie Lösungen Prof. Annie Powell

Grundlagen der Chemie Lösungen Prof. Annie Powell Lösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Inhalte Konzentrationsmaße Wasser als Lösungsmittel Solvatation,

Mehr

6. Die Chemische Bindung

6. Die Chemische Bindung 6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung I Kovalente Bindung II Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Salzartige

Mehr

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I Elektrolytlösungen, Leitfähigkeit, Ionentransport Teil I 1. Einführende Überlegungen 2. Solvatation, Hydratation 3. Ionenbeweglichkeiten und Leitfähigkeiten Literatur: Wedler 1.6.2-1.6.7 Teil II 4. Schwache

Mehr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr Universität Regensburg Institut für Physikalische und Theoretische Chemie Prof. Dr. G. Schmeer 18. Juli 27 Bitte füllen Sie zuerst dieses Deckblatt aus, das mit Ihren Lösungen abgegeben werden muss....

Mehr

Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid

Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid Versuchsaufbau : Um den Versuch durchzuführen, benötigen wir 180 g Wasser, welches in ein Becherglas gefüllt wird. Die Temperatur ermitteln

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

Die eigentliche Elektrochemie passiert an der Grenzfläche beider Leitertypen.

Die eigentliche Elektrochemie passiert an der Grenzfläche beider Leitertypen. Elektrolyte Teil 1 Solvatation, elektrishe Leitfähigkeit, starke und shwahe Elektrolyte, Ionenstärke, Debye Hükeltheorie, Migration, Diffusion, Festelektrolyte Elektrolyte Wiederholung: Jedes elektrohemishe

Mehr

6. Teilchen mit Ladung: Elektrochemie

6. Teilchen mit Ladung: Elektrochemie 6. Teilchen mit Ladung: Elektrochemie 6.1 Elektrostatische Wechselwirkung zwischen Ionen Die Kapazität eines Kondensators ist der Proportionalitätsfaktor von angelegter Spannung zur zugeführten Ladung

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # kubisch Fd3m # Aufbau durch nur 3 Atome -> 0 0 0 (8a) -> 5/8 5/8 5/8 (16d) -> 3/8 3/8 3/8

Mehr

Messung der Leitfähigkeit wässriger Elektrolytlösungen

Messung der Leitfähigkeit wässriger Elektrolytlösungen Versuch Nr. 10: Messung der Leitfähigkeit wässriger Elektrolytlösungen 1. Ziel des Versuchs In diesem Versuch sollen die Leitfähigkeiten von verschiedenen Elektrolyten in verschiedenen Konzentrationen

Mehr

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1 Physik I TU Dortmund SS18 Götz Uhrig Shaukat Khan Kapitel 1 Kugelkondensator Radien a (innen) und b (außen), Ladung ±. In der inneren Hohlkugel ist das E-Feld null (wie in jeder Hohlkugel, s. oben), außerhalb

Mehr

4. Ionenkristalle. 4. Ionenkristalle. Erinnerungen an die Basics (AAC, PC-I) Vorlesung Anorganische Strukturchemie, WS 18/ , C.

4. Ionenkristalle. 4. Ionenkristalle. Erinnerungen an die Basics (AAC, PC-I) Vorlesung Anorganische Strukturchemie, WS 18/ , C. Erinnerungen an die Basics (AAC, PC-I) Vorlesung Anorganische Strukturchemie, WS 18/19 2.2019, C. Röhr Ionenbindung, elektronische Struktur von Salzen Ionencharakter Kriterium: grosse Elektronegativitäts-Differenz

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 5 Verhalten von Lösungen Konzentrationen Solvatation und Solvatationsenthalpie Kolligative Eigenschaften Kryoskopie/Ebullioskopie

Mehr

Similia similibus solvuntur

Similia similibus solvuntur 5.2 Wasser als Lösungsmittel für Elektrolyte Similia similibus solvuntur Unpolare (Paraffine) oder wenig polare Stoffe (Fette) sind in unpolaren oder wenig polaren organischen Lösungsmitteln wie z. B Benzin

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

KAPITEL 7: LÖSUNGSMITTELEINFLUSS

KAPITEL 7: LÖSUNGSMITTELEINFLUSS 7.1 Qualitative Aspekte des Lösungsmitteleinflusses 7.2 Kontinuum-Modelle 7.3 Explizite Beschreibung des Lösungsmittels KAPITEL 7: LÖSUNGSMITTELEINFLUSS 7.1 Lösungsmitteleffekte Lösungsmittel induziert

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zur Vorlesung Anorganische Chemie III Wintersemester 2015/16 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah # hexagonale Strukturtypen

Mehr

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013 Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF#105129 & LSF#101277) - SWS: 4 + 2 SoSe 2013 Prof. Dr. Petra Tegeder Ruprecht-Karls-Universität Heidelberg; Fachbereich

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Hybridisierung und Molekülstruktur, sp 3 -Hybridorbitale (Tetraeder), sp 2 - Hybridorbitale (trigonal planare Anordnung), sp-hybridorbitale (lineare Anordnung),

Mehr

Grundlagen der Chemie Polare Bindungen

Grundlagen der Chemie Polare Bindungen Polare Bindungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektronegativität Unter der Elektronegativität

Mehr

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I +

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I + Elektrolyte Teil II Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Wie hängt der Strom von der Geschwindigkeit

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

Welches Element / Ion hat die Elektronenkonfiguration 1s 2 2s 2 2p 6 3s 2 3p 6. Geben Sie isoelektronische Ionen zu den folgenden Atomen an

Welches Element / Ion hat die Elektronenkonfiguration 1s 2 2s 2 2p 6 3s 2 3p 6. Geben Sie isoelektronische Ionen zu den folgenden Atomen an Übung 05.11.13 Welches Element / Ion hat die Elektronenkonfiguration 1s 2 2s 2 2p 6 Ne / F - / O 2- / N 3- / Na + / Mg 2+ / Al 3+. Welches Element / Ion hat die Elektronenkonfiguration 1s 2 2s 2 2p 6 3s

Mehr

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen Kristallchemie Atome Ionen Moleküle Chemische Bindungen Metalle, Metalloide, Nichtmetalle Metalle: E-neg < 1.9 - e - Abgabe Kationen Nichtmetalle: E-neg > 2.1 - e - Aufnahme Anionen Metalloide: B, Si,

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 7

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 7 1. Aufgabe Die kyroskopische Konstante E k und die ebulloskopische Konstante E e werden wie folgt berechnet. E k Wasser = R T 2 schmelz M H schmelz = 8,31451 J 273,15 K 2 18,02 10 3 kg mol = 1,86 K kg

Mehr

Praktikumsrelevante Themen

Praktikumsrelevante Themen Praktikumsrelevante Themen Lösungen Der Auflösungsprozess Beeinflussung der Löslichkeit durch Temperatur und Druck Konzentration von Lösungen Dampfdruck, Siede- und Gefrierpunkt von Lösungen Lösungen von

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

NH 3. CCl 4 CO 2. Lösungen zur Lernzielkontrolle Sekunda. Hilfsmittel: PSE, Taschenrechner

NH 3. CCl 4 CO 2. Lösungen zur Lernzielkontrolle Sekunda. Hilfsmittel: PSE, Taschenrechner Lösungen zur Lernzielkontrolle Sekunda Hilfsmittel: PSE, Taschenrechner 1 Stoffklassen / Bindungslehre / Zwischenmolekulare Kräfte (1) 1.1 Elektrische Leitfähigkeit verschiedener Stoffe (3) leitfähig,

Mehr

Seminar: Löse- und Fällungsgleichgewichte

Seminar: Löse- und Fällungsgleichgewichte 1 Seminar: Löse- und Fällungsgleichgewichte Ziel des Seminars: Lösungs- und Fällungsgleichgewichte sollen verstanden werden. Weiters soll durch praxisrelevante Beispiele die medizinische und klinische

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Periodensystem, Anordnung der Elemente nach steigender Ordnungszahl, Hauptgruppen, Nebengruppen, Lanthanoide + Actinoide, Perioden, Döbereiner, Meyer, Medelejew

Mehr

Kationen und Anionen ziehen sich aufgrund ihrer entgegengesetzten Ladung an. Die Anziehungskraft wird durch das Coulombsche Gesetz beschrieben.

Kationen und Anionen ziehen sich aufgrund ihrer entgegengesetzten Ladung an. Die Anziehungskraft wird durch das Coulombsche Gesetz beschrieben. 116 13 Die Ionenbindung Diese Art der Bindung findet man zwischen Metallen und Nichtmetallen, typischerweise etwa zwischen den Alkalimetallen und den Halogenen. Treibende Kraft ist auch hier wieder die

Mehr

Besetzung der Orbitale

Besetzung der Orbitale Frage Beim Wiederholen des Stoffes bin ich auf die Rechnung zur Energie gestoßen. Warum und zu welchem Zweck haben wir das gemacht? Was kann man daran jetzt erkennen? Was beschreibt die Formel zu E(n),

Mehr

Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate

Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate Zeitbedarf für die Versuchsdurchführung: ca. 10 Min. Geräte: Magnetrührer mit Magnetrührstäbchen Thermometer (min. 0,5 C Genauigkeit)

Mehr

Molekulare Simulationen wässriger Elektrolytlösungen

Molekulare Simulationen wässriger Elektrolytlösungen Thermodynamik-Kolloquium, 05. Oktober 2011 Molekulare Simulationen wässriger Elektrolytlösungen Stephan Deublein 1, Steffen Reiser 1, Jadran Vrabec 2, Hans Hasse 1 1, Technische Universität Kaiserslautern

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 09. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 09. 07. 2007 Klausur Die Klausur

Mehr

Allgemeine Chemie für r Studierende der Zahnmedizin

Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine und Anorganische Chemie Teil 3 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für

Mehr

1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie

1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie 1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie Name: Vorname: Matrikel Nr.: 15.12.2010 Die Durchführung und Auswertung der 12 Aufgaben im zweiten Teil dieser Klausur mit je vier Aussagen (a-d)

Mehr

2. Übung Allgemeine Chemie AC01

2. Übung Allgemeine Chemie AC01 Allgemeine und Anorganische Chemie Aufgabe 1: 2. Übung Allgemeine Chemie AC01 Chlor lässt sich gemäß der folgenden Reaktionsgleichung herstellen: MnO 2 + 4 HCl MnCl 2 + Cl 2 + 2 H 2 O 86,9368 g 145,8436

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 2. Das reale Gas. Das reale Gas

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 2. Das reale Gas. Das reale Gas Prof. Dr. Norbert Hampp 1/9 2. Das reale Gas Das reale Gas Für die Beschreibung des realen Gases werden die Gasteilchen betrachtet als - massebehaftet - kugelförmig mit Durchmesser d - Wechselwirkungen

Mehr

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen Elektrolyt- und Nichtelektrolytlösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrolyt- und Nichtelektrolytlösungen

Mehr

Dissoziationsgrad und Gefrierpunkterniedrigung (DIS) Gruppe 8 Simone Lingitz, Sebastian Jakob

Dissoziationsgrad und Gefrierpunkterniedrigung (DIS) Gruppe 8 Simone Lingitz, Sebastian Jakob Dissoziationsgrad und Gefrierpunkterniedrigung (DIS) Gruppe Simone Lingitz, Sebastian Jakob . Versuch. Versuchsaufbau Durch die Bestimmung der Gefrierpunktserniedrigung beim Lösen von KNO bzw. NaNO in

Mehr

Wiederholungsklausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik

Wiederholungsklausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik Name:... Vorname:... Matrikelnummer:. geb. am:... in:... Wiederholungsklausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik WS 27/28 am 5.4.28 Zugelassene Hilfsmittel: Taschenrechner.

Mehr

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale.

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. Quantenzahlen Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. l = 0, 1, 2, 3, (Orbital-)Symbol s, p, d, f, Zahl der Orbitale

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

Zusammenfassung v06 vom 2. Mai 2013

Zusammenfassung v06 vom 2. Mai 2013 Zusammenfassung v06 vom 2. Mai 2013 Ausflug in die Kernphysik: Atomkerne des Elements Sym werden durch Angabe der Massenzahl A und Kernladungszahl Z spezifiziert: A = Z + N, wobei N die Neutronenzahl ist.

Mehr

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung Physikalisches Anfaengerpraktikum Dissoziationsgrad und Gefrierpunkterniedrigung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe ) Montag, 1. Februar 00 1. Versuchsaufbau Um den Dissoziationsgrad

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 5. Grundlagen der chemischen Bindung Ionenbindung Eigenschaften, Ionengitter, Kugelpackung Strukturtypen, Kreisprozesse Kovalente Bindung Lewis Formeln, Oktettregel, Formalladungen

Mehr

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei:

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei: Elektrizität Die Coulombsche potentielle Energie V einer Ladung q im Abstand r von einer anderen Ladung q ist die Arbeit, die aufgewendet werden muss um die zwei Ladungen aus dem Unendlichen auf den Abstand

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 01/13 Christoph Wölper Universität Duisburg-Essen Koordinationszahlen Ionenradien # dichteste Packung mit 1 Nachbarn -> in Ionengittern weniger

Mehr

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen Zirkon Kristallchemie Atome Ionen Moleküle Chemische Bindungen Bohr sches Atommodell Kernteilchen: p: Proton n: Neutron Elektronenhülle: e - Elektron Nukleus: Massenzahl A = p + n, Ordnungszahl Z = p =

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Bioenergetik www.icbm.de/pmbio Energieformen Von Lebewesen verwertete Energieformen o Energie ist etwas, das Arbeit ermöglicht. o Lebewesen nutzen nur zwei Formen: -- Licht --

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 6 Entropie und Gibbs Enthalpie Gibbs-elmholtz-Gleichung Absolute Entropien Gibbs Standardbildungsenthalpien Kinetik

Mehr

Übung 3 - Musterlösung

Übung 3 - Musterlösung Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten

Mehr

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht 5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht Ein Teilchen, oder auch ein ganzes System von Teilchen, befindet sich im Gleichgewicht, falls sich "nichts" mehr ändert. Bei

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

bestimmte mehratomige Anionen mit Sauerstoff werden mit dem lateinischen Namen benannt und enden auf at.

bestimmte mehratomige Anionen mit Sauerstoff werden mit dem lateinischen Namen benannt und enden auf at. DIE BINDUNGSARTEN UND DAS PERIODENSYSTEM 1) IONISCHE VERBINDUNGEN SALZE Wenn die Atome Ionen bilden, haben sie meist die gleiche Elektronenzahl, wie das nächstgelegene neutrale Edelgas. Na bildet dann

Mehr

Vorlesung Anorganische Chemie. Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie

Vorlesung Anorganische Chemie. Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Oktettregel und rationelle Schreibweise Im Einklang mit EN-Differenzen! 4 x 153 pm [SO 4 ] 2- : 147 pm E=O: Zwei Bindungen a) E-O

Mehr

Das Mie Potenzial sowie die Form nach Lennard-Jones

Das Mie Potenzial sowie die Form nach Lennard-Jones Das Mie Potenzial sowie die Form nach Lennard-Jones Das Mie Potenzial [Mie.] und das Lennard-Jones Potenzial sind neben allen anderen Molekül Potenzialen wie Buckingham und Morse die bekanntesten Molekül

Mehr

Vom Atom zum Molekül

Vom Atom zum Molekül Vom Atom zum Molekül Ionenverbindungen Na + Cl NaCl lebensgefährlich giftig lebensgefährlich giftig lebensessentiell Metall + Nichtmetall Salz Beispiel Natriumchlorid Elektronenkonfiguration: 11Na: 1s(2)

Mehr

E4 - Physik kondensierter Materie Mitschrift zur Vorlesung von Prof. Bogdan Sepiol und Prof. Gero Vogl

E4 - Physik kondensierter Materie Mitschrift zur Vorlesung von Prof. Bogdan Sepiol und Prof. Gero Vogl E4 - Physik kondensierter Materie Mitschrift zur Vorlesung von Prof. Bogdan Sepiol und Prof. Gero Vogl Markus Drapalik und Bernhard Reiter Version vom 14.03.2006 Einleitung Literatur: Kittel, Charles:...,

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Elektrisches Potenzial V U Äuipotenzialflächen Potenzial einer Punktladung V 4πε R Potenzial eines elektrischen Dipols V p

Mehr

Allgemeine Chemie I Herbstsemester 2012

Allgemeine Chemie I Herbstsemester 2012 Lösung 4 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Im Vorlesungsskript sind für Xenon die Werte σ(xe) = 406 pm und ε = 236 kjmol 1 tabelliert. ( ) 12 ( ) 6 σ σ E i j = 4ε (1) r i j r i j r i j

Mehr

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus.

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. 1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. kann mit der Umgebung Energie austauschen. kann mit der Umgebung Entropie

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Frage 1. Klausuraufgaben Grundvorlesung Testat vom , Seite 1 Punkte. Bitte eintragen: Matrikelnummer: Bitte ankreuzen: Biotechnologie Pharmazie

Frage 1. Klausuraufgaben Grundvorlesung Testat vom , Seite 1 Punkte. Bitte eintragen: Matrikelnummer: Bitte ankreuzen: Biotechnologie Pharmazie Klausuraufgaben Grundvorlesung Testat vom 8.1.02, Seite 1 Punkte Matrikelnummer: Name: Bitte eintragen: Vorname: Bitte ankreuzen: Fachrichtung: Chemie Biotechnologie Pharmazie Frage 1 Skizzieren Sie die

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Thema heute: Chemische Bindungen - Ionenbindung

Thema heute: Chemische Bindungen - Ionenbindung Wiederholung der letzten Vorlesungsstunde: Chemische Bindungen, Doppelbindungsregel, VSEPR-Theorie Thema heute: Chemische Bindungen - Ionenbindung Vorlesung Allgemeine Chemie, Prof. Dr. Martin Köckerling

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0.

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0. 3 Lösungen Lösung zu 65. (a) Siehe Abbildung 1. (b) Schritt I: freie adiabatische Expansion, also ist δw 0, δq 0 und damit. Folglich ist nach 1. Hauptsatz auch U 0. Schritt II: isobare Kompression, also

Mehr

Vorlesung Allgemeine Chemie: Chemische Bindung

Vorlesung Allgemeine Chemie: Chemische Bindung Vorlesung Allgemeine Chemie: Chemische Bindung Inhalte Gruppentendenzen: Alkalimetalle, Halogene, Reaktion mit H 2 und H 2 O, basische und saure Oxide, Ionenbindung, Gitterenergie, Tendenzen in Abhängigkeit

Mehr

Molekulare Simulation von Ionen in wässrigen und nichtwässrigen

Molekulare Simulation von Ionen in wässrigen und nichtwässrigen ProcessNet Jahrestagung Karlsruhe, 13. September 2012 Molekulare Simulation von Ionen in wässrigen und nichtwässrigen i Elektrolytlösungen Steffen Reiser 1, Stephan Deublein 1, Jadran Vrabec 2, Hans Hasse

Mehr

Lösungswärme von Salzen

Lösungswärme von Salzen Lösungswärme von Salzen In diesem Versuch wird die Lösungswärme von zwei Salzen, Calciumchlorid und Calciumchlorid-Hexahydrat ermittelt. Dabei wird die Temperaturänderung beim Lösen des Salzes kalorimetrisch

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

6.2 Temperatur und Boltzmann Verteilung

6.2 Temperatur und Boltzmann Verteilung 222 KAPITEL 6. THERMODYNAMIK UND WÄRMELEHRE 6.2 Temperatur und Boltzmann Verteilung Im letzten Abschnitt haben wir gesehen, dass eine statistische Verteilung von Atomen eines idealen Gases in einem Volumen

Mehr

Stabilisierung von Kolloiden durch Polymere

Stabilisierung von Kolloiden durch Polymere Stabilisierung von Kolloiden durch Polymere Saarbrücken, den 02.07.2013 Nanostrukturphysik 2 Marc-Dominik Kraß Stabilisierung von Kolloiden Sterische Stabilisation Enthalpische Stabilisation Elektrostatische

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Kinetische Energie der Moleküle / Aggregatzustand

Kinetische Energie der Moleküle / Aggregatzustand 2.3 Intermolekulare Anziehungskräfte und Molekülkristalle Kräfte zwischen Molekülen - Van-der-Waals-Kräfte Orientierungskräfte bzw. Dipol-Dipol-Kräfte Induktionskräfte bzw. induzierte Dipole Dispersionskräfte

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R:

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R: Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 205/206 Prof. Dr. Eckhard Bartsch / M. Werner M.Sc. Aufgabenblatt 3 vom 3..5 Aufgabe 3 (L) Leitfähigkeiten

Mehr

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie DIE CHEMISCHE BINDUNG Ionische Bindung, Beispiel Natriumchlorid Trifft

Mehr

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer

Mehr

2.3 Intermolekulare Anziehungskräfte und Molekülkristalle

2.3 Intermolekulare Anziehungskräfte und Molekülkristalle 2.3 Intermolekulare Anziehungskräfte und Molekülkristalle Kinetische Energie der Moleküle / Aggregatzustand Bau und Struktur der Moleküle Intermolekulare Anziehungskräfte Kräfte zwischen Molekülen Van-der-Waals-Kräfte

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Änderungen für nächste Woche Vorlesung

Mehr

Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13

Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13 Kantonsschule Kreuzlingen, Klaus Hensler Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13 Grundregeln für stöchiometrische Berechnungen Wenn es um Reaktionen geht zuerst die chem. Gleichung aufstellen

Mehr

Der Schmelzpunkt von Salzen

Der Schmelzpunkt von Salzen Der Schmelzpunkt von Salzen Vergleich die Smp. der Salze (links). Welche Rolle könnten die Ionenradien bzw. die Ladung der enthaltenen Ionen spielen? Der Schmelzpunkt von Salzen ist i.d.r. sehr hoch. Er

Mehr

Praktikumsprotokoll. Grundlagen der Chemie Teil II SS Praktikum vom

Praktikumsprotokoll. Grundlagen der Chemie Teil II SS Praktikum vom Grundlagen der Chemie Teil II SS 2002 Praktikumsprotokoll Praktikum vom 02.05.2002 Versuch 11: Herstellung einer Pufferlösung von definiertem ph Versuch 12: Sauer und alkalisch reagierende Salzlösungen

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

Bekannter Stoff aus dem 1. Semester:

Bekannter Stoff aus dem 1. Semester: Bekannter Stoff aus dem 1. Semester: Atombau! Arten der Teilchen! Elemente/Isotope! Kernchemie! Elektronenhülle/Quantenzahlen Chemische Bindung! Zustände der Materie! Ionenbindung! Atombindung! Metallbindung

Mehr

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R:

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R: Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 206/207 Prof. Dr. Eckhard Bartsch / M. Werner M.Sc. Aufgabenblatt 3 vom..6 Aufgabe 3 (L) Leitfähigkeiten

Mehr

F Das Periodensystem. Allgemeine Chemie 26

F Das Periodensystem. Allgemeine Chemie 26 Allgemeine Chemie 6 F Das Periodensystem Aufgestellt von Mendelejew und Meyer 1869 (rein empirisch!) Perioden in Zeilen: mit jeder Periode erhöht sich die auptquantenzahl der äußeren Schale (s-rbital)

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr