Mathematik in der Astrologie
|
|
|
- Leon Kappel
- vor 8 Jahren
- Abrufe
Transkript
1 Nr. 03, März 2011, 22. Jahrgang Karsten F. Kröncke Mathematik in der Astrologie Symmetrie Den Begriff Symmetrie finden wir in der Mathematik bei der Geometrie.Zwei Punkte haben von einer gemeinsamen Mitte, der Spiegelachse, den gleichen Abstand. Man spricht dann hier von Spiegelung. Den Begriff Symmetrie finden wir ausserdem in der Algebra, wo es um Gleichungen geht. Geometrie Der Spiegelebene geben wir den Namen a Die Punkte A und A1 sowie B und B1 liegen auf verschiedenen Seiten der Symmetrieachse. Der Punkt A1 hat von der Symmetrieachse den gleichen Abstand wie der Punkt A. Der Punkt B1 hat von der Symmetrieachse den gleichen Abstand wie der Punkt B. Der Punkt C liegt mittelbar auf der Achse. Er ist Symmetriepartner, C1, und spiegelt sich mit sich selbst. 1
2 Gleichungen Die Waage Als Symbol für die Gleichung wähle ich die Balkenwaage des Kaufmanns. Das Ziel ist immer, die linke und rechte Waageschale genau auf gleiche Höhe zu bringen. Beispiel: Ein Kunde will Walnüsse und Haselnüsse kaufen. Von den Walnüssen will er 80 g, von den Haselnüssen 20 g haben. Die Nüsse sollen gemischt in eine Tüte geschüttet werden. Der Kaufmann legt zuerst in die linke Schale ein Gewicht von 80g, anschliessend in die rechte Waagschale so viele Walnüsse, bis sie mit der linken Schale auf gleicher Höhe liegt. Dann legt er in die linke Schale mit dem 80 g Gewicht ein 20 g Gewicht dazu (Vermehrung, Addition). Sie wiegt jetzt 100 g. 2
3 Nun schüttet er (vermehren, Zugabe, Addition, addieren) in die rechte Schale mit den Walnüssen so viele Haselnüsse, bis beide Schalen exakt auf gleicher Höhe in der Waagerechten liegen (wie bei der geometrischen Symmetrie, wenn zwei Punkte von einer gemeinsamen Mitte, der Spiegelachse, den gleichen Abstand haben). Wenn die linke Schale mit den Gewichten sich nach oben bewegt, dann wiegt sie weniger, ist also leichter als die rechte mit den Nüssen. Wenn die rechte Schale mit den Nüssen schwerer ist, senkt sie sich nach unten. In beiden Fällen sagen wir, dass die Waage aus dem Gleichgewicht geraten ist. Um sie wieder ins Gleichgewicht zu bringen, muss entweder die leichtere linke Schale mit den Gewichten mehr Gewichte erhalten (Addition) oder aus der schwereren rechten Schale mit den Nüssen müssen ein paar Nüsse entnommen (Subtraktion) werden. Das Ausgleichen (Tarieren) der Mengen findet so lange statt, bis ein Gleichgewicht hergestellt ist. Gleichung, Algebra Mathematik lebt von der Beziehung von Zahlen zu- und untereinander. Diese Beziehung nennt man Gleichungen. Darunter versteht man eine Aussage über die Gleichheit zweier Werte (genannt Terme), die mit Hilfe des Gleichheitszeichens ( = ) symbolisiert wird. Gleichungen sind gleich, wenn beide Seiten der Gleichung identisch, also austauschbar sind z. B. 9 = 9 oder = 9 In Gleichungen tauchen Variablen, auch Platzhalter genannt, auf. Für sie wird nach einer passenden Zahl gesucht. Sie soll für die Variable eingesetzt werden. In Gleichungen werden Variable oder auch Platzhalter meist durch Buchstaben, z. B. mit x dargestellt. 3
4 Eine einfache Gleichung ist beispielsweise: Regel: 4 + x = 9 Für die Variable x wird ein Wert gesucht, der mit 4 addiert gleich 9 ergibt. Wenn Glieder einer Gleichung die Seite wechseln, dann ändern sich deren Vorzeichen, aus minus wird plus, aus plus wird minus. Wir rechnen 4 + x = 9... x = x = 5 Der gesuchte Wert ist 5. Sie gehört in die Lösungsmenge der Gleichung. Als Symbol für die Lösungsmenge wird meist der Buchstabe L verwendet. Wenn eine Gleichung aus vier Gliedern besteht, von denen 3 bekannt sind, dann schreiben wir z. B = 40 + wieviel? Das Gleichheitszeichen = symbolisiert die Mitte (die Symmetrieachse unserer Waage). Statt wieviel setze ich einen Platzhalter, den ich x nenne. Gemäss der Regel: Wenn die Glieder einer Gleichung die Seiten wechseln, ändern sich deren Vorzeichen. Wir finden für x den Wert = 40 + x 100 = 40 + x = x 60 = x Probe = = 100 4
5 Statt Zahlen können wir auch Buchstaben einsetzen, z. B. 80 = a 20 = b 40 = c x = d Dann lautet die Gleichung a + b = c + d Die Gleichung erlaubt gemäss der o. g. Regel mehrere Variationen an Umstellungen. Ausgehend von a+b = c+d können wir auch sagen a-c = d-b a-d = c-b b-c = d-a b-d = c-a a+b-c = d a+b-d = c c+d-a = b c+d-b = a Bekannt wurde in der Astrologie um 150 v. Chr. (?) die Formel a+b-c = x Der Platzhalter x wurde hermetische Lehre der Lose", auch planetarische Lose", hermetische Lose", Kleroi, Kleros" (griech.), loci", partes" (lat.) genannt. Sie sollen von Critodemus (Kritodemos), um 150 v. Chr.?, Praxidikos, um 150 v. Chr.? und Nechepso und Petosiris (vielleicht nur Namensgeber?), um 150 v. Chr.? erstmals entwickelt worden sein. Auf sie nehmen spätere Autoren Bezug: Vettius Valens, um 120 bis 185 n. Chr.: Von den Längen des Horoscopos (Anmerk.: mit Horoscopos", Stundenanfang, ist hier die Position des Aszendenten gemeint), Sonne, Mond und Planeten werden neue Punkte auf der Ekliptik berechnet, die für den Geborenen ohne Frage wichtig sind. Die Position des Daimon (Glückslos) wird aufgrund der Positionen des Aszendenten, der Sonne und des Mondes wie folgt gefunden: 5
6 x = AS + Mond - Sonne (Tag) x = AS - Mond + Sonne (Nacht)[1] Die Jahreszahl um 150 v Chr. könnte richtig sein. Es wird angenommen, dass im 1. Jahrhundert v. Chr. der Grieche Diophantus, auch Diophant von Alexandrien genannt, Algebra begründet hat. In seinem 13 Bände umfassenden Werk Arithmetica wird die algebraische Methode, also das Rechnen mit Buchstaben, zuerst verwendet. [2] Übungshoroskop Thomas Mann, *So., , 09:32:16 UTC/WZ, Lübeck, D, '/+53 52' Positionen, TKZ '-... Modus Rechnung + + Von x, 05 56', steht 135 ( eineinhalb Quadrat, +1 47') entfernt, 22 43'. Grafische Darstellung, sensitiver Punkt > <) 135 = 6
7 Als Gleichung, gerechnet im 22 30'-Modus [3], sensitiver Punkt ( x ist hier ) + + Rechnung, Symmetrie, mit Halbsummen (beide Werte liegen im Orbis +/- 1 ) [3] Grafische Darstellung a ist Symmetrieachse von und b ist Symmetrieachse von und 7
8 Quellen [1] Otto Neugebauer, H. Bartlett van Hoesen: Greek Horoscopes. Philadelphia 1959, 1987, S. 8-9, 185 (Critodemus) s. a. Otto Schönberger und Eberhard Knobloch: Blütensträusse. (Vettius Valens, Anthologiae), 378 S., Chiron Verlag, Tübingen 2005 Ähnlich lautende Beschreibungen der Gleichungen, die sich auf die selben ägyptischgriechischen Autoren beziehen, finden sich in, CCAG, Catalogus Codicum Astrologorum Graecorum, Aedibus Academiae, Bruxelles, Lamertin, , Band 7: F 30-31, Excerpta ex Nechepsone et Petosiride de Solis et Lunae defectionibus. S , Download: Ernst Riess: Nechepsonis et Petosiridis fragmenta magica, in: Philologus, supplement 6, Göttingen 1892, S , Download: Marcus Manilius, um 8 v. Chr.-22 n. Chr., übersetzt von Wolfgang Fels: Astronomica/Astrologie, Reclams Universal-Bibliothek 8634, Philipp Reclam jun. GmbH, 531 S., Stuttgart 1990, 2008, Ditzingen, Mai 2012, S Dorotheos von Sidon, um 20 n. Chr. (übersetzt von Viktor Stegemann: Die Fragmente des Dorotheos von Sidon. Selbstverlag F. Bilabel, Heidelberg 1939, S. 45:... es handelt sich um das al-qasranizitat über das Glückslos...") Claudius Ptolemäeus, um n. Chr., übersetzt von M. Erich Winkel, Chiron-Verlag, Mössingen 2000, 282 S., krt., S. 160, 166; ISBN-10: [2] Algebra, Wikipedia, Heinz-Wilhelm Alten et al.: 4000 Jahre Algebra. Springer-Verlag, Berlin Heidelberg 2003, ISBN , 95ff [3] Der 22 30'-Modus wird hergeleitet vom Teiler 4 (Kreis = 360 durch 4 Jahreszeiten = 90 ). Wenn 90 geteilt werden soll, dann nur mit Teiler 4, deshalb 22 30'. Der Orbis +/- 1 gilt auch im 22 30'-Modus. Ein Planetenbild besteht aus 2 Halbsummen, die voneinander einen Winkelabstand haben können von 0, 22 30' oder einem Vielfachen. *** INSTITUT für ASTROLOGIE, Freier Arbeitskreis für Lehre und Forschung in: Kulturgut Astrologie ev. Kehler Str Freiburg Volksbank Freiburg Konto-Nr BLZ Tel Fax [email protected] by Karsten F. Kröncke Nachdruck mit Quellenangabe erlaubt. 8
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009
Lösen von linearen Gleichungssystemen mit zwei Unbekannten:
Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben
Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
2 Terme 2.1 Einführung
2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,
Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen
Vorkurs Mathematik Übungen zu Polynomgleichungen
Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.
Übungsbuch Algebra für Dummies
...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
Gleichungen Lösen. Ein graphischer Blick auf Gleichungen
Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term
3.1. Die komplexen Zahlen
3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.
R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen
Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.
38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten
Betragsgleichungen und die Methode der Fallunterscheidungen
mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: [email protected]
Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man
die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40
Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken
Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren
ax 2 + bx + c = 0, (4.1)
Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die
INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN
INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon
Teilbarkeit von natürlichen Zahlen
Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch
3 Berechnungen und Variablen
3 Berechnungen und Variablen Du hast Python installiert und weißt, wie man die Python-Shell startet. Jetzt kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen an und wenden uns
Mathe-Übersicht INHALTSVERZEICHNIS
S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS
Terme und Formeln Umgang mit Termen
Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.
Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7
1. Rationale Zahlen Vernetzen Geben Ober- und Unterbegriffe an und führen Beispiele und Gegenbeispiele als Beleg an (z.b. Proportionalität, Viereck) Überprüfen bei einem Problem die Möglichkeit mehrerer
Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1
.1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische
Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014
egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs
Didaktik der Zahlbereichserweiterungen
3.1 vom Hofe, R.; Hattermann, M. (2014): Zugänge zu negativen Zahlen. mathematik lehren 183, S. 2-7 Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche 3.2 Inhaltsverzeichnis
Realschule Gebhardshagen Stoffverteilungsplan Mathematik inhaltsbezogene Kompetenzen
Realschule Gebhardshagen Stoffverteilungsplan Mathematik inhaltsbezogene Kompetenzen Gültigkeit ab dem Schuljahr 2012/2013 Grundlagen: Kerncurriculum Mathematik für Realschulen in Niedersachsen Faktor,
Klassenarbeit zu linearen Gleichungssystemen
Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge
Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens
Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Mathematische Grundlagen 2. Termrechnen
Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1
Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1)
Name: Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1) Inhalt: Terme umformen / Rechenregeln mit Variablen Klammerregeln Verbindung von Operationen verschiedener Stufe
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft
Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick
n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.
Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler
Einführung in die Tabellenkalkulation Microsoft Excel
Einführung in die Tabellenkalkulation Microsoft Excel Mit Hilfe einer Tabellenkalkulation kann man Daten tabellarisch auswerten und grafisch darstellen. Die Daten werden als Tabelle erfasst, verwaltet
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Übungsplan zu ganzen Zahlen Aufgaben zur Prüfungsvorbereitung von Markus Baur, StR Werdenfels-Gymnasium
Übungsplan zu ganzen Zahlen Aufgaben zur Prüfungsvorbereitung von Markus Baur, StR Werdenfels-Gymnasium Das Dokument steht unter einer Creative Commons Lizens: Das Werk darf unter den folgenden Bedingungen
Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.
Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen
3. LINEARE GLEICHUNGSSYSTEME
176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an
Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem
Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT
Das Wissen der Astrologie
Das Wissen der Astrologie Astrologie verstehen, Horoskope erstellen, Zukunft deuten inkl. Bonus-Band von Christian Lackner 2015 Christian Lackner. Alle Rechte vorbehalten. Das Werk einschließlich aller
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Mathematik-Dossier. Die lineare Funktion
Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der
Mathematikskript Realschule Klasse 10 (Baden-Württemberg) Vorbereitung Realschulabschlussprüfung 2016 Unterrichtsbegleitung im 10.
Mathematikskript Realschule Klasse 0 (Baden-Württemberg) Vorbereitung Realschulabschlussprüfung 06 Unterrichtsbegleitung im 0. Schuljahr inkl. aller Prüfungsaufgaben von 005-05 Dipl.-Math. Alexander Schwarz
Schulrechner wie rechnen sie? Rechnern? Wissenschaftliche. kaufmännisch. wissenschaftlich. Was ist ein Schulrechner? 1
Wissenschaftliche Schulrechner wie rechnen sie? Wie unterscheiden sie sich von kaufmännischen Rechnern? kaufmännisch wissenschaftlich Was ist ein Schulrechner? 1 Was ist ein wissenschaftlicher Rechner?
= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =
WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht
DAS ABI-PFLICHTTEIL Büchlein
DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal
Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert
Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Terme und Gleichungen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Terme
Themenkreise der Klasse 5
Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.
2 Lineare Gleichungen mit zwei Variablen
2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen
Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur
Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose
5. Lineare Funktionen
5. Lineare Funktionen Lernziele: -Eine lineare Funktion grafisch darstellen -Geradengleichung (Funktionsgleichung einer linearen Funktion) -Deutung von k- und d-wert -Grafische Lösung von Gleichungssystemen
Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie
Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:
Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik
Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen
Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1
Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)
Becker I Brucker. Erfolg in Mathe 2015. Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen
Becker I Brucker Erfolg in Mathe 2015 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort 1 Aufgaben 5 1 Algebra.......................................
beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007
Der Autor: Matthias Nowak - geboren 1978 - arbeitet seit 2002 als Nachhilfelehrer beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007 arbeitet er zusätzlich freiberuflich als Autor
Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen
Inhalt 1 Natürliche Zahlen 1.1 Der Zahlbegriff... 6 1.2 Das Zehnersystem... 7 1.3 Andere Stellenwertsysteme... 8 1.4 Römische Zahlen... 10 1.5 Große Zahlen... 11 1.6 Runden... 13 1.7 Rechnen mit Einheiten...
Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha)
Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) - dies ist i.w. die Übersetzung eines Artikels, der im November 2010 im Newsletter der Chue Foundation erschienen ist - Korrektheit
Grundwissen Rationale Zahlen
Michael Körner Grundwissen Rationale Zahlen 7.-10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Rationale Zahlen spielen in der gegenwärtigen und zukünftigen Lebensumwelt Ihrer Schülerinnen und
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau
Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation
Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen
TEST Basiswissen Mathematik für Ingenieurstudiengänge
TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium
Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1
Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle
Formelsammlung zur Kreisgleichung
zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,
Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen?
Modulabschlussprüfung ALGEBRA / GEOMETRIE Lösungsvorschläge zu den Klausuraufgaben Aufgabe 1: Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Im
Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches
Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.
DEUTSCHE BUNDESBANK Seite 1 Z 10-8. Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015)
DEUTSCHE BUNDESBANK Seite 1 Z 10-8 Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015) 00 Modulus 10, Gewichtung 2, 1, 2, 1, 2, 1, 2, 1, 2 Die Stellen
Grundlagen zur Wheatstone'schen Brückenschaltung
Grundlagen zur Wheatstone'schen Brückenschaltung Stand: 14.07.2012 Herleitung der Brückengleichung Die Brückenschaltung besteht aus zwei parallelgeschalteten Spannungsteilern. Beide Spannungsteiler werden
Kapitel 15: Differentialgleichungen
FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen
Gleichungen - Aufgabenstellung und Lösungsstrategien
Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. [email protected] 18. Juli 2006 1 Einleitung
Probleme beim Arbeiten mit Variablen, Termen und Gleichungen
Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Tage des Unterrichts in Mathematik, Naturwissenschaften und Technik Rostock 2010 Prof. Dr. Hans-Dieter Sill, Universität Rostock, http://www.math.uni-rostock.de/~sill/
Mathematik für Techniker
Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe
WOCHENPLAN MATHEMATIK
Wochenplan Übersicht NACHHILFE WINTERTHUR & ÜRICH WOCHENPLAN MATHEMATIK Mathematik Sekundarstufe Woche Thema Unterthema/ Hilfsmittel 1 : Umformen Klammern, Brüche, Potenzen, Variablen Algebra: Gleichungen
Rationale Zahlen. Weniger als Nichts? Ist Null nichts?
Rationale Zahlen Weniger als Nichts? Ist Null nichts? Oft kann es sinnvoll sein, Werte anzugeben die kleiner sind als Null. Solche Werte werden mit negativen Zahlen beschrieben, die durch ein Minus als
Die Glocken der evangelischen Kirche St. Michaelis zu Braunschweig
Die Glocken der evangelischen Kirche St. Michaelis zu Braunschweig Die Daten des Geläutes Glocke I II III Glockenname Michaelisglocke kein Name kein Name Schlagton f +8 g +7 b +8 Prim f +4 g -1 b 0 Terz
Diagnoseaufgaben. egative Zahlen. Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund
aufgaben egative Zahlen Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund 1 Kann ich beschreiben, was das Minus vor einer Zahl bedeutet? a) Erkläre, was die beiden meinen. Welche
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge
Liebe Teilnehmerinnen und Teilnehmer am Telekolleg,
Liebe Teilnehmerinnen und Teilnehmer am Telekolleg, der Vorkurs Mathematik des Telekollegs soll dazu dienen, mathematische Kenntnisse und Fertigkeiten, die im Telekolleg als Voraussetzung benötigt werden,
Wenn Du Deinen Rechner zum ersten Mal einschaltest, verlangt er von Dir einige Angaben. Wähle als Sprache Deutsch.
INHALT 1 Dein TI nspire CX CAS kann fast alles... 1 2 Erste Schritte... 1 2.1 Systemeinstellungen vornehmen... 1 2.2 Der Startbildschirm... 2 2.3 Berechnungen... 2 3 Menü b... 3 4 Symbolisches Rechnen...
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine
