Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen

Größe: px
Ab Seite anzeigen:

Download "Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen"

Transkript

1

2 Gott würfelt nicht

3 Monte-Carlo-Methode mit Pseudo- und Quasizufallszahlen

4 Inhaltsverzeichnis Pseudo- und Quasizufallszahlen Monte-Carlo- Monte-Carlo-

5

6 Monte-Carlo-Methode Bekannt nach Stadt Monte Carlo (wegen Casino) verwendet Prinzipien der Wahrscheinlichkeitsrechnung und Statistik benutzt Methode der statistischen Versuche Fähigkeit, komplexe Probleme näherungsweise zu lösen Schwierigkeitsgrad relativ gering Fähigkeiten: numerische Lösung von Problemen (Integrale, DGL, usw.) deterministisch von Systemen mit Unsicherheiten stochastisch Einsatzgebiete: Teilchenphysik Astrophysik Risikomanagement...

7

8 Pseudozufallszahlen ϵ [0,1] zufällig durch Computer erzeugt linear kongruenter Generator: Bsp: 7 mod 2 = 1 weil: 7/2=3 Rest 1 I j = a I j 1 c mod m a, c, m ϵ ℤ Zufallszahl x j durch: x j =I j /m benötigt 3 ganzzahlige Konstanten: z. B. m=231 1, c=0, a=16807 und eine Saat: I 0 (Park Miller Generator)

9 Pseudozufallszahlen

10

11

12 Quasizufallszahlen gleichförmig verteilte zahlentheoretische Punktfolgen nicht mehr unabhängig systematisch konstruiert Richtmyer-Generator: k-te Koordinate des i-ten Punkts: x ik = i p k mod 1 mit p k : k-te Primzahl n Zufallsgeneratoren der n Dimensionen voneinander unabhängig

13 Quasizufallszahlen

14 Beispiel: Berechnung von Pi erzeuge N tot Punkte mittels zwei Pseudozufallszahlen x 1 und x 2 ϵ [0,1] Zähle Punkte N ac innerhalb von Kreis (Radius 1) x 1 x Pi erhält man dann aus: N ac pi=4 N tot

15 pi=3,13 vgl. =3,14

16 Gitter, Pseudozufallszahlen oder Quasizufallszahlen? Pseudozufallszahlen Entscheidung durch Fehlerabschätzung: Koksma-Hlawka-Ungleichung für sfehler = Q N f If V f D P N Diskrepanz (Maß für Ungleichverteilung)

17 Gitter, Pseudozufallszahlen oder Quasizufallszahlen? Diskrepanz n N vol J klein für alle J

18 Gitter, Pseudozufallszahlen oder Quasizufallszahlen? Für Dimensionen s 20 : Quasizufallszahlen bessere Diskrepanz als Pseudozufallszahlen Für Dimensionen s 10 : Kleinere Diskrepanz kleinerer Fehler Vorteil von Quasizufallszahlen mit größeren s kleine N: Gitter so genau wie Quasizufallszahlen große N (ca. 2000): Gitter schlechtere Ergebnisse als Quasizufallszahlen Für s 4 : Gitter schlechter als Pseudozufallszahlen weiterer Nachteil von Gitter: Keine kontinuierliche Steigerung von N

19

20 benötigt bei und gegeben: Homogen gesucht:, die einer Wahrscheinlichkeitsdichte folgen

21 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

22 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

23 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

24 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

25 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

26 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

27 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

28 Wegwerfmethode (von Neumann's Acceptance-Rejection Method) Wahrscheinlichkeitsdichte f(x) Eingrenzung (Box zwischen x1, x2 und fmax) generiere Zufallszahl ϵ [x1,x2] generiere zweite Zufallszahl u ϵ [0,fmax] für u<f(x) wird x akzeptiert, ansonsten verworfen wiederhole Vorgang

29

30

31 Variablentransformation gegeben: Wahrscheinlichkeitsdichte f(x) u ϵ [0,1] mit g(u)=const. Methode: Transformiere u x: u x u g u ' du ' = f x ' dx ' u= F x u 1 F u = x u

32 Variablentransformation F 1 u = x u

33 Variablentransformation 1 F u = x u x Bsp: f x =e 1 x F x = 0 dx ' e x ' = e x 1 F u = ln 1 u = x u

34 Majorantenmethode (importance sampling) Kombination: Wegwerfmethode und Variablentransformation wähle m x f x alle x generiere, die m(x) folgen (Variablentransformation) generiere pro Zufallszahl x eine Zufallszahl u ϵ [0,m(x)] verwerfe mit u>f(x)

35 Majorantenmethode (importance sampling) Bsp: Planck-Verteilung

36 Majorantenmethode (importance sampling) Bsp: Planck-Verteilung

37 Monte-Carlo-

38 Monte-Carlo- xb I = x y x ' dx ' a mit y x ' 0 kann auf mehrere Dimensionen verallgemeinert werden

39 Primitive Wegwerfmethode erzeuge 2D- in Kasten zwischen x a, x b und y max Anzahl Punkte unterhalb y(x): N Anzahl aller Punkte: N 0 Fläche des Kastens: I0 N I I0 N0

40 Primitive Wegwerfmethode Unsicherheit durch Binomialverteilung: N N P N = N 0 N 1 N 0 N N0 Erfolgswahrscheinlichkeit N = N 0 1 I N 1 = = I N N I 1 = I N Verbesserung durch Erhöhung von N Verbesserung durch Erhöhung von N N0

41 Majorantenmethode finde Majorante m(x) zu y(x) erzeuge Punkte x', die Wahrscheinlichkeitsdichte m(x') folgen dann Wegwerfmethode: generiere zu jedem x ' ein y ' mit 0 y ' m x ' Anzahl der Punkte unterhalb y x' : N N I I0 N0 xb I 0 = x m x ' dx ' a

42 Wichtungsmethode xb I = x y x ' dx ' a mittle Funktionswerte mit zwischen x a und x b : 1 y = N N i=1 y x i I x b x a y entspricht herkömmlicher numerischer Unterschied: Stützstellen sind zufällig verteilt 1 y y x i y ² i N N 1 2 I y = I y

43 Wichtungsmethode Verbesserung durch Reduzierung der Schwankungen y 2 1 y x i y ² i N N 1

44 Vorteile der Monte-Carlo- bessere Konvergenz für s-dimensionale Integrale mit s 4 als bei herkömmlicher numerischer einfachere Behandlung der sgrenzen Genauigkeit kann kontinuierlich gesteigert werden Fehler leichter abschätzbar

45 Monte-Carlo-

46 Photomultiplier herausgeschlagene Elektronen folgen Poisson-Verteilung

47 Photomultiplier

48 Photomultiplier

49 Fragen? Diskussion

7 Zufallszahlen, Simulation

7 Zufallszahlen, Simulation 7 Zufallszahlen, Simulation Es ist nützlich, Folgen von i.i.d. R[0, 1]-verteilten Zufallszahlen auf einem Rechner erzeugen zu können vgl. Simulation, Monte-Carlo-Verfahren). Letztere sind i.a. keine echten

Mehr

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken 25. Juni 2015 1 / 37 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance

Mehr

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Eperimentelle Methoden der Teilchenphysik Sommersemester 011/01 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut, Westbau,. OG Raum 008 Telefon 0761 03 761 E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 16. November 2009 2. Monte Carlo-Methoden 2.1 Zufallszahlen - Warum? 2.2 Zahlendarstellung im Rechner 2.3 Generatoren 2.3.1 Linear kongruente Generatoren

Mehr

Simulationstechniken in Finanz- und Versicherungsmathematik

Simulationstechniken in Finanz- und Versicherungsmathematik Simulationstechniken in Finanz- und Versicherungsmathematik 10. Januar 2010 1 Motivation 2 Monte Carlo Methoden 3 Quasi-Monte Carlo Methoden 4 Folgen kleiner Diskrepanz Motivation Mortgage-backed Security

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Master Seminar Mathematik Monte-Carlo Integration. Stephan Napierala 06. Juli 2017

Master Seminar Mathematik Monte-Carlo Integration. Stephan Napierala 06. Juli 2017 Master Seminar Mathematik Stephan Napierala 12 Inhaltsverzeichnis 1. Geschichtlicher Hintergrund 2. Stochastische Grundbegriffe 3. 4. Vorteile gegenüber anderen Verfahren 5. Konvergenzbeschleunigung Geschichtlicher

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation Jens Schiborowski Gliederung Einführung Monte-Carlo-Simulation Definition von Monte-Carlo-Simulation Einsatzgebiete von Monte-Carlo-Simulation

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Probabilistische Algorithmen Zufallszahlen - Monte Carlo - Genetische Programmierung

Probabilistische Algorithmen Zufallszahlen - Monte Carlo - Genetische Programmierung Probabilistische Algorithmen Zufallszahlen - Monte Carlo - Genetische Programmierung 25. Mai 2009 Inhaltsverzeichnis Pseudozufallszahlen Kongruenzmethode Monte-Carlo-Algorithmen Bsp Primzahltest Genetische

Mehr

Rechnernutzung in der Physik

Rechnernutzung in der Physik Rechnernutzung in der Physik Teil 3 Statistische Methoden in der Datenanalyse Roger Wolf 12. Januar 2015 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY Grundlagen der Wahrscheinlichkeitstheorie,

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Zufallszahlenerzeugung

Zufallszahlenerzeugung Zufallszahlenerzeugung Anwendunsgebiete: z.b.: - Computerspiele - Kryptographie - Monte-Carlo-Methoden - Simulation Melanie Kaspar, Prof. Dr. B. Grabowski 1 Wie erzeuge ich Zufallszahlen, die sich so verhalten,

Mehr

Probabilistische Algorithmen

Probabilistische Algorithmen Probabilistische Algorithmen Michal Švancar Gerardo Balderas Hochschule Zittau/Görlitz 21. Dezember 2014 Michal Švancar, Gerardo Balderas (HSZG) Probabilistische Algorithmen 21. Dezember 2014 1 / 40 Inhaltsverzeichnis

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden,

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden, Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Einführung in die Simulation Dr. Christoph Laroque Wintersemester 11/12 Dresden, 11.10.2011 01.11.2011 Einführung

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Grundlagen der Monte-Carlo-Simulation

Grundlagen der Monte-Carlo-Simulation Grundlagen der Monte-Carlo-Simulation Prof. Dr. V. Schmidt und S. Luck j 8. November 2007 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ page 3 Motivation Motivation fur

Mehr

Simulation mit der Monte-Carlo-Methode

Simulation mit der Monte-Carlo-Methode Rechnernutzung in der Physik Simulation mit der Monte-Carlo-Methode - Grundsätzliches - gleichverteilte (Pseudo-)Zufallszahlen - Verfahren zur Erzeugung beliebiger Verteilungen - Beispiele 1 Grundsätzliches

Mehr

15 Grundlagen der Simulation

15 Grundlagen der Simulation 15 Grundlagen der Simulation 15.1 Einführung Komplexe Problemstellungen, die einer analytischen Behandlung nur sehr schwer oder gar nicht zugänglich sind Lösung von diskreten (oder analytischen) Optimierungsaufgaben,

Mehr

Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen

Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen Michael Rauch 7. Mai 2 H AUPTSEMINAR E XPERIMENTELLE UND T HEORETISCHE M ETHODEN KIT University of the State of Baden-Wuerttemberg and National

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Einführung in Quasi-Monte Carlo Verfahren

Einführung in Quasi-Monte Carlo Verfahren Einführung in Quasi- Markus Zahrnhofer 3. Mai 2007 Markus Zahrnhofer () Einführung in Quasi- 3. Mai 2007 1 / 27 Inhalt der Präsentation 1 Motivierendes Beispiel 2 Einführung 3 quasi- Allgemeines Diskrepanz

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Stochastische FEM mit elementaren Zufallselementen

Stochastische FEM mit elementaren Zufallselementen Stochastische FEM mit elementaren Zufallselementen Hans-Jörg Starkloff Westsächsische Hochschule Zwickau 13. Südostdeutsches Kolloquium zur Numerischen Mathematik 2007 Freiberg, 27. April 2007 Einführung

Mehr

Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik. Martin Oettel Johannes Bleibel

Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik. Martin Oettel Johannes Bleibel Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik Martin Oettel Johannes Bleibel Die Monte Carlo-Methode 1. Beispiel Bestimmung von π 1 1 π = 1 1 dx 1 dy G(x, y) G (x, y) = θ(1 x 2 + y

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

Ingenieurmathematik mit Computeralgebra-Systemen

Ingenieurmathematik mit Computeralgebra-Systemen Hans Benker Ingenieurmathematik mit Computeralgebra-Systemen AXIOM, DERIVE, MACSYMA, MAPLE, MATHCAD, MATHEMATICA, MATLAB und MuPAD in der Anwendung vieweg X Inhaltsverzeichnis 1 Einleitung 1 1.1 Ingenieurmathematik

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

Statistik mit MATHCAD und MATLAB

Statistik mit MATHCAD und MATLAB Hans Benker Statistik mit MATHCAD und MATLAB Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik für Ingenieure und Naturwissenschaftler Mit 31 Abbildungen Springer Einleitung 1 1.1

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

Stochastik für Informatiker

Stochastik für Informatiker Statistik und ihre Anwendungen Stochastik für Informatiker Bearbeitet von Lutz Dumbgen 1. Auflage 2003. Taschenbuch. XII, 267 S. Paperback ISBN 978 3 540 00061 7 Format (B x L): 15,5 x 23,5 cm Gewicht:

Mehr

Nachtest (14. März 2014) Gruppe weiß (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet

Nachtest (14. März 2014) Gruppe weiß (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet Institut für Analysis und Scientific Computing WS 23/4 O. Koch P R A K T I S C H E M A T H E M A T I K I F Ü R T P H Nachtest (4. März 24) Gruppe weiß (mit Lösung ) FAMILIENNAME Vorname Studium / MatrNr

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 11. Mai 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Quasi-Monte-Carlo-Algorithmen

Quasi-Monte-Carlo-Algorithmen Quasi-Monte-Carlo-Algorithmen Peter Kritzer Institut für Finanzmathematik/Institut für Didaktik der Mathematik Johannes Kepler Universität Linz peter.kritzer@jku.at Tag der Mathematik, April 2011 P. Kritzer

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040

Mehr

Pseudozufallsgeneratoren

Pseudozufallsgeneratoren Pseudozufallsgeneratoren In welchen kryptographischen Verfahren werden keine Zufallszahlen benötigt? Wie generiert man Zufallszahlen in einer deterministischen Maschine wie dem Computer? Wenn man eine

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 29. Oktober 2007 1. Statistik 1.1 Wahrscheinlichkeit Pragmatisch: p(e) = n(e) N für N sehr groß Kombination von Wahrscheinlichkeiten p(a oder B) =

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

Einsatz von Varianzreduktionstechniken II

Einsatz von Varianzreduktionstechniken II Einsatz von Varianzreduktionstechniken II Stratified Sampling und Common Random Numbers Bastian Bluhm Betreuer: Christiane Barz Ausgewählte technische, rechtliche und ökonomische Aspekte des Entwurfs von

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

1 Zufallszahlen jede Zahl gleichen Wahrscheinlichkeit Zufallszahlenfolge unabhängiger, identisch ver- teilter

1 Zufallszahlen jede Zahl gleichen Wahrscheinlichkeit Zufallszahlenfolge unabhängiger, identisch ver- teilter Zufallszahlen Zufallszahlen werden für viele Anwendungen im Computer benötigt. Hauptanwendungsgebiete sind die Simulation und die Statistik. Besonders bei der Programmierung von Spielen werden Zufallszahlen

Mehr

Anhang A. Monte-Carlo-Methode

Anhang A. Monte-Carlo-Methode Anhang A Monte-Carlo-Methode Die Monte-Carlo-Methode (MC) ist eine etablierte Technik zur Beschreibung von physikalischen Prozessen in Halbleitern und Halbleiterbauelementen. In Bezug auf den Ladungsträgertransport

Mehr

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen Zufallszahlen Zufallszahlengeneratoren Transformation von Zufallszahlen Test von Zufallszahlengeneratoren Otto-von-Guericke-Universität Magdeburg Thomas Schulze Zufallszahlengeneratoren - Zufallszahlen

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 1: Monte-Carlo-Methoden, Zufallszahlen, Statistische Tests Randolf Altmeyer November 22, 2016 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Lineares

Mehr

5. Auswahlverfahren für Stichprobenelemente

5. Auswahlverfahren für Stichprobenelemente Grundlagen Uneingeschränkte Zufallsauswahl (z.b. Roulette, Würfeln) Zufallszahlen müssen eine vorgegebene Verteilung erfüllen (Gleichverteilung) Zufallszahlen müssen zufällig aufeinander folgen (keine

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

Anwendungen mit SAS: Direkt aus der Praxis! Block 1

Anwendungen mit SAS: Direkt aus der Praxis! Block 1 Anwendungen mit SAS: Direkt aus der Praxis! Block 1 Deskriptive Statistik und Simulation von Zufallsvariablen Fachhochschule Koblenz Fachbereich Mathematik und Technik Dr. Denise Rey 28. November 2008

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root Eric Volkmann Inhalt Mathematische Definition Random Number Generators Wichtige Verteilungen Anwendungsbeispiel: Monte-Carlo Simulation

Mehr

Stichproben und statistische Fehler

Stichproben und statistische Fehler Kapitel 0 Stichproben und statistische Fehler 0. Verfahren zur Auswahl von Stichproben Stichprobenauswahl als Bestandteil von Teilerhebungen: Aus dem Ergebnis der Untersuchung der Stichprobe soll dann

Mehr

f Z (z) = 0 sonst = 1

f Z (z) = 0 sonst = 1 Lösungsvorschläge zu Blatt 8) Da das Teilchen sich mit konstanter Winkelgeschwindigkeit bewegt und zufällig gestoppt wird und da Z und Z + kπ, k Z, das gleiche X liefern, kann Z als eine auf [ π, π] gleichverteilte

Mehr

Operations Research (OR) II

Operations Research (OR) II Operations Research (OR) II Fortgeschrittene Methoden der Wirtschaftsinformatik 27. Juni 2007 Michael H. Breitner, Hans-Jörg von Mettenheim und Frank Köller 27.06.2007 # 1 Stochastische Inputgrößen Stochastische

Mehr

Statistik für Ingenieure Vorlesung 6

Statistik für Ingenieure Vorlesung 6 Statistik für Ingenieure Vorlesung 6 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 05. Dezember 2017 3.4.3 Stetige Gleichverteilung Parameter: Intervall [a, b] R. Zufallsgröße

Mehr

Lösung von Optimierungsproblemen mit Monte Carlo Methoden

Lösung von Optimierungsproblemen mit Monte Carlo Methoden Lösung von Optimierungsproblemen mit Monte Carlo Methoden Am Beispiel des Problem des Handlungsreisenden Vortragende: Alexandra Vosseler Inhaltsverzeichnis I. Einleitung II. Optimierung mit MCM II.i Vom

Mehr

IT-Security. Teil 15: Zufall

IT-Security. Teil 15: Zufall IT-Security Teil 15: Zufall 09.05.17 1 Literatur [15-1] http://de.wikipedia.org/wiki/kryptographisch_sicherer_zufallszahlen generator [15-2] https://gnupg.org/documentation/manuals/gcrypt/fips-prng- Description.html

Mehr

Quasi-Monte Carlo Methoden

Quasi-Monte Carlo Methoden zur numerischen Integration Am Schnittpunkt von numerischer Analysis, Zahlentheorie und Finanzmathematik FG Finanz- und Versicherungsmathematik Institut für Wirtschaftsmathematik Technische Universität

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 6. Vorlesung - 2018 Diskrete ZG eine diskrete ZG X wird vollständig durch ihre Wahrscheinlichkeitsverteilung beschrieben ( ) x1 x X 2... x i... = p 1 p 2... p i... P(X (a, b]) = und die Verteilungsfunktion

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Programmiertechnik II

Programmiertechnik II Zufallszahlen Motivation Simulation Frisörbeispiel Stichprobenauswahl Telefonumfragen Numerische Algorithmen naives Beispiel: Berechnung von Pi Automatisiertes Testen Beispiel aus Übungsaufgabe "Faire"

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Hausaufgabe Modellierung und Simulation 1

Hausaufgabe Modellierung und Simulation 1 Hausaufgabe Modellierung und Simulation 1 Die Pareto Verteilung Die Pareto-Verteilung ist eine stetige Wahrscheinlichkeitsverteilung in einem rechtsseitig unendlichen Intervall zwischen x min und. Die

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Zufallszahlen in Testbetten und Simulationen

Zufallszahlen in Testbetten und Simulationen Zufall Wofür brauchen wir Zufallszahlen? Zufall Wofür brauchen wir Zufallszahlen? Simulation von Dingen, die wir nicht genau beschreiben wollen Zufall Wofür brauchen wir Zufallszahlen? Simulation von Dingen,

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 5 Prof. Dr. P. Embrechts D-INFK Lösungen Serie Lösung -. (a) Die Dichte muss zu eins aufintegrieren, deshalb gilt:.version: Polynom ausmultiplizieren: c (x ) dx = c.version: Mit Substitution:

Mehr

Zufallszahlen in AntBrain

Zufallszahlen in AntBrain Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Prof. Dr. Ottmar Beucher Dezember 2001 Genetische Algorithmen 1 Optimierungsaufgaben Ein einfaches Beispiel Prinzipielle Formulierung Lösungsansätze Genetische Algorithmen Anwendungen

Mehr

Messprotokoll: Aufnahme der Quantenzufallszahl

Messprotokoll: Aufnahme der Quantenzufallszahl Messprotokoll: Aufnahme der Quantenzufallszahl Am 19. Juni 2009 wurden für Max Mustermann um 8:35 Uhr mit Hilfe von einzelnen Photonen 993.097 Zufallszahlen generiert. Der Zufallsgenerator steht im Quantenoptiklabor

Mehr

Klausur. Physik auf dem Computer SS JP Dr. Axel Arnold Dr. Olaf Lenz Florian Fahrenberger Dominic Röhm 15. August 2012

Klausur. Physik auf dem Computer SS JP Dr. Axel Arnold Dr. Olaf Lenz Florian Fahrenberger Dominic Röhm 15. August 2012 Universität Stuttgart Institut für Computerphysik Klausur Physik auf dem Computer SS 2012 JP Dr. Axel Arnold Dr. Olaf Lenz Florian Fahrenberger Dominic Röhm 15. August 2012 Name Vorname Matrikelnummer

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 10. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Brownsche Bewegung Zusammenfassung letzte VL Formulierung über Newtonsche

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Ortskurvenerkennung. Christian Liedl, WS06/07 TUM

Ortskurvenerkennung. Christian Liedl, WS06/07 TUM Ortskurvenerkennung Christian Liedl, WS06/07 TUM Überblick Was sind Ortskurven Beispiele spezieller Ortskurven Kurvenerkennung Voraussetzung Erster Ansatz Modellierung Beispiel: Identifikation Ortskurve

Mehr

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage Kaluza Klein Theorie Forschungsseminar Quantenfeldtheorie Montag, 22.05.2006 Jens Langelage Inhalt 1.) Gravitation und Elektromagnetismus in höheren Dimensionen 2.) Kaluza Klein Miracle 1.) Elektromagnetismus

Mehr

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie 1/19 Statistik für Informatiker, SS 2018 1 Grundlagen aus der Wahrscheinlichkeitstheorie 1.3 Bedingte Wahrscheinlichkeiten, Unabhängigkeit, gemeinsame Verteilung 1.3.4 Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo18/

Mehr

Gitterpunkt-Integrationsformeln

Gitterpunkt-Integrationsformeln Gliederung Gitterpunkt-Integrationsformeln Ulrich Telle FernUniversität Hagen, Fachbereich Mathematik Lehrgebiet Numerische Mathematik, Prof. Dr. F. Locher Mathematisches Praktikum 1074 18./19.02.2005

Mehr

Berechnung von Formfaktoren

Berechnung von Formfaktoren Berechnung von Formfaktoren Oliver Deussen Formfaktorberechnung 1 Formfaktor ist eine Funktion in Abhängigkeit der Geometrie ist unabhängig von reflektierenden oder emittierenden Eigenschaften (ρ) der

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Einführung des Integrals 15

Mehr

Monte-Carlo-Verfahren nach GUM Supplement 1. Gerd Wübbeler Physikalisch-Technische Bundesanstalt

Monte-Carlo-Verfahren nach GUM Supplement 1. Gerd Wübbeler Physikalisch-Technische Bundesanstalt Monte-Carlo-Verfahren nach GUM Supplement 1 Gerd Wübbeler Physikalisch-Technische Bundesanstalt 1 Inhalt Wahrscheinlichkeitsverteilungen Monte-Carlo Verfahren Beispiele Adaptive Monte-Carlo Verfahren Warum

Mehr

Spezielle Verteilungen einer Variablen

Spezielle Verteilungen einer Variablen Kapitel 2 Spezielle Verteilungen einer Variablen In diesem Kapitel werden wir einige häufig benutzte Verteilungen, die von einer Variablen abhängen, vorstellen. 2.1 Binomial-Verteilung Binomial-Verteilungen

Mehr

Klausur zur Höheren Mathematik III (vertieft)

Klausur zur Höheren Mathematik III (vertieft) Kimmerle 26.02.2014 Klausur zur Höheren Mathematik III (vertieft) für Luft- und Raumfahrttechnik, Materialwissenschaften Bitte beachten Sie die folgenden Hinweise: Die Bearbeitungszeit beträgt 120 Minuten.

Mehr