Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Größe: px
Ab Seite anzeigen:

Download "Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen"

Transkript

1 Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer

2 Überblck Wahrschenlchketen, Erwartungswerte, Varanz Grundkonzepte des Bayesschen Lernens (Bayessche) Parameterschätzung für Wahrschenlchketsvertelungen Bayessche Lneare Regresson, Nave Bayes 2

3 Überblck Wahrschenlchketen, Erwartungswerte, Varanz Grundkonzepte des Bayesschen Lernens (Bayessche) Parameterschätzung für Wahrschenlchketsvertelungen Bayessche Lneare Regresson, Nave Bayes 3

4 Statstk & Maschnelles Lernen Maschnelles Lernen: eng verwandt mt (nduktver) Statstk Zwe Gebete n der Statstk: Deskrptve Statstk: Beschrebung, Untersuchung von Egenschaften von Daten. Mttelwerte Induktve Statstk: Welche Schlussfolgerungen über de Realtät lassen sch aus Daten zehen? Erklärungen für Beobachtungen Varanzen Modellbldung Unterschede zwschen Populatonen Zusammenhänge, Muster n Daten 4

5 Thomas Bayes An essay towards solvng a problem n the doctrne of chances, 1764 veröffentlcht. Arbeten von Bayes grundlegend für nduktve Statstk. Bayessche Wahrschenlchketen wchtge Schtwese auf Unscherhet & Wahrschenlchket 5

6 Frequentstsche / Bayessche Wahrschenlchket Frequentstsche Wahrschenlchketen Beschreben de Möglchket des Entretens ntrnssch stochastscher Eregnsse (z.b. Münzwurf). Defnton über relatve Häufgketen möglcher Ergebnsse enes wederholbaren Versuches Wenn man ene fare Münze 1000 Mal wrft, wrd etwa 500 Mal Kopf fallen In 1 Gramm Potassum-40 zerfallen pro Sekunde ca Atomkerne 6

7 Frequentstsche / Bayessche Wahrschenlchket Bayessche, subjektve Wahrschenlchketen Grund der Unscherhet en Mangel an Informatonen We wahrschenlch st es, dass der Verdächtge X das Opfer umgebracht hat? Neue Informatonen (z.b. Fngerabdrücke) können dese subjektven Wahrschenlchketen verändern. Bayessche Schtwese m maschnellen Lernen wchtger Frequentstsche Schtwese auch manchmal verwendet, mathematsch äquvalent 7

8 Bayessche Wahrschenlchketen m Maschnellen Lernen Modellbldung: Erklärungen für Beobachtungen fnden Was st das wahrschenlchste Modell? Abwägen zwschen Vorwssen (Pror über Modelle) Evdenz (Daten, Beobachtungen) Bayessche Schtwese: Evdenz (Daten) verändert subjektve Wahrschenlchketen für Modelle (Erklärungen) A-posteror Modellwahrschenlchket, MAP Hypothese 8

9 Wahrschenlchketstheore, Zufallsvarablen Zufallsexperment: defnerter Prozess, n dem en Elementareregns ω erzeugt wrd. Eregnsraum Ω: Menge aller Elementareregnsse. Eregns A: Telmenge des Eregnsraums. Wahrschenlchketsfunkton P: Funkton, de Eregnssen A Ω Wahrschenlchketen zuwest. Zufallsvarable X: Abbldung von Elementareregnssen auf numersche Werte. X : Ω X : ω x 9

10 Wahrschenlchketstheore, Zufallsvarablen Experment west Zufallsvarable (Großbuchstabe) enen Wert (Klenbuchstabe) zu Wahrschenlchket dafür, dass Eregns X=x entrtt (Zufallsvarable X wrd mt Wert x belegt). Zusammenfassen n Wahrschenlchketsvertelung, der Varable X unterlegt. PX ( = x) = { ω Ω X( ω) = x}) X ) X ~ X ) Vertelung gbt an, we Wahrschenlchketen über Werte x vertelt snd X st vertelt nach X) 10

11 Dskrete Zufallsvarablen Dskrete Zufallsvarablen: x D Bespel: N Münzwürfe PX ( = x) = 1 D dskreter Werteberech Unabhängge Zufallsvarablen X1,..., XN {0,1} Münzparameter μ gbt Wahrschenlchket für Kopf an PX ( = 1 µ ) = µ X ~ Bern( X µ ) = µ (1 µ ) X PX ( = 0 µ ) = 1 µ Wahrschenlchket für Kopf Wahrschenlchket für Zahl X 1 Bernoull-Vertelung 11

12 Dskrete Zufallsvarablen Bespel: Anzahl Köpfe be N Münzwürfen ZV Anzahl Köpfe : Bnomal-Vertelung X ~ Bn( X N, µ ) Bn( X N, µ ) =? N X = X, X {0,..., N} = 1 12

13 Dskrete Zufallsvarablen Bespel: Anzahl Köpfe be N Münzwürfen ZV Anzahl Köpfe : Bnomal-Vertelung X ~ Bn( X N, µ ) N Bn( X N, µ ) = µ (1 µ ) X X N X N X = X, X {0,..., N} = 1 13

14 Kontnuerlche Zufallsvarablen Kontnuerlche Zufallsvarablen Unendlch (mest überabzählbar) vele Werte möglch Typscherwese Wahrschenlchket PX ( = x) = 0 Statt Wahrschenlchketen für enzelne Werte: Dchtefunkton f X : Dchte der ZV X x : f X ( x) 0, ( x) = 1 f X Wahrschenlchket, dass ZV X Wert zwschen a und b annmmt b X [ a, b]) = f X ( x) dx, a f ( x ) > 1 möglch X 14

15 Kontnuerlche Zufallsvarablen Bespel: Körpergröße X X annähernd Gaußvertelt ( Normalvertelt ) 2 X ~ N( x µσ, ) Dchte der Normalvertelung z.b. µ = 170, σ = 10 15

16 Kontnuerlche Zufallsvarablen Bespel: Körpergröße We groß st de Wahrschenlchket, dass en Mensch genau 180cm groß st? PX= ( 180) = 0 We groß st de Wahrschenlchket, dass en Mensch zwschen 180cm und 181cm groß st? ( [180,181]) = ( 170,10 ) 180 P X N x dx 16

17 Kontnuerlche Zufallsvarablen Vertelungsfunkton F( x) = X x) = PX ( [ ab, ]) = Fb ( ) Fa ( ) ( x) dx, Dchte st Abletung der Vertelungsfunkton df( x) f X ( x) = dx Veranschaulchung Dchte: f ( x) = lmε X 0 x f X PX ( [ x ε, x+ ε]) 2ε 17

18 Konjunkton von Eregnssen Wahrschenlchket für Entreten mehrerer Eregnsse: X= xy, = y) gemensame Wahrschenlchket f, ( xy, ) gemensame Dchte XY Gemensame Vertelung (dskret/kontnuerlch) PXY (, ) 18

19 Bedngte Wahrschenlchketen We beenflusst zusätzlche Informaton de Wahrschenlchketsvertelung? Bedngte Wahrschenlchket enes Eregnsses: Bedngte Dchte: Bedngte Vertelung (dskret/kontnuerlch): X X zusätzlche Informaton) = x Y P ( X Y ) = = y) = f XY X, Y ) Y ) X = x, Y = Y = y) ( x y) = f XY, f Y y) ( xy, ) ( y) dskret kontnuerlch 19

20 Bedngte Wahrschenlchketen Produktregel PXY (, ) = PX ( YPY ) ( ) dskret/kontnuerlch Summenregel PX ( = x) = PX ( = xy, = y) f X( x) = f XY, ( x, y) dy y dskret kontnuerlch 20

21 Unabhänggket Zwe Zufallsvarablen snd unabhängg, wenn: Äquvalent dazu P ( X, Y ) = X ) Y ) P ( X Y ) = X ) und Y X ) = Y ) Bespel: wr würfeln zwemal mt farem Würfel, bekommen Augenzahlen x, x 1 2 ZV X snd unabhängg 1, X2 ZV X = X + und snd abhängg + 1 X X = X 2 1 X2 21

22 Erwartungswert Erwartungswert ener Zufallsvarable: E( X ) = x X = x) E( X ) = xp( x) dx x Veranschaulchung: gewchtetes Mttel, Schwerpunkt enes Stabes mt Dchte p(x) Rechenregeln Erwartungswert E( ax + b) = ae( X ) + b EX ( + Y) = EX ( ) + EY ( ) X dskrete ZV X kontnuerlche ZV mt Dchte p(x) 22

23 Erwartungswert Erwartungswert addtv Summenregel E( X+ Y) = ( x+ yp ) ( X= xy, = y) xy, = x X = x, Y = y) + y X = x, Y = y) xy, xy, = x X= xy, = y) + y X= xy, = y) x y y x = x X = x) + y Y = y) x = E( X) + EY ( ) y 23

24 Varanz, Standardabwechung Varanz: Erwartete quadrerte Abwechung von X von E(X) Mass für de Stärke der Streuung Var( X ) = Var( X ) E(( X E( X )) Standardabwechung σ = X Var(X ) Verschebungssatz 2 2 ) = ( x E( X )) X = x) 2 2 = E(( X E( X )) ) = ( x E( X )) p( x) dx VarX ( ) = EX ( ) EX ( ) 2 2 x x 24

25 Varanz, Standardabwechung Verschebungssatz Var X E X E X 2 ( ) = (( ( )) ) = EX EXX+ EX 2 2 ( 2 ( ) ( ) ) = EX ( ) 2 EXEX ( ) ( ) + EX ( ) 2 2 = EX ( ) EX ( )

26 Rechenregeln Varanz Rechenregeln Varanz/Standardabwechung Var ax b a Var X 2 ( + ) = ( ), Var( X + Y ) = Var( X ) + Var( Y ) + 2 Cov( X, Y ) Covaranz msst gemensame Schwankung der Varablen Falls Varablen unabhängg: Cov( X, Y ) = 0, σ aσ ax + b = X CovXY (, ) = E(( X EX ( ))( Y EY ( ))) = EXY ( ) EXEY ( ) ( ) Var( X + Y ) = Var( X ) + Var( Y ) 26

27 Erwartungswert, Varanz Bnomalvertelung Erwartungswert Bernoull-Vertelung X 1 X X ~ Bern( X µ ) µ (1 µ ) EX ( ) =? = 27

28 Erwartungswert, Varanz Bnomalvertelung Erwartungswert Bernoull-Vertelung = X 1 X X ~ Bern( X µ ) µ (1 µ ) E( X ) = x X = x) x {0,1} = 1µ + 0(1 µ ) = µ 28

29 Erwartungswert, Varanz Bnomalvertelung Erwartungswert Bernoull-Vertelung X 1 X X ~ Bern( X µ ) µ (1 µ ) Erwartungswert Bnomalvertelung X ~ Bn( X N, µ ) N E( X ) = x X = x) x= 0 = E( X ) = x X = x) x {0,1} = 1µ + 0(1 µ ) = µ N N = x µ (1 µ ) x= 0 x =? X x N x N = X = 1 29

30 Erwartungswert, Varanz Bnomalvertelung Erwartungswert Bernoull-Vertelung X 1 X X ~ Bern( X µ ) µ (1 µ ) Erwartungswert Bnomalvertelung X ~ Bn( X N, µ ) N E( X ) = x X = x) x= 0 = E( X ) = x X = x) x {0,1} = 1µ + 0(1 µ ) = µ N N = x µ (1 µ ) x= 0 x = Nµ X x N x N = X = 1 Summe der Erwartungswerte der Bernoull-Varablen 30

31 Erwartungswert, Varanz Bnomalvertelung Varanz Bernoullvertelung? X ~ Bern( X µ ) Var( X ) =? 31

32 Erwartungswert, Varanz Bnomalvertelung Varanz Bernoullvertelung? X ~ Bern( X µ ) Var( X ) =? Verschebungssatz: VarX ( ) = EX ( ) E( X ) 2 2 = = (1 2 µ µ µ µ ) ( ) Var X µ 32

33 Erwartungswert, Varanz Bnomalvertelung Varanz Bnomalvertelung X X ~ Bn( X N, µ ) Var( X ) =? n = X = 1 = X 1 X X ~ Bern( X µ ) µ (1 µ ) Var( X ) = µ (1 µ ) Var( X ) = Nµ (1 µ ) X unabhängg 33

34 Erwartungswert, Varanz Normalvertelung z = x µ Erwartungswert Normalvertelung 2 X ~ N( x µσ, ) 2 E( X ) xn ( x µσ, ) dx = x exp ( x µ ) dx 2 1/2 2 (2 πσ ) 2σ = = ( z + µ ) exp z dz 2 1/2 2 (2 πσ ) 2σ = µ exp exp 2 1/2 z dz z z dz µ /2 2 (2 πσ ) 2 σ = (2 πσ ) 2σ = 1 = 0 34

35 Erwartungswert, Varanz Normalvertelung Varanz Normalvertelung Man kann zegen dass 2 2 X ~ N( x µσ, ) Var( X ) = σ 35

36 Überblck Wahrschenlchketen, Erwartungswerte, Varanz Grundkonzepte des Bayesschen Lernens (Bayessche) Parameterschätzung für Wahrschenlchketsvertelungen 36

37 Lernen und Vorhersage Bsher: Lernproblemstellung getrennt von Vorhersage Lernen: f arg max f L) MAP = f w w Vorhersage: x f MAP ( x) x neue Testnstanz Wahrschenlchstes Modell gegeben de Daten Vorhersage des MAP Modells Wenn wr uns auf en Modell festlegen müssen, st MAP Modell snnvoll Aber egentlches Zel st Vorhersage ener Klasse! Besser, sch ncht auf en Modell festlegen - drekt nach der optmalen Vorhersage zu suchen 37

38 Lernen und Vorhersage: Bespel Modellraum mt 4 Modellen: Tranngdaten L Wr haben a-posteror-wahrschenlchketen berechnet f1 L ) = 0.3 f L ) = MAP Modell st H = { f1, f2, f3, f4} f1 = arg max f pfl ( ) f3 L ) = 0.25 f4 L ) =

39 Lernen und Vorhersage: Bespel Modelle probablstsche Klassfkatoren: bnäre Klassfkaton: Py ( = 1 x, f ) [0,1] Z.B lneares Modell: T wx f Entschedungsfunktonswert T Py ( = 1 xw, ) = σ ( wx) p(y=1) w Parametervektor 1 σ ( z) = 1 + exp( z ) logstsche Regresson Entschedungsfunktonswert wx 39

40 Lernen und Vorhersage: Bespel Wr wollen neues Testbespel klassfzeren Py ( = 1 x, f) = 0.6 Py ( = 1, ) = x f2 4 Klassfkaton mt MAP Modell : Anderersets (Rechenregeln der Wsk!): 4 Py ( = 1 x, L) = py ( = 1, f x, L) = 1 4 = 1 4 = 1 x Py ( = 1 x, f) = 0.2 Py ( = 1 x, f) = 0.3 f 1 = py ( = 1 x, f) Pf ( L) y =1 = py ( = 1 f, x, LP ) ( f x, L) 3 Summenregel Produktregel = 0.6* * * *0.2 =

41 Lernen und Vorhersage: Bespel Wenn Zel Vorhersage st, sollten wr verwenden Py ( = 1 x, L) Ncht auf en Modell festlegen, solange noch Unscherhet über Modelle besteht Grunddee des Bayesschen Lernens/Vorhersage! 41

42 Bayessches Lernen und Vorhersage Problemstellung Vorhersage Gegeben: Tranngsdaten L, neue Testnstanz x. Gesucht: Vertelung über Werte y für gegebenes x. Bayessche Vorhersage: wahrschenlchstes y. y x, L) y* = arg max y y x, L) Mnmert Rsko ener falschen Vorhersage. Heßt auch Bayes-optmale Entschedung oder Bayes-Hypothese. 42

43 Bayessches Lernen und Vorhersage Berechnung Bayessche Vorhersage Summenregel Produktregel y* = arg max y Py ( xl, ) = arg max Py (, θ xld, ) θ = arg max y θ, x) θ L) dθ Bayesan Model Averagng Bayessches Lernen: y y Vorhersage, gegeben Modell Mtteln der Vorhersage über alle Modelle. Modell Modell gegeben Tranngsdaten Gewchtung: we gut passt Modell zu Tranngsdaten. θ 43

44 Bayessches Lernen und Vorhersage Bayessche Vorhersage praktkabel? y * = arg max = arg max y y y x, L) y x, θ ) θ L) dθ Bayesan Model Averagng: Mtteln über.a. unendlch vele Modelle We berechnen? Nur manchmal praktkabel, geschlossene Lösung. Kontrast zu Entschedungsbaumlernen: Fnde en Modell, das gut zu den Daten passt. Trff Vorhersagen für neue Instanzen baserend auf desem Modell. Trennt zwschen Lernen enes Modells und Vorhersage. 44

45 Bayessches Lernen und Vorhersage We Bayes-Hypothese ausrechnen? y * = arg max = arg max Wr brauchen: y y y x, L) y x, θ ) θ L) dθ 1) Wsk für Klassenlabel gegeben Modell, T Py ( = 1 x, θ) = σ( wx) T Py ( = 0 x, θ) = σ( wx) Py ( xθ, ) z.b. lnearer probablstscher Klassfkator (logstsche Regresson)

46 Bayessches Lernen und Vorhersage We Bayes-Hypothese ausrechnen? y * = arg max = arg max Wr brauchen: y y y x, L) y x, θ ) θ L) dθ 2) Wsk für Modell gegeben Daten, a-posteror- Wahrschenlchket θ L) Ausrechnen mt Bayes Regel

47 Bayessches Lernen und Vorhersage Berechnung der a-posteror Vertelung über Modelle Bayes Glechung Posteror, A-Posteror- Vertelung Bayessche Regel: Posteror = Lkelhood x Pror. θ L) = 1 Z = L θ ) θ ) L) L θ ) θ ) Lkelhood, We gut passt Modell zu Daten? Pror, A-Pror- Vertelung Normerungskonstante 47

48 Bayessche Regel Bayes Glechung θ L) = L θ ) θ ) L) Brauchen: Lkelhood L θ). We wahrschenlch wären de Tranngsdaten, wenn θ das rchtge Modell wäre. We gut passt Modell zu den Daten. Typscherwese Unabhänggketsannahme: L= {( x, y ),...,( x, y )} 1 1 N PL ( θ) = Py ( x, θ) = 1 N N Wahrschenlchket des n L beobachteten Klassenlabels gegeben Modell θ 48

49 Bayessche Regel Bayes Glechung Brauchen: Pror θ ). We wahrschenlch st Modell θ bevor wr rgendwelche Tranngsdaten gesehen haben. Annahmen über θ ) drücken datenunabhängges Vorwssen über Problem aus. Bespel lneare Modelle: θ L) = L θ ) θ ) L) 49

50 Bayessche Regel Bayes Glechung θ L) = Brauchen: Pror θ ). We wahrschenlch st Modell θ bevor wr rgendwelche Tranngsdaten gesehen haben. Annahmen über θ ) drücken datenunabhängges Vorwssen über Problem aus. Bespel lneare Modelle: L θ ) θ ) L) ^2 w möglchst nedrg ( w = θ ) 50

51 Bayessche Regel Bayes Glechung Brauchen: Pror θ ). We wahrschenlch st Modell θ bevor wr rgendwelche Tranngsdaten gesehen haben. Annahmen über θ ) drücken datenunabhängges Vorwssen über Problem aus. Bespel Entschedungsbaumlernen: θ L) = L θ ) θ ) L) 51

52 Bayessche Regel Bayes Glechung θ L) = Brauchen: Pror θ ). L θ ) θ ) L) We wahrschenlch st Modell θ bevor wr rgendwelche Tranngsdaten gesehen haben. Annahmen über θ ) drücken datenunabhängges Vorwssen über Problem aus. Bespel Entschedungsbaumlernen: Klene Bäume snd n velen Fällen besser als komplexe Bäume. Algorthmen bevorzugen deshalb klene Bäume. 52

53 Zusammenfassung Bayessche/MAP/ML- Hypothese Um Rsko ener Fehlentschedung zu mnmeren: wähle Bayessche Vorhersage y* = arg max y y x, θ ) θ L) dθ Problem: In velen Fällen gbt es kene geschlossene Lösung, Integraton über alle Modelle unpraktkabel. Maxmum-A-Posteror- (MAP-)Hypothese: wähle θ* = arg max θ θ L) y= arg max Py ( x, θ ) * y * Entsprcht Entschedungsbaumlernen. Fnde bestes Modell aus Daten, Klassfzere nur mt desem Modell. 53

54 Zusammenfassung Bayessche/MAP/ML- Hypothese Um MAP-Hypothese zu bestmmen müssen wr Posteror (Lkelhood x Pror) kennen. Unmöglch, wenn ken Vorwssen (Pror) exstert. Maxmum-Lkelhood- (ML-)Hypothese: θ* = arg max θ PL ( θ) y= arg max Py ( x, θ ) * y * Berückschtgt nur Beobachtungen n L, ken Vorwssen. Problem der Überanpassung an Daten 54

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr/Paul Prasse Domnk Lahmann Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr/Paul Prasse Slva Makowsk Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Bayessches Lernen (3)

Bayessches Lernen (3) Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen (3) Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Überblck Graphsche Modelle: Syntax und Semantk Graphsche Modelle m Maschnellen Lernen Inferenz n Graphschen

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Modelle, Version Spaces, Lernen

Modelle, Version Spaces, Lernen Unverstät Potsdam Insttut ür Inormatk Lehrstuhl Maschnelles Lernen Maschnelles Lernen Modelle Verson Spaces Lernen Tobas Scheer Mchael Brückner Klasskaton Engabe: Instanz Objekt X. Können durch Attrbut-Vektoren

Mehr

Modelle, Version Spaces, Lernen

Modelle, Version Spaces, Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Maschnelles Lernen Modelle, Verson Spaces, Lernen Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Problemstellungen:

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Mathematische Grundlagen

INTELLIGENTE DATENANALYSE IN MATLAB. Mathematische Grundlagen INTELLIGENTE DATENANALYSE IN MATLAB Mathematsche Grundlagen Überblck Lneare Algebra: Vektoren, Matrzen, Analyss & Optmerung: Dstanzen, konvexe Funktonen, Lagrange-Ansatz, Stochastk: Wahrschenlchketstheore,

Mehr

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht.

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht. 14 Schätzmethoden Egenschaften von Schätzungen ˆθ Se ˆθ n ene Schätzung enes Parameters θ, de auf n Beobachtungen beruht. ˆθn n θ Konsstenz (Mnmalforderung) Eˆθ n = θ Erwartungstreue Eˆθ n n θ Asymptotsche

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen

Verteilungen eindimensionaler diskreter Zufallsvariablen Vertelungen endmensonaler dskreter Zufallsvarablen Enführung Dskrete Vertelungen Dskrete Glechvertelung Bernoull-Vertelung Bnomalvertelung Bblografe: Prof. Dr. Kück Unverstät Rostock Statstk, Vorlesungsskrpt,

Mehr

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert.

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert. SS 2013 Prof. Dr. J. Schütze/ J. Puhl FB GW Ds. ZG 1 Zufallsgrößen An dem Ergebns enes Zufallsexperments nteressert oft nur ene spezelle Größe, mestens en Messwert. Bespel 1. Zufällge Auswahl enes Studenten,

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

2. Wahrscheinlichkeitsrechnung

2. Wahrscheinlichkeitsrechnung . Grundlagen der Wahrschenlchketsrechnung. Wahrschenlchketsrechnung Der Wahrschenlchketstheore kommt ene wchtge Rolle als Bndegled zwschen der deskrptven und der nduktven Statstk zu. Aufgabe der nduktven

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

MASCHINELLES LERNEN TOBIAS SCHEFFER, NIELS LANDWEHR, MATTHIAS BUSSAS. Mathematische Grundlagen

MASCHINELLES LERNEN TOBIAS SCHEFFER, NIELS LANDWEHR, MATTHIAS BUSSAS. Mathematische Grundlagen MASCHINELLES LERNEN TOBIAS SCHEFFER, NIELS LANDWEHR, MATTHIAS BUSSAS Matheatsche Grundlagen Überblck Lneare Algebra: Vektoren, Matrzen, Analyss & Opterung: Dstanzen, konvexe Funktonen, Lagrange-Ansatz,

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

Modul 1: Einführung und Wahrscheinlichkeitsrechnung

Modul 1: Einführung und Wahrscheinlichkeitsrechnung Modul : Enführung und Wahrschenlchketsrechnung Informatonstheore Dozent: Prof. Dr. M. Gross E-mal: grossm@nf.ethz.ch Assstenten: Danel Cottng, Rchard Keser, Martn Wcke, Cyrl Flag, Andrea Francke, Jonas

Mehr

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104 Kaptel 4: Unscherhet n der Modellerung Modellerung von Unscherhet Machne Learnng n der Medzn 104 Regresson Modellerung des Datengenerators: Dchteschätzung der gesamten Vertelung, t pt p p Lkelhood: L n

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik Kaptel 4: Wahrschenlchketsrechnung und Kombnatork 1 4. Wahrschenlchketsrechnung De Wahrschenlchketsrechung stellt Modelle beret zur Beschrebung und Interpretaton solcher zufällger Erschenungen, de statstsche

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastk, 11.5.13 Wr gehen stets von enem Maßraum (, A, µ) bzw. enem Wahrschenlchketsraum (,A,P) aus. De Borel σ-algebra auf R n wrd mt B n bezechnet, das Lebesgue Maß auf R n wrd mt

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation Kaptel 2: Klassfkaton Maschnelles Lernen und Neural Computaton 28 En enfacher Fall En Feature, Hstogramme für bede Klassen (z.b. Glukosewert, Dabetes a/nen) Kene perfekte Trennung möglch Entschedung: Schwellwert

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 2. Übung (05.02.2009) Agenda Agenda Datenbsp. scalefactors.dat Berechnen der Varanzen der Latent Response Varablen Berechnen der modellmplzerten

Mehr

Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler, Eidgenössische Technische Hochschule, ETH Zürich. 1. Teilprüfung FS 2008.

Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler, Eidgenössische Technische Hochschule, ETH Zürich. 1. Teilprüfung FS 2008. Dr. Jochen Köhler, Edgenösssche Technsche Hochschule, ETH Zürch. Telprüfung Statstk und Wahrschenlchketsrechnung FS 2008 Lösungen Dr. J. Köhler ETH Zürch Donnerstag 0. Aprl 2008 08:5 09:45 0BTel : Multple

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Vorlesung: Multivariate Statistik für Psychologen

Vorlesung: Multivariate Statistik für Psychologen Vorlesung: Multvarate Statstk für Psychologen 3. Vorlesung: 14.04.2003 Agenda 1. Organsatorsches 2. Enfache Regresson. Grundlagen.. Grunddee und Zele der enfachen Regresson Bespele Statstsches Modell Modell

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

1.1 Beispiele zur linearen Regression

1.1 Beispiele zur linearen Regression 1.1. BEISPIELE ZUR LINEAREN REGRESSION 0 REGRESSION 1: Multple neare Regresson 1 Enführung n de statstsche Regressonsrechnung 1.1 Bespele zur lnearen Regresson b Bespel Sprengungen. Erschütterung Funkton

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte Ökonomsche und ökonometrsche Evaluaton 90 Emprsche Analyse des Arbetsangebots Zele: Bestmmung von Arbetsangebotselastztäten als Test der theoretschen Modelle Smulaton oder Evaluaton der Wrkungen von Insttutonen

Mehr

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik 0 Lneare Regresson Tel des Weterbldungskurses n angewandter Statstk der ETH Zürch Folen Werner Stahel, September 2017 1.1 Bespele zur lnearen Regresson 1 1 Enführung n de statstsche Regressonsrechnung

Mehr

Modelle, Version Spaces, Lernen

Modelle, Version Spaces, Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Maschnelles Lernen Modelle, Verson Spaces, Lernen Chrstoph Sawade/Nels Landwehr Slva Makowsk Tobas Scheffer Überblck Problemstellungen:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Menhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzet nach Verenbarung und nach der Vorlesung. Mathematsche und statstsche Methoden II Dr. Malte Perske perske@un-manz.de

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 8. Übung (08.01.2008) Agenda Agenda Verglech Rasch-Modell vs. 2-parametrsches logstsches Modell nach Brnbaum 2PL-Modelle n Mplus Verglech

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Modelle, Version Spaces, Lernen

Modelle, Version Spaces, Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Maschnelles Lernen Modelle, Verson Spaces, Lernen Chrstoph Sawade/Nels Landwehr Domnk Lahmann Tobas Scheffer Überblck Problemstellungen:

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik Grundlagen sportwssenschaftlcher Forschung Deskrptve Statstk Dr. Jan-Peter Brückner jpbrueckner@emal.un-kel.de R.6 Tel. 880 77 Deskrptve Statstk - Zele Beschreben der Daten Zusammenfassen der Daten Überblck

Mehr

Folien zur Vorlesung

Folien zur Vorlesung Folen zur Vorlesung Statstk für Prozesswssenschaften (Tel : Wahrschenlchketsrechnung) U. Römsch http://www.tu-berln.de/fak3/staff/roemsch/homepage.html . WAHRSCHEINLICHKEITSRECHNUNG De Wahrschenlchketsrechnung

Mehr

Gauss sche Fehlerrrechnung

Gauss sche Fehlerrrechnung Gauss sche Fehlerrrechnung T. Ihn 24. Oktober 206 Inhaltsverzechns Modell und Lkelhood 2 Alle Standardabwechungen σ snd bekannt, bzw. de Kovaranzmatrx der Daten st bekannt: Mnmeren der χ 2 -Funkton. 6

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Zusammenfassung: Lernprobleme, Bayes sches Lernen, Evaluerung Chrstoph Sawade/Nels Landwehr/Paul Prasse Slva Makowsk obas Scheffer Überblck

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Maschinelles Lernen (Zusammenfassung)

Maschinelles Lernen (Zusammenfassung) Unverstät Potsdam Insttut für Informatk Lehrstuhl (Zusammenfassung) Chrstoph Sawade /Nels Landwehr/Paul Prasse Domnk Lahmann Tobas Scheffer Überblck Lernprobleme Entschedungsbäume Bayes sches Lernen Lneare

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INELLIGENE DAENANALYSE IN MALAB Matheatsche Grundlagen Lteratur A. Fscher, K. Vetters: Lneare Algebra Ene Enführung für Ingeneure und Naturwssenschaftler. H. Aann, J. Escher: Analyss I-III. S. Boyd, L.

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

4. Rechnen mit Wahrscheinlichkeiten

4. Rechnen mit Wahrscheinlichkeiten 4. Rechnen mt Wahrschenlchketen 4.1 Axome der Wahrschenlchketsrechnung De Wahrschenlchketsrechnung st en Telgebet der Mathematk. Es st üblch, an den Anfang ener mathematschen Theore enge Axome zu setzen,

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr

Entscheidungstheorie Teil 1. Thomas Kämpke

Entscheidungstheorie Teil 1. Thomas Kämpke Entschedungstheore Tel Thomas Kämpke Sete 2 Entschedungstheore Tel Inhalt Kompaktensteg Wahrschenlchketsrechnung Wahrschenlchketsmaß auf Grundraum Enfaches Lotto Stochastsche Unabhänggket Verknüpfung von

Mehr

1. Teilprüfung FS 2008

1. Teilprüfung FS 2008 . Telprüfung Statstk und Wahrschenlchketsrechnung FS 2008 Dr. J. Köhler ETH Zürch Donnerstag 0. Aprl 2008 08:5 09:45 Vorname:... Name:... Stud. Nr.:... Studenrchtung:... . Telprüfung: Statstk und Wahrschenlchketsrechnung

Mehr

Kapitel 7: Zufallsvariable I (Eindimensionale Zufallsvariable)

Kapitel 7: Zufallsvariable I (Eindimensionale Zufallsvariable) Kaptel 7: Zufallsvarable I (Endmensnale Zufallsvarable) 7.. Begrff der Zufallsvarablen Der Begrff der Zufallsvarablen sll zunächst anhand vn Zufallsepermenten erläutert werden, de enen endlchen Eregnsraum

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit BINARY CHOICE MODELS 1 mt Pr( Y = 1) = P Y = 0 mt Pr( Y = 0) = 1 P Bespele: Wahlentschedung Kauf langlebger Konsumgüter Arbetslosgket Schätzung mt OLS? Y = X β + ε Probleme: Nonsense Predctons ( < 0, >

Mehr

Analyse von Querschnittsdaten. Bivariate Regression

Analyse von Querschnittsdaten. Bivariate Regression Analse von Querschnttsdaten Bvarate Regresson Warum geht es n den folgenden Stzungen? Kontnuerlche Varablen Deskrptve Modelle kategorale Varablen Datum 3.0.2004 20.0.2004 27.0.2004 03..2004 0..2004 7..2004

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Exkurs: Entropie in der Wahrscheinlichkeitstheorie

Exkurs: Entropie in der Wahrscheinlichkeitstheorie Exkurs: Entrope n der Wahrschenlchketstheore a) Physk/Thermodynamk: S = k B ln(w) mt W=Anzahl glech-wahrschenlcher Möglchketen (Mkrozustände) a) Informatonstheore: Shannon (1948) Entrope wobe p = f /N

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 =

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 = Hochschule Harz Fachberech Automatserung und Informatk Prof. Dr. T. Schade Ft for Ab & Study - Aprl 2014 Lösungen zu den Aufgaben zu elementarer Wahrschenlchketsrechnung 1. a 12 11 10 9 = 33 = 0.102 20

Mehr

Wahrscheinlichkeit. Für die Berechnung von Wahrscheinlichkeitsproblemen gelten einige Axiome.

Wahrscheinlichkeit. Für die Berechnung von Wahrscheinlichkeitsproblemen gelten einige Axiome. Wahrschenlchket Wahrschenlchket De Axome der Wahrschenlchketsrechnung Zwschen der Anzahl bestmmter Eregnsse, de durch ene gewsse Zufallsvarable gekennzechnet snd, und der Wahrschenlchket für hr Entreten

Mehr

Übung zu Erwartungswert und Standardabweichung

Übung zu Erwartungswert und Standardabweichung Aufgabe Übung zu Erwartungswert und Standardabwechung In ener Lottere gewnnen 5 % der Lose 5, 0 % der Lose 0 und 5 % der Lose. En Los kostet 2,50. a)berechnen Se den Erwartungswert für den Gewnn! b)der

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Ökometrie I 10 Korrelation - Regression

Ökometrie I 10 Korrelation - Regression Ökometre I 10 Korrelaton - Regresson Ka Uwe Totsche LS Hydrogeologe Fredrch-Schller-Unverstät Jena Prof. Dr. Ka Uwe Totsche Ökometre I Korrelaton - Regresson 10-1 Zele und Lernnhalte Zel deser Enhet Zwedmensonale

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr

Erwartungswert und Varianz

Erwartungswert und Varianz Erwartungswert und Varanz Dskrete Wahrschenlchketsvertelungen J E(X p(xj x j var(x E[X ( E(X] j BespelEnpunktvertelung ε a Zähldchte: p(x I(a x E(X a var(x 0 BespelDskrete Glechvertelung G(x,,x n Zähldchte:

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

2. Grundbegriffe der Statistik

2. Grundbegriffe der Statistik Statstsche Physk, G. Schön, Karlsruher Insttut für Technologe (Unverstät) 3. Grundbegrffe der Statstk.1 Elementare Begrffe Im Folgenden betrachten wr ene oder mehrere stochastsche Varablen X oder auch

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik Kaptel 4: Wahrschenlchetsrechnung und Kombnator 1 4. Wahrschenlchetsrechnung De Wahrschenlchetsrechung stellt Modelle beret zur Beschrebung und Interpretaton solcher zufällger Erschenungen, de statstsche

Mehr

Übungsblatt 7 Lösungsvorschläge

Übungsblatt 7 Lösungsvorschläge Insttut für Theoretsche Informatk Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Lösungsvorschläge Vorlesung Algorthmentechnk m WS 09/10 Problem 1: Mnmale Schnttbass Approxmatonsalgos relatver Gütegarante

Mehr

Inhalt dieses Kapitels. Das Klassifikationsproblem, Bewertung von Klassifikatoren. Grundbegriffe, Parameterwahl, Anwendungen

Inhalt dieses Kapitels. Das Klassifikationsproblem, Bewertung von Klassifikatoren. Grundbegriffe, Parameterwahl, Anwendungen 3. Klassfkaton 3.1 Enletung Inhalt deses Kaptels Das Klassfkatonsproblem, Bewertung von Klassfkatoren 3.2 Bayes-Klassfkatoren Optmaler Bayes-Klassfkator, Naver Bayes-Klassfkator, Anwendungen 3.3 Nächste-Nachbarn-Klassfkatoren

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr