Der Erweiterungsfaktor k

Größe: px
Ab Seite anzeigen:

Download "Der Erweiterungsfaktor k"

Transkript

1 Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40

2 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang k-faktor und möglche Messwertvertelungen 5. Zusammenfassung

3 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang k-faktor und möglche Messwertvertelungen 5. Zusammenfassung

4 1. Was macht der k-faktor? Im klassschen GUM (JCGM 100) verknüpft der k-faktor(genauer: Erweterungsfaktor k p ) de kombnerte Standardunscherhet u c (y) durch Multplkaton mt der erweterten Messunscherhet U: U = k p u c (y) Dadurch wrd aus ener Größe, de de Streuung beschrebt (u c (y)) ene Größe, de angbt, dass m Intervall y - U bs y + U mt ener Wahrschenlchket von p (%) der wahre Wert des Messergebnsses legt.

5 Quelle: G. Wübbeler, PTB 1. Was macht der k-faktor? Standardmessunscherhet k p Erweterte Messunscherhet Streuung = Wurzel(Varanz) Kennzechnet en Intervall Kene Aussage über Wahrschenlchketen Abhängg von Vertelung und gewählter Wahrschenlchket Fortpflanzung von Messunscherheten: drekt verwendbar Fortpflanzung von Messunscherheten: ncht drekt verwendbar

6 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang k-faktor und möglche Messwertvertelungen 5. Zusammenfassung

7 2. Welche Parameter legen den Wert fest? Wel durch den k-faktor ene Umrechnung erfolgt, hängt sen Wert ab von: a. der Wahrschenlchketsvertelung des Messergebnsses b. dem gewählten Grad des Vertrauens p c. den effektven Frehetsgraden ν eff

8 dreeckförmg (ß = 0) 2. Welche Parameter legen den Wert fest? a. Wahrschenlchketsvertelung des Messergebnsses a u x 6 PDF: probablty densty functon, Wahrschenlchketsdchtefunkton

9 2. Welche Parameter legen den Wert fest? Wann kann man annehmen, dass ene Normalvertelung (Gauss-Vertelung) das Ergebns rchtg beschrebt? GUM G.6.6 gbt folgende Empfehlungen: de Engangsgrößen X lassen sch durch Normal- und Rechteckvertelungen beschreben, de domnerende Standardunscherhet u(x ) st normalvertelt (ncht n G.6.6 genannt), de Standardunscherheten u(x ) tragen mt verglechbaren Antelen zur kombnerten Standardunscherhet u c (y ) be, das Modell der Messung st hnrechend lnear, de Anzahl der effektven Frehetsgrade ν eff st erheblch, z.b. > 10. eff N u 1 ( y) ( y) 4 c 4 u

10 Grafken: G. Wübbeler 2. Welche Parameter legen den Wert fest? b. Grad des Vertrauens p Normalvertelung: p p Wahrschenlchket p (n %) Erweterungsfaktor k p 68,27 1,000 90,00 1,645 95,00 1,960 95,45 2,000 99,00 2,576 99,73 3,000 Wahrschenlchket 95,45 % Normal k p = 2,0 Rechteck k p = 1,65 Dreeck k p = 1,93

11 2. Welche Parameter legen den Wert fest? c. effektve Frehetsgrade ν eff Student- oder t-vertelung Se st zu wählen be wengen Wederhohlungsmessungen n, wel dann ν eff oft klen (< 10, besser: < 25) st.. GUM, Tabelle G.2 k-faktoren der Normalvertelung

12 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang k-faktor und möglche Messwertvertelungen 5. Zusammenfassung

13 3. Wo trtt der k-faktor auf? Der k-faktor trtt an 2 Stellen be Messunscherhetsbetrachtungen auf: be der Berechnung der erweterten Messunscherhet U, be der Bestmmung der Standardmessunscherhet u(x ) der verschedenen Engangsgrößen X. Für de Fehlerfortpflanzung, der Berechnung der kombnerten Standardmessunscherhet u c (y) nach müssen de verfügbaren Informatonen n Standardmessunscherhet u(x ) der Engangsgrößen X umgerechnet werden. N N c x u c x u x f y u ) ( ) ( ) (

14 3. Wo trtt der k-faktor auf? Hnwes: Gemäß GUM erfolgt de Fehlerfortpflanzung nach ncht nach wel U = k p u c (y) und de k-faktoren verscheden sen können. N N c x u c x u x f y u ) ( ) ( ) ( U U U

15 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang k-faktor und möglche Messwertvertelungen 5. Zusammenfassung

16 4. Zusammenhang k-faktor und Vertelungen Zur Bestmmung der Standardmessunscherheten u(x ) snd 2 Schrtte notwendg: Abschätzung der Vertelung für jede Engangsgröße, Errechnung der Standardmessunscherheten u(x ) nach festen Regeln auf Grund der Vertelung. Auszug aus dem Qualtätsmanagement-Handbuch der PTB: In Kalbrerschenen und n Prüfberchten... st be der Angabe der Messunscherhet m Falle der Normalvertelung folgende Formulerung zu verwenden: Angegeben st de erweterte Messunscherhet, de sch aus der Standardmessunscherhet durch Multplkaton mt dem Erweterungsfaktor k = 2 ergbt. Se wurde gemäß dem Gude to the Expresson of Uncertanty n Measurement (GUM) ermttelt. Der Wert der Messgröße legt dann m Regelfall mt ener Wahrschenlchket von annähernd 95 % m zugeordneten Überdeckungsntervall.

17 4. Zusammenhang k-faktor und Vertelungen geechtes Gerät Gerät mt Kalbrerschen (der k-faktor sollte angegeben sen) Gerät mt Kalbrerschen und zusätzlchen Informatonen (z.b. k-faktor, effektve Frehetsgrade) Quelle: deutsche Übersetzung des GUM S1

18 4. Zusammenhang k-faktor und Vertelungen c. effektve Frehetsgrade ν eff GUM, Tabelle G.2: Frehets- Antel p n % grade 68,27(a) , ,73 1 1,84 6,31 12,71 13,97 63,66 235,8 2 1,32 2,92 4,30 4,53 9,92 19,21 3 1,20 2,35 3,18 3,31 5,84 9,22 4 1,14 2,13 2,78 2,87 4,60 6,62 5 1,11 2,02 2,57 2,65 4,03 5,51 6 1,09 1,94 2,45 2,52 3,71 4, ,05 1,81 2,23 2,28 3,17 3,96 GUM G.6.6 Empfehlung 25 1,02 1,71 2,06 2,11 2,79 3,33 mene Empfehlung 50 1,01 1,68 2,01 2,05 2,68 3, ,005 1,660 1,984 2,025 2,626 3,077 1,000 1,645 1,960 2,000 2,576 3,000

19 dreeckförmg (ß = 0) 2. Welche Parameter legen den Wert fest? a. Wahrschenlchketsvertelung des Messergebnsses a u x 6 PDF: probablty densty functon, Wahrschenlchketsdchtefunkton

20 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang k-faktor und möglche Messwertvertelungen 5. Zusammenfassung

21 5. Zusammenfassung k = 2 st nur dann rchtg, wenn das Messergebns (de Ausgangsgröße) normal vertelt st, d.h. - de Engangsgrößen überwegend normalvertel snd oder de Antele der Unscherheten der zahlrechen Engangsgrößen annähernd glech groß snd, - der effektve Frehetsgrad größer als 10 (besser: 25) st. Be enem Messergebns, das zwar normalvertelt st, deren effektver Frehetsgrad aber klener als 10 (besser: 25) st, muss der Erweterungsfaktor entsprechend der t-vertelung genutzt werden. Wenn das Messergebns ene andere Vertelung hat, st für den k-faktor en anderer Wert zu nehmen. Der k-faktor hängt von dem Grad des Vertrauens ab, der für das Messergebns gewünscht oder gefordert wrd; m technschen Berech wrd oft 95 % gewählt, für den scherhetsrelevanten oder rechtlchen Berech kann / wrd das mest zu nedrg sen.

22 Velen Dank für Ihre Aufmerksamket, gbt es Fragen?

Berechnung der Messunsicherheit nach GUM Kurzfassung in 20 min

Berechnung der Messunsicherheit nach GUM Kurzfassung in 20 min Berechnung der Messunscherhet nach GUM Kurzfassung n 0 mn MU der Stephan Meke PTB-Insttut Berln Gegenstand Defnton (verkürzt) VIM (Wörterb. d. Metrologe) Bespele / Anmerkungen Größe Größenwert Messwert

Mehr

Was sind Messunsicherheiten?

Was sind Messunsicherheiten? Edgenösssches Justz- und Polzedepartement EJPD Bundesamt für Metrologe METAS Was snd Messunscherheten? Chrstan Hof Was snd Messunscherheten? allgemene Defntonen von Begrffen das standardserte Vorgehen

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Erweiterte Messunsicherheit

Erweiterte Messunsicherheit Erweiterte Messunsicherheit Gerd Wübbeler, Stephan Mieke PTB, 8.4 Berechnung der Messunsicherheit Empfehlungen für die Praxis Berlin, 11. und 12. März 2014 Gliederung 1. Was gibt die erweiterte Messunsicherheit

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Aufgabe 2. Kolloquium zur Klausurnachbesprechung Instrumente des Controlling Wintersemester 2010/11. Dr. Michael Holtrup

Aufgabe 2. Kolloquium zur Klausurnachbesprechung Instrumente des Controlling Wintersemester 2010/11. Dr. Michael Holtrup Aufgabe 2 Kolloquum zur Klausurnachbesprechung Instrumente des Controllng Wntersemester 2010/11 Dr. Mchael Holtrup Agenda 1 Aufgabe 2a 2 Aufgabe 2b 3 Aufgabe 2c 2» Agenda 1 Aufgabe 2a 2 Aufgabe 2b 3 Aufgabe

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Musterklausur Wirtschaftsmathematik und Statistik. Zusatzstudium für Wirtschaftsingenieur

Musterklausur Wirtschaftsmathematik und Statistik. Zusatzstudium für Wirtschaftsingenieur Musterklausur Wrtschaftsmathematk und Statstk Zusatzstudum für Wrtschaftsngeneur Telnehmer (Name, Vorname): Datum:.2006 Prüfer: Böhm-Retg Matrkelnummer: REGELN 1. Zum Bestehen der Klausur snd mndestens

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Hausübung 1 Lösungsvorschlag

Hausübung 1 Lösungsvorschlag Hydrologe und Wasserwrtschaft Hausübung Lösungsvorschlag NIDRSCHLAG Hnwes: Be dem vorlegenden Dokument handelt es sch ledglch um enen Lösungsvorschlag und ncht um ene Musterlösung. s besteht ken Anspruch

Mehr

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation Kaptel 2: Klassfkaton Maschnelles Lernen und Neural Computaton 28 En enfacher Fall En Feature, Hstogramme für bede Klassen (z.b. Glukosewert, Dabetes a/nen) Kene perfekte Trennung möglch Entschedung: Schwellwert

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Baudynamik und Erdbebeningenieurwesen

Baudynamik und Erdbebeningenieurwesen Baudynamk und Erdbebenngeneurwesen Themen und Antworten für de Lzenzprüfung 1. Defneren Se den Begrff: Grad des dynamschen Frehetsgrads. Geben Se Bespele von Systemen mt enem enzgen Grad des dynamschen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Fähigkeitsuntersuchungen beim Lotpastendruck

Fähigkeitsuntersuchungen beim Lotpastendruck Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009 Qualtätsmerkmale

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

BAM-Leitfaden zur Ermittlung von Messunsicherheiten bei quantitativen Prüfergebnissen 1. Fassung 11. vom März 2004

BAM-Leitfaden zur Ermittlung von Messunsicherheiten bei quantitativen Prüfergebnissen 1. Fassung 11. vom März 2004 Dr. rer. nat. Werner Hässelbarth BAM-Letfaden zur Ermttlung von Messunscherheten be quanttatven Prüfergebnssen. Fassung. vom März 004 Forschungsbercht 66 Berln 004 Autor: Textbeträge: Redakton: Fregabe:

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden.

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden. Stoffwerte De Stoffwerte für de enzelnen omponenten raftstoff, Luft und Abgas snd den verschedenen Stellen aus den Lteraturhnwesen zu entnehmen, für enge Stoffe sollen jedoch de grundlegenden Zusammenhänge

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

2 Halbleitersensoren SC-T100 / SC-M1000 / SC-L25 / SC-D300 / SC-D800

2 Halbleitersensoren SC-T100 / SC-M1000 / SC-L25 / SC-D300 / SC-D800 Sensoren analog (Komponenten) Features Applcatons enfach und kostengünstg Prozessüberwachung Sensoren für Lcht, Druck, Weg, Temperatur, Beschleungung, Schall, Magnetfeld Entwcklung, Schule, Ausbldung sowe

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Einführung in Origin 8 Pro

Einführung in Origin 8 Pro Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Änderungen Bis : Personengruppe 101 bei RV-Pflicht Vorgehen im Juli

Änderungen Bis : Personengruppe 101 bei RV-Pflicht Vorgehen im Juli XBA Personalwesen Flexrentengesetz 2017, Abrechnung von Altersrentnern, Mnjob Zum 01.01.2017 snd Änderungen m Flexrentengesetz n Kraft getreten, mt Folgen für de Abrechnung von weterbeschäftgten Mtarbetern,

Mehr

-1- Alles kein Zufall. - Starkes Markenmanagement - Inhaltsverzeichnis und Übersicht

-1- Alles kein Zufall. - Starkes Markenmanagement - Inhaltsverzeichnis und Übersicht -1- Alles ken Zufall - Starkes Markenmanagement - Inhaltsverzechns und Überscht -2- Alles ken Zufall Das Inhaltsverzechns 1. De Grundlagen moderner Markenführung. 5. Postonerung und Framng. De Analyse

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Grundlagen der Technischen Informatik. 9. Übung

Grundlagen der Technischen Informatik. 9. Übung Grundlagen der Technschen Informatk 9. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2 Übungen zur Vorlesung Physkalsche Chee 1 B. Sc.) Lösungsorschlag zu Blatt Prof. Dr. Norbert Happ Jens Träger Soerseester 7. 4. 7 Aufgabe 1 a) Aus den tabellerten Werten ergbt sch folgendes Dagra. Btte

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken!

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken! SEMINARPROGRAMME Abenteuer Führung Der Survval Gude für den ersten Führungsjob De erste Führungsaufgabe st ken Zuckerschlecken! Junge Hgh Potentals erkennen das schnell. Her taucht ene unangenehme Überraschung

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer ([email protected]) Marcel Steller ([email protected]) Insttut ür Rechnungswesen, Steuerlehre

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Aufgaben zur Einführung in die Messtechnik Die ISO/BIPM-GUM Sicht: Schätzwert & Messunsicherheit

Aufgaben zur Einführung in die Messtechnik Die ISO/BIPM-GUM Sicht: Schätzwert & Messunsicherheit F Aufgaben zur Enführung n de Messtechnk De ISO/BIPM-GUM Scht: Schätzwert & Messunscherhet Wolfgang Kessel Braunschweg Copyrght 004 Dr.Wolfgang Kessel Braunschweg UPROB0.PPT/F/004--/Ke Messfehler/Enführung

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Inhalt der Vorlesung. Von der Standardabweichung zur Messunsicherheit. Gauss und Legendre als Begründer

Inhalt der Vorlesung. Von der Standardabweichung zur Messunsicherheit. Gauss und Legendre als Begründer Inhalt der Vorlesung Von der Standardabwechung zur Messunscherhet Man msst egentlch mmer falsch. Man muss nur wssen wevel. Man kann heute sehr präzse sehr falsch messen Dave Packard Qualtätsmasse n der

Mehr