Algorithmen für Routenplanung Vorlesung 11

Größe: px
Ab Seite anzeigen:

Download "Algorithmen für Routenplanung Vorlesung 11"

Transkript

1 Algorithmen für Routenplanung Vorlesung 11 Daniel Delling 1/ 35

2 Letztes Mal: Zeitabhängige Netzwerke Szenario: Historische Daten für Verkehrssituation verfügbar Verkehrssituation vorhersagbar berechne schnellsten Weg bezüglich der erwarteten Verkehrssituation (zu einem gegebenen Startzeitpunkt) 2/ 35

3 Zeitabhängige Beschleunigungstechniken Basismodule: 0 bidirektionale Suche + landmarken + Kontraktion (hoher Speicherverbrauch) + arc-flags Table Look-ups somit folgende Algorithmen gut in zeitabhängigen Szenarien verwendbar ALT Core-ALT SHARC Contraction Hierarchies 3/ 35

4 Heute: Multikriterielle Wege Szenario: schnellste Verbindung häufig nicht die Beste Anzahl Umstiege, Fahrtkosten, Distanz, etc. multikriterielle kürzeste Wege 4/ 35

5 Idee: Multi-Criteria Routes hänge mehrere Gewichte an die Kanten (z.b.: Reisezeiten, Kosten) berechne alle Pareto-optimale Routen zwischen Punkten eine Route ist Pareto-optimal wenn sie nicht von anderen Routen dominiert wird eine Route dominiert eine andere, wenn sie besser in einer Metrik und mindestens so gut in allen anderen Herausforderungen viele Routen zum Ziel (3,1) (3,1) (3,1) t l(p )=(3,9) (1,3) (1,3) 1 l(p 1 )=(3,9) l(p 2 )=(9,3) (2,2) l(p 3 )=(6,6) s (1,3) 5/ 35

6 Multikriterieller Dijkstra Vorgehen: verwalte Liste an Labeln an jedem Knoten füge Startknoten mit (0,..., 0) in PQ ein entferne u von der Queue (key: kleinster Eintrag im Label(?)) für jede ausgehende Kante (u, v) erzeuge temporäres Label an v wenn Label nicht dominiert wird, füge Label zu list(v) stoppe wenn die Label an t all label in der PQ dominieren Anmerkungen: Knoten können mehr als einmal besucht werden Performance hängt massiv von Anzahl der Labels an den Knoten ab 6/ 35

7 Eingabe Straßengraphen von: Luxemburg Karlsruhe Niederlande Europa Metriken: Fahrzeiten für schnelles Auto Fahrzeiten für langsames Auto Kosten Distanzen Unit Metrik 7/ 35

8 Ähnliche Metriken: Europa target #del. time metrics labels mins [ms] fast car (fc) slow car (sc) fast truck (ft) slow truck (st) fc + st fc + ft fc + sc sc + lt sc + ft ft + st fc + sc +st fc + sc + ft sc + ft +st fc + sc + ft + st / 35

9 Verschiedene Metriken Luxemburg Karlsruhe target #del. time target #del. time metrics labels mins [ms] labels mins [ms] fast car (fc) slow truck (st) costs distances unit fc + st fc + costs fc + dist fc + unit costs + dist / 35

10 Limitierung des Pareto-Sets motorway Problem: schnelles Auto und Kosten am interessantesten Anzahl Routen explodiert national roads Europa nicht möglich (wie bei Profilsuchen) Idee: setze Reisezeit als Hauptmetrik ändere Dominanzregeln erlaube nur solche Routen, die ɛ mal länger als die schnellste ist muss auch für Subrouten gelten 10/ 35

11 Limitierung des Pareto-Sets II Problem: Ansatz klappt nur, wenn ɛ sehr klein uninterestante Routen (geringer Unterschied zum schnellsten Weg) Idee: erlaube längere Routen (als schnellste) nur, wenn andere Metriken deutlich besser sind damit ɛ höher wählbar sinnvolle Teilmenge der Pareto-Routen 11/ 35

12 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Multikriterielle Beschleunigungstechniken Landmarken Bidirektionale Suche Kontraktion Arc-Flags Table- Lookups s t access node s t distances between access node transit nodes 12/ 35

13 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Landmarken Vorberechnung: wähle eine Hand voll ( 16) Knoten als Landmarken berechne Abstände von und zu allen Landmarken Anfrage: benutze Landmarken und Dreiecksungleichung um eine untere Schranke für den Abstand zum Ziel zu bestimmen d(s, t) d(l 1, t) d(l 1, s) d(s, t) d(s, L 2 ) d(t, L 2 ) verändert Reihenfolge der besuchten Knoten 13/ 35

14 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Anpassung Beobachtung: Korrektheit von ALT basiert darauf, dass reduzierten Kantengewichte größer gleich 0 sind len π (u, v) = len(u, v) π(u) + π(v) 0 Idee: benutze nur eine Metrik zum berechnen der Distanzen Abbruchkriterium? 14/ 35

15 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Bidirektionale Suche s t starte zweite Suche von t relaxiere rückwärts nur eingehende Kanten stoppe die Suche, wenn beide Suchräume sich treffen 15/ 35

16 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Anpassung Idee: rückwärtssuche kein Problem (solange zeitunabhängiges Netzwerk) zeitabhängig: Techniken vom letzten Mal Offenes Problem: Abbruchkriterium? Kombination aller Elemente aus Vorwärts- und Rückwärtsqueue? 16/ 35

17 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Kontraktion Knoten-Reduktion: entferne diese Knoten iterativ füge neue Kanten (Abkürzungen) hinzu, um die Abstände zwischen verbleibenden Knoten zu erhalten Kanten-Reduktion: behalte nur relevante Shortcuts lokale Suche während oder nach Knoten-reduktion 17/ 35

18 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Anpassung Knoten-Reduktion Beobachtung: Verfahren unabhängig von Metrik Shortcuts müssen dem Pfade entsprechen Somit: Anpassung ohne Probleme 18/ 35

19 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Anpassung Kanten-Reduktion unikriteriell: lösche Kante (u, v), wenn (u, v) nicht Teil des kürzesten Weges von u nach v ist, also len(u, v) < d(u, v) lokale Dijkstra-Suche von u multikriteriell: lösche Kante (u, v), wenn (u, v) nicht Teil eines Parteo-Weges von u nach v ist, als (u, v) dominiert wird von mindestens einem Weg lokale multi-kriterielle Suche Problem: Explosion der Anzahl der Routen Lösung: benutze Limitierungen des Pareto-Sets während Vorberechnung 19/ 35

20 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Arc-Flags Idee: partitioniere den Graph in k Zellen hänge ein Label mit k Bits an jede Kante zeigt ob e wichtig für die Zielzelle ist modifizierter Dijkstra überspringt unwichtige Kanten Beobachtung: Partition wird auf ungewichtetem Grahen durchgeführt Flaggen müssen allerdings aktualisiert werden 20/ 35

21 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Anpassung Idee: ändere Intuition einer gesetzten Flagge Konzept bleibt gleich: Eine Flagge pro Kante und Region setze Flagge multikriteriell: wenn Kante für einen Pareto-Pfad wichtig ist Anpassung: für alle Randknoten b und alle Knoten u: Berechne Pareto-Abstände D(u, b) setze Flagge wenn gilt (u, v) zugehörige Kante eines Pareto-Pfades ist u v w x b 21/ 35

22 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Table-Lookups Idee: speichere Distanztabellen nur für wichtige Teile des Graphen Suchen laufen nur bis zur Tabelle harmoniert gut mir hierarchischen Techniken access node s t distances between transit nodes access node 22/ 35

23 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Anpassung Beobachtung: Distanz-Tabelle muss Pareto-Abstände abspeichern massiver Anstieg der Größe der Tabellen Pfadstruktur nicht mehr so gutmütig deutlich mehr access-nodes? also: Speicherverbrauch deutlich zu groß? 23/ 35

24 Landmarken Bidirektional Kontraktion Arc-Flags Table-Lookups Zusammenfassung Diskussion Anpassung der Basismodule Basismodule:? bidirektionale Suche? landmarken + Kontraktion + arc-flags? Table Look-ups somit folgende Algorithmen gute Kandidaten SHARC unklar: ALT Core-ALT Contraction Hierarchies 24/ 35

25 SHARC SHARC (Kontraktion, Arc-Flags) Vorberechnung: Multi-Level-Partition iterativer Prozess: kontrahiere Subgraphen berechne Flaggen Flaggenverfeinerung Anpassung: Kontraktion und Flaggen berechnung anpassen Verfeinerung? 25/ 35

26 SHARC Flaggenverfeinerung Vorgehen: verfeinere Flaggen propagiere Flaggen von wichtigen zu unwichtigen Kanten uni-kriteriell: mittels lokaler Suche multi-kriteriell: mittels lokaler multikriterieller Suchen auch hier wieder: effizient nur durch Limitierung des Pareto-Sets 26/ 35

27 SHARC Full Pareto-Set Luxemburg Karlsruhe Prepro Query Prepro Query time target #del. time spd time target #del. time spd metrics [h:m] labels mins [ms] up [h:m] labels mins [ms] up fast car (fc) < 0: < 0: slow truck (st) < 0: < 0: costs < 0: < 0: distances < 0: < 0: unit < 0: < 0: fc + st 0: : fc + costs 0: : fc + dist. 0: : fc + unit 0: : costs + dist. 0: : / 35

28 SHARC Limitierung des Pareto-Sets motorway Problem: schnelles Auto und Kosten am interessantesten Anzahl Routen explodiert national roads Europa nicht möglich (wie bei Profilsuchen) Idee: setze Reisezeit als Hauptmetrik ändere Dominanzregeln erlaube nur solche Routen, die ɛ mal länger als die schnellste ist muss auch für Subrouten gelten 28/ 35

29 SHARC Results (fast car + costs) The Netherlands Europe Prep Query Prep Query time target #del. time time target #del. time ɛ [h:m] labels mins [ms] [h:m] labels mins [ ms] : : : : : : : : : : : : : : : >24: : : : >24:00 29/ 35

30 SHARC Limitierung des Pareto-Sets II Problem: Ansatz klappt nur, wenn ɛ sehr klein uninterestante Routen (geringer Unterschied zum schnellsten Weg) Idee: erlaube längere Routen (als schnellste) nur, wenn andere Metriken deutlich besser sind damit ɛ höher wählbar sinnvolle Teilmenge der Pareto-Routen 30/ 35

31 SHARC Results (fast car + costs) Beobachtung: Europa möglich vernünftige Anzahl Routen gute Anfragenzeiten Prepro Query time space target #del. time γ [h:m] [B/n] labels mins [ms] : : : : : : : >24:00 31/ 35

32 SHARC Eisenbahn Eingabe: Deutscher Fern- und Regionalverkehr von stationen, Züge 392 Fußkanten elementare Verbindungen 32/ 35

33 SHARC Ergebnisse average average speed-up factor Query CPU time # pq-min over base variant in s operations CPU time pq-min operations base , base+lb , arc-flags , SHARC , SHARC+goal , greedy arc-flags , greedy SHARC , greedy SHARC+goal , / 35

34 Zusammenfassung Multikriterielle Beschleunigungst. Basismodule:? bidirektionale Suche? landmarken + Kontraktion + arc-flags? Table Look-ups angepasst haben wir: SHARC aber nur effizient mit Einschränkung des Pareto-Sets offen: andere Beschleunigungstechniken (?) anderes Pruning der Pareto-Pfade (?) Eisenbahnnetze (?) 34/ 35

35 Literatur Multikriterielle Suche: Delling 09 Anmerkung: wird auf der Homepage verlinkt 35/ 35

Algorithmen für Routenplanung Vorlesung 10

Algorithmen für Routenplanung Vorlesung 10 Algorithmen für Routenplanung Vorlesung 10 Daniel Delling 1/ 42 Letztes Mal: Zeitabhängige Netzwerke (Basics) Szenario: Historische Daten für Verkehrssituation verfügbar Verkehrssituation vorhersagbar

Mehr

Algorithmen für Routenplanung 15. Vorlesung, Sommersemester 2012 Daniel Delling 20. Juni 2012

Algorithmen für Routenplanung 15. Vorlesung, Sommersemester 2012 Daniel Delling 20. Juni 2012 Algorithmen für Routenplanung 15. Vorlesung, Sommersemester 2012 Daniel Delling 20. Juni 2012 MICROSOFT RESEARCH SILICON VALLEY KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum

Mehr

Algorithmen für Routenplanung 2. Vorlesung, Sommersemester 2014 Andreas Gemsa 20. April 2014

Algorithmen für Routenplanung 2. Vorlesung, Sommersemester 2014 Andreas Gemsa 20. April 2014 Algorithmen für Routenplanung 2. Vorlesung, Sommersemester 2014 Andreas Gemsa 20. April 2014 INSTITUT FÜR THEORETISCHE INFORMATIK ALGORITHMIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen für Routenplanung

Algorithmen für Routenplanung Algorithmen für Routenplanung Letzte Sitzung, Sommersemester 2010 Thomas Pajor 09. Juli 2010 I NSTITUT FÜR T HEORETISCHE I NFORMATIK A LGORITHMIK I P ROF. D R. D OROTHEA WAGNER KIT University of the State

Mehr

Schnelle und genaue Routenplanung

Schnelle und genaue Routenplanung Sanders/Schultes: Routenplanung 1 Schnelle und genaue Routenplanung Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe Uni für Einsteiger, 22. November

Mehr

Fortgeschrittene Routenplanung. Transportnetzen. Advanced Route Planning in Transportation Networks

Fortgeschrittene Routenplanung. Transportnetzen. Advanced Route Planning in Transportation Networks Fortgeschrittene Routenplanung in Transportnetzen Advanced Route Planning in Transportation Networks Dissertationsvortrag von Dipl.-Inform. Robert Geisberger 1 KIT Robert Universität Geisberger: des Landes

Mehr

Algorithmen für Routenplanung

Algorithmen für Routenplanung Algorithmen für Routenplanung 16. Sitzung, Sommersemester 2011 Thomas Pajor 4. Juli 2011 INSTITUT FÜR THEORETISCHE INFORMATIK ALGORITHMIK I PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen für Routenplanung

Algorithmen für Routenplanung Algorithmen für Routenplanung 15. Vorlesung, Sommersemester 016 Moritz Baum 15. Juni 016 INSTITUT FÜR THEORETISCHE INFORMATIK ALGORITHMIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen für Routenplanung 11. Vorlesung, Sommersemester 2012 Daniel Delling 6. Juni 2012

Algorithmen für Routenplanung 11. Vorlesung, Sommersemester 2012 Daniel Delling 6. Juni 2012 Algorithmen für Routenplanung 11. Vorlesung, Sommersemester 2012 Daniel Delling 6. Juni 2012 MICROSOFT RESEARCH SILICON VALLEY KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum

Mehr

Genauer Hochleistungs-Routenplaner

Genauer Hochleistungs-Routenplaner Sanders/Schultes: Routenplanung 1 Genauer Hochleistungs-Routenplaner Prof. Dr. Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe (TH) Heidelberger

Mehr

Algorithmen für Routenplanung 10. Vorlesung, Sommersemester 2016 Ben Strasser 25. Mai 2016

Algorithmen für Routenplanung 10. Vorlesung, Sommersemester 2016 Ben Strasser 25. Mai 2016 Algorithmen für Routenplanung 10. Vorlesung, Sommersemester 2016 Ben Strasser 25. Mai 2016 INSTITUT FÜR THEORETISCHE INFORMATIK ALGORITHMIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Highway Hierarchies. Kristian Dannowski, Matthias Hoeschel

Highway Hierarchies. Kristian Dannowski, Matthias Hoeschel Highway Hierarchies Kristian Dannowski, Matthias Hoeschel Gliederung Einleitung / Bidirektional Dijkstra Intuition / Naive Strategie Konstruktion der Highway Hierarchie Suche in der Highway Hierarchie

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

9. Heuristische Suche

9. Heuristische Suche 9. Heuristische Suche Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S Heuristische Suche Idee: Wir nutzen eine (heuristische)

Mehr

Rechnernetze Übung 10. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011

Rechnernetze Übung 10. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011 Rechnernetze Übung 10 rank Weinhold Professur VSR akultät für Informatik TU hemnitz Juni 2011 Das Weiterleiten (Routing) erfüllt die wichtige ufgabe, einzelne Teilstrecken des Kommunikationsnetzes so zu

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe

Mehr

Praktikum Routenplanung Vorbesprechung, Wintersemester 2012/2013 Moritz Baum, Julian Dibbelt, Thomas Pajor, Ben Strasser 17.

Praktikum Routenplanung Vorbesprechung, Wintersemester 2012/2013 Moritz Baum, Julian Dibbelt, Thomas Pajor, Ben Strasser 17. Praktikum Routenplanung Vorbesprechung, Wintersemester 01/013 Moritz Baum, Julian Dibbelt, Thomas Pajor, Ben Strasser 17. Oktober 01 INSTITUT FÜR THEORETISCHE INFORMATIK ALGORITHMIK I PROF. DR. DOROTHEA

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 6. Klassische Suche: Datenstrukturen für Suchalgorithmen Malte Helmert Universität Basel 7. März 2014 Klassische Suche: Überblick Kapitelüberblick klassische Suche:

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 11. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen Safe

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Algorithmen für Routenplanung 14. Vorlesung, Sommersemester 2012 Daniel Delling 18. Juni 2012

Algorithmen für Routenplanung 14. Vorlesung, Sommersemester 2012 Daniel Delling 18. Juni 2012 Algorithmen für Routenplanung 14. Vorlesung, Sommersemester 2012 Daniel Delling 18. Juni 2012 MICROSOFT RESEARCH SILICON VALLEY KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 10. Vorlesung 28.06.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Inhalte Kurze Geschichte der

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Viertes

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/ideen/

Mehr

Praktikum Routenplanung Themenvorstellung & Gruppeneinteilung, Wintersemester 2015/2016 Moritz Baum, Ben Strasser, Tobias Zündorf 19.

Praktikum Routenplanung Themenvorstellung & Gruppeneinteilung, Wintersemester 2015/2016 Moritz Baum, Ben Strasser, Tobias Zündorf 19. Praktikum Routenplanung Themenvorstellung & Gruppeneinteilung, Wintersemester 2015/2016 Moritz Baum, Ben Strasser, Tobias Zündorf 19. Oktober 2015 INSTITUT FÜR THEORETISCHE INFORMATIK ALGORITHMIK PROF.

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

Christian Schulz und Johannes Singler

Christian Schulz und Johannes Singler Christian Schulz und Johannes Singler, Prof. Sanders 1 KIT Christian Universität des Schulz Landes Baden-Württemberg und Johannes undsingler: nationales 3. Übung Forschungszentrum Algorithmen in der Helmholtz-Gemeinschaft

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken

Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken Seminararbeit: Algorithmen für Sensornetzwerke Thomas Gramer 1 Thomas Gramer: KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

MASTER THESIS. Ontology-Based Route Queries with Time Windows. Tobias Faaß. 17. Juni 2015

MASTER THESIS. Ontology-Based Route Queries with Time Windows. Tobias Faaß. 17. Juni 2015 MASTER THESIS Ontology-Based Route Queries with Time Windows 17. Juni 2015 Tobias Faaß Albert-Ludwigs-Universität Freiburg im Breisgau Technische Fakultät Institut für Informatik GLIEDERUNG 1. Einführung

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 9 (28.5.2014) Hashtabellen III Algorithmen und Komplexität Offene Adressierung : Zusammenfassung Offene Adressierung: Alle Schlüssel/Werte

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Kapitel 4: Netzplantechnik Gliederung der Vorlesung

Kapitel 4: Netzplantechnik Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Netzplantechnik 5. Minimal spannende Bäume 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

DATENSTRUKTUREN UND ALGORITHMEN

DATENSTRUKTUREN UND ALGORITHMEN DATENSTRUKTUREN UND ALGORITHMEN 2 Ist die Datenstruktur so wichtig??? Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen Dünn besetzte Graphen und Matrizen bilden

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Durchschnitt von Matroiden

Durchschnitt von Matroiden Durchschnitt von Matroiden Satz von Edmonds Dany Sattler 18. Januar 2007/ Seminar zur ganzzahligen Optimierung / Wallenfels Definition: Unabhängigkeitssystem Definition: Ein Mengensystem (S, J ) nennt

Mehr

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Daniel Reinhold Shenja Leiser 6. Februar 2006 2/28 Gliederung Einführung Transitive Hülle Definition Iterative Algorithmen 1. Naive

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29 1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Wie findet das Navi den Weg?

Wie findet das Navi den Weg? 0.05.0 Verwandte Fragestellungen Problemstellungen aus der Praxis Prof. Dr. Paul Rawiel Gliederung des Vortrags Speicherung von Kartendaten zur Navigation Kriterien für die Navigation Finden des kürzesten

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Dijkstra: Laufzeit. Insgesamt: T Dijkstra = O m T decreasekey (n)+n (T deletemin (n)+t insert (n))

Dijkstra: Laufzeit. Insgesamt: T Dijkstra = O m T decreasekey (n)+n (T deletemin (n)+t insert (n)) Dijkstra: Laufzeit Function Dijkstra(s : NodeId) : NodeArray NodeArray d = {,..., }; parent[s]:= s; d[s] := 0; Q.insert(s) // O(n) while Q 6= /0 do u := Q.deleteMin // apple n foreach edge e =(u,v) 2 E

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale

Mehr

Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers

Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers Graphalgorithmen 2 Oleksiy Rybakov 3. Juni 2015 Betreuer: Tobias Werth, Daniel Brinkers 1 / 40 Inhaltsverzeichnis 1 Minimale Spannbäume und Datenstrukturen 2 Kürzeste Wege 3 Spezielle Graphen 2 / 40 Minimale

Mehr

1. Übungsblatt zu Algorithmen II im WS 2011/2012

1. Übungsblatt zu Algorithmen II im WS 2011/2012 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Moritz Kobitzsch, Dennis Schieferdecker. Übungsblatt zu Algorithmen II im WS 0/0 http://algo.iti.kit.edu/algorithmenii.php

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

PostgreSQL auf vielen CPUs. Hans-Jürgen Schönig Hans-Jürgen Schönig

PostgreSQL auf vielen CPUs. Hans-Jürgen Schönig  Hans-Jürgen Schönig PostgreSQL auf vielen CPUs Ansätze zur Skalierung PostgreSQL auf einer CPU Traditionell läuft eine Query auf nur einer CPU Historisch gesehen war das kein Problem Mittlerweile ist das ein großes Problem

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Single Source Sortest Path Negative Kreise All-Pair Shortest Path Problem Minimum Mean Cycle Zusammenfassung. Shortest Paths

Single Source Sortest Path Negative Kreise All-Pair Shortest Path Problem Minimum Mean Cycle Zusammenfassung. Shortest Paths Shortest Paths Label Correcting Algorithms Florian Reitz Universität Trier Fachbereich IV Fach Informatik Seminar Netzwerkalgorithmen WS 2005/2006 Einleitung: Problemübersicht Eben: Schnelle Algorithmen

Mehr

Einleitung. Komplexe Anfragen. Suche ist teuer. VA-File Verfeinerungen. A0-Algo. GeVAS. Schluß. Folie 2. Einleitung. Suche ist teuer.

Einleitung. Komplexe Anfragen. Suche ist teuer. VA-File Verfeinerungen. A0-Algo. GeVAS. Schluß. Folie 2. Einleitung. Suche ist teuer. Anwendung Input: Query-Bild, Ergebnis: Menge ähnlicher Bilder. Kapitel 8: Ähnlichkeitsanfragen und ihre effiziente Evaluierung Wie zu finden? Corbis, NASA: EOS Bilddatenbank Folie Folie 2 Ähnlichkeitssuche

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Hauptdiplomklausur Informatik März 2002: Internet Protokolle

Hauptdiplomklausur Informatik März 2002: Internet Protokolle Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Professor Dr. W. Effelsberg Hauptdiplomklausur Informatik März 2002: Internet Protokolle Name:... Vorname:...

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr