Optimale Steuerung 1
|
|
|
- Daniela Hermann
- vor 7 Jahren
- Abrufe
Transkript
1 Optimale Steuerung 1 Kapitel 6: Nichtlineare Optimierung unbeschränkter Probleme Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP)
2 Beispiel: Parameteranpassung für Phasengleichgewicht binärer Systeme 2 Gleichgewichtsbeziehung: van-laar-modell: Die Antoine-Gleichung:
3 Der Systemdruck: 3 d. h. const. Durch ein Experiment mit einer konstanten Temperatur erhält man eine Reihe von Messdaten: weil dann Minimierung des gesamten quadratischen Fehlers: Dies ist ein typisches nichtlineares Optimierungsproblem ohne Nebenbedingungen.
4 Mehrdimensionale Optimierung nichtlinearer Probleme ohne Nebenbedingungen 4 Problemstellung: Die Lösung: Die erste (notwendige) Bedingung an einem lokalen Minimalpunkt : Nämlich Die zweite (hinreichende) Bedingung am Minimalpunkt ist eine positiv definite Hesse-Matrix: p T Η( x * ) p 0
5 Taylor-Entwicklung an 5 d. h. weil, dann bedeutet dies. Das Newton-Verfahren: Aus der notwendigen Bedingung definiert man: N Variablen N Gleichungen Es kann mit dem Newton-Verfahren gelöst werden. Die Jacobi-Matrix des Gleichungssystems ist. Die iterative Lösung: Es wird ein Schätzpunkt gebraucht.
6 Entwicklung von bei in Taylorreihe 2. Ordnung 6
7 7
8 Beispiel: das Newton-Verfahren 8
9 Das klassische Gradienten-Verfahren (Verfahren des steilsten Abstiegs) 9 Ein gegebener Punkt Der nächste Punkt Taylor-Entwicklung erster Ordnung an : d. h. Wenn die Suchrichtung: d. h.
10 Beispiel: Inneres Produkt 10 dann aus dem Bild dann
11 Das Gradienten Verfahren (Verfahren des steilsten Abstiegs) 11 1) vorgeben, 2) berechnen: wenn dann STOP. 3) das folgende Problem lösen: 4) neue Variablen berechnen: 5) die nächste Iteration: GOTO 2)
12 Beispiel: das Gradienten-Verfahren 12
13 Grafische Darstellung: 13
14 Das Gradienten-Verfahren: Lineare Approximation der Zielfunktion Suchrichtung: (einfach) Konvergenz: linear (langsam) 14 Das Newton-Verfahren: Quadratische Approximation der Zielfunktion Suchrichtung: (kompliziert) Konvergenz: quadratisch (schnell) Das Marquardt-Levenberg-Verfahren: Modifikation des Newton-Verfahrens zum Garantieren einer positiv definiten Hesse-Matrix mit Suchrichtung: wenn wenn
15 Das Quasi-Newton-Verfahren: Die Hesse-Matrix wird approximiert, um die direkte Berechnung der Matrix zu vermeiden. 15 man definiert BFGS-Formel (Broyden-Fletcher-Goldfarb-Shanno): Es wird garantiert, dass die approximierte Hesse-Matrix positiv definit ist. Für die Initialisierung,, d. h. der erste Schritt wird mit dem Gradienten-Verfahren berechnet.
16 Richtungssuche (Bestimmung der Schrittlänge): 16 (Line Search) Iterative Lösung: Beim Newton-Verfahren: Beim Gradienten-Verfahren: Beim Quasi-Newton-Verfahren: Das Optimierungsproblem: suchen, damit
17 Suchstrategie (Wolfe-Bedingung): 17 1) Der Wert der Zielfunktion soll verkleinert werden: ) 2) Die Gradienten sollen relativ groß, d. h. die Zielfunktion wird nicht mehr absteigen. Es gibt, und
18 Grafische Darstellung: 18
19 Praktische Implementierung der Richtungssuche 19 Quadratische Approximation: Zum Finden von bei Minimierung von, muss diese Funktion konvex sein, also muss. Weil dann liegt der Minimumpunkt bei Die Parameter a, b, c werden durch die Randbedingungen, also bei und ermittelt. Hierbei ist eine geschätzte Obergrenze (normalerweise benutzt man ). Es gilt: α 0 =1
20 Praktische Implementierung der Richtungssuche 20 Daraus ergibt sich und somit Grafische Darstellung:
21 Praktische Implementierung der Richtungssuche 21 Wenn, nimmt die Funktion signifikant ab. In diesem Fall soll ein Vollschritt genutzt werden, also. Wenn, wird der Parameter. Somit ist konvex und eine Schrittlänge wird berechnet. Der entsprechende Funktionswert wird dann ausgewertet. Wenn die Wolfe-Bedingung erfüllt ist, wird akzeptiert und damit erhält man den neuen Punkt. Wenn aber die Wolfe-Bedingung nicht erfüllt ist, wird neue rechte Grenze definiert. als
22 Praktische Implementierung der Richtungssuche 22 Im Intervall wird wieder eine quadratische Funktion für die Approximation von erstellt und mit dieser Berechnungsweise ein neuer Schrittfaktor gesucht. Das Intervall wird von Iteration zu Iteration kleiner. In Iteration l gibt es Da bei einem kleinen die Funktion abnimmt, kann man immer eine geeignete Schrittlänge finden, damit der Funktionswert verbessert wird.
23 Beispiel: Optimierung eines industriellen Festbett-Reaktors 23 Rohstoffe: Ethanol CH 3 CH 2 OH und Sauerstoff O 2 Produkt: Ethanal CH 3 CHO, 6000 t/a Katalysator: Silber-Netze, 200 kg Reaktion: Verbrauch des Rohstoffs für CH 3 CHO für 1 kg Produkt: CO CH 3 CH 2 OH + O 2 Ethanol (kg) CO 2 = CH 3 COOH Ethanal (kg) Theoretisch: = 1,0455 Praktisch: = 1,17 Verlust: = 0,1245 kg/kg (750 t/a) Ziel der Optimierung: Wichtige Einflussfaktoren: Reaktionstemperatur T: C Durchfluss des Feedstroms F: 1,0-3,0 t/h Aktivität des Katalysators
24 Fließbild eines Prozesses zur Produktion von Ethanal 24
25 Prozessmodellierung 25 Es wird eine Funktion mit der Least-Squares-Methode erzeugt. Weil nicht messbar ist, wird es zunächst konstant angenommen: Normalisierung der Variablen: Mit einer Gruppe Messdaten (Experiment oder Betriebsprotokoll) bekommt man ein Modell: Das Optimierungsproblem: Die Lösung: C t/h
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
Optimale Steuerung 1
Optimale Steuerung 1 Kapitel 5: Eindimensionale Nichtlineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Beispiel: Optimierung des Rohrleitungsdurchmessers für den
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren
Optimale Steuerung 1 Prozessoptimierung 1
Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung
Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren
Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren
12. Potentialflächen und Optimierung
Dr. Jens Döbler Computeranwendung in der Chemie Informatik für Chemiker(innen) 12. Potentialflächen und Optimierung Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL12 Folie
Optimale Steuerung 1
Optimale Steuerung 1 Kapitel 7: Nichtlineare Optimierung beschränkter Probleme Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Optimierungsprobleme mit Nebenbedingungen: Allgemeine
Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme
Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh ([email protected]) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es
6.8 Newton Verfahren und Varianten
6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)
NICHTRESTRINGIERTE OPTIMIERUNG
3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen
Das Trust-Region-Verfahren
Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein
Das Gradientenverfahren
Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren
Newton-Verfahren für ein Skalarfunktion
Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren
(d) das zu Grunde liegende Problem gut konditioniert ist.
Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass
Numerische Ableitung
Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:
Nichtlineare Gleichungssysteme
Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei
Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)
Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung
Ausgleichsproblem. Definition (1.0.3)
Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst
Inexakte Newton Verfahren
Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n
Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren
Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den
Optimieren unter Nebenbedingungen
Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht
Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.
3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)
Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung
Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung 18.3.14-20.3.14 Dr. Florian Lindemann Moritz Keuthen, M.Sc. Technische Universität München Garching, 19.3.2014 Kursplan Dienstag, 18.3.2014
Nullstellen von algebraischen Gleichungen
Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung
Fixpunkt-Iterationen
Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip
Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016
Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b
5 Numerische Mathematik
6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul
Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage
Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker
Nichtlineare Gleichungen, mehrere Unbekannte
Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,
Inhalt Kapitel I: Nichtlineare Gleichungssysteme
Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren
Optimierung mit Matlab
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Optimierung mit Matlab 1 Optimierungsaufgaben Die allgemeine Aufgabenstellung der Optimierung besteht darin,
18.4 Das Newton-Verfahren
18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift
Nichtlineare Gleichungssysteme
Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung
Mathematik für Wirtschaftswissenschaftler
Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,
Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57
Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5
Nelder-Mead Kriging-Verfahren NEWUOA
9 Ableitungsfreie Optimierung/Direkte Suchverfahren umfasst Verfahren zu min x R n f (x), die nur ein Orakel 0. Ordnung (nur Funktionswerte) benötigen. Sie werden in der Praxis oft eingesetzt, weil Funktionen
Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme
Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te
Teil II. Nichtlineare Optimierung
Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene
Nichtlineare Optimierung ohne Nebenbedingungen
Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt
Modulprüfung Numerische Mathematik 1
Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel
Übung 5, Analytische Optimierung
Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =
Der CG-Algorithmus (Zusammenfassung)
Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine
Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)
Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren
Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010
Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y
Globale Newton Verfahren
Betrachten: System von n nichtlinearen Gleichungen: F : D R n, F C 1 D Gesucht: x D, sodass F x =0. Vorher: Bedingungen für Startwert wie z.b. x x 0 2 / garantieren die Konvergenz des lokalen Newton-Verfahrens
Innere-Punkt-Methoden
Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction
6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme
6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear
Kapitel 8: Suche nach Nullstellen und Extremwerten
Kapitel 8: Suche nach Nullstellen und Extremwerten Nullstellensuche (root finding) Einfachste Variante: Suche Nullstelle(n) einer 1D-Funktion: f(x) = 0 (1) Dies umfaßt bereits scheinbar andere Fälle, z.b.
Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben
Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Patrick Knapp Berichtseminar zur Bachelorarbeit Universität Konstanz 14.12.2010 Einleitung Aufgabenstellung min J(y,
Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester
Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................
KAPITEL 3. Konvexe Funktionen
KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line
Extremwerte von Funktionen mehrerer reeller Variabler
Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel
Kombinatorische Optimierung
Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales
Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.
Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,
Numerisches Lösen von Gleichungen
Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x
KAPITEL 5. Nichtlineare Gleichungssysteme
KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld
Mathematik für Wirtschaftswissenschaftler
Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of
Mathematik anschaulich dargestellt
Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen)
Fachbereich Grundlagenwissenschaften Prof. Dr. H. Dathe Numerische Mathematik/Optimierung Eine Einführung in Theorie und Verfahren Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen) linprog Lineare
FK WMS: Wirtschaftsmathematik 2, Einheit 7/8
FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 [email protected] http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.
Musterlösung zu Blatt 1
Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z
Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,
Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.
Diplom VP Numerik 21. März 2005
Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie
Numerische Optimierung
Numerische Optimierung 6 In den ersten fünf Kapiteln dieses Skriptes haben wir Grundaufgaben der biomedizinischen Bildgebung eingeführt, im Sinne von Variationsmethoden modelliert und ihre Analyse in geeigneten
mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh
. Geodätische Woche 29 Quadratische Programmierung mit Ungleichungen als Restriktionen 1 Lutz Roese-Koerner und Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie
38 Iterative Verfahren für lineare Gleichungssysteme
38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige
6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode
6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,
Konvexe Optimierungsprobleme
von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel
2 Extrema unter Nebenbedingungen
$Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen
5 Interpolation und Approximation
5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)
Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =
Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls
Kurvenanpassung mit dem SOLVER
1 Iterative Verfahren (SOLVER) Bei einem iterativen Verfahren wird eine Lösung durch schrittweise Annäherung gefunden. Der Vorteil liegt in der Verwendung einfacher Rechenoperationen und darin, dass der
Kapitel 2. Mathematik für Mikroökonomie
Kapitel Mathematik für Mikroökonomie 1 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren
Numerik und Simulation in der Geoökologie
1/49 Rekapitulation Das Euler-Verfahren für ODE-IVP Eigenschaften von Einschrittverfahren Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 2 WS 2007/2008 2/49 Rekapitulation Das Euler-Verfahren
( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )
64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den
1. Anfangswertprobleme 1. Ordnung
1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger
TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017
TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen
Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015
Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix
Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9
Bildverarbeitung: Kontinuierliche Energieminimierung D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Idee Statt zu sagen, wie die Lösung geändert werden muss (explizite Algorithmus, Diffusion),
Mathematische Probleme lösen mit Maple
Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >
Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen
Inhalt Problemstellung und Überblick Allgemeine Problemstellung und Terminologie Überblick über spezielle Klassen von Optimierungsproblemen 40: 40 [40,40] 2.1 Das Optimierungsproblem in allgemeiner Form
Mathematik für Wirtschaftswissenschaftler
Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney
