Studientag zur Algorithmischen Mathematik
|
|
|
- Karin Michel
- vor 9 Jahren
- Abrufe
Transkript
1 Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012
2 Aufgabe 5 Bestimmen Sie alle Extrema von f (x, y, z) = x + y z über der Menge K := {(x, y, z) R 3 x 2 + 2y 2 = 1 und 4x = 3z}.
3 Aufgabe 5
4 Aufgabe 6 Lösen Sie das folgende Maximierungsproblem: max x 3 + y 3 unter (x 1) 2 y y 3.
5 Aufgabe 6
6 Aufgabe 6
7 Aufgabe 7 Untersuchen Sie, welche der folgenden Funktionen konvex über dem angegebenen Definitionsbereich sind. In c) seien f 1 : R R und f 2 : R R konvexe Funktionen. 1. f : R 3 R mit f (x, y, z) := x 2 + 3y 2 + 9z 2 2xy + 6yz + 2xz. 2. f : R n R mit f (x) := x. 3. f : R 2 R mit f (x, y) = xf 1 (x) + yf 2 (y).
8 Aufgabe 8 Führen Sie drei Iterationen der Fibonaccisuche zur Bestimmung des Minimums der Funktion f : R R mit auf dem Intervall [0, 13] durch. f (x) := x 2 12x
9 Aufgabe 9 Führen Sie für das folgende Optimierungsproblem min ( ) x ( 1 2 ) ( x ( y 2 5 y) + 2 ( x 1) y). je zwei Schritte der folgenden Verfahren durch, jeweils startend bei (0, 0): 1. Verfahren des steilsten Abstiegs, 2. Koordinatensuche, 3. Newton-Verfahren.
10 Aufgabe 9 Führen Sie für das folgende Optimierungsproblem min ( ) x ( 1 2 ) ( x ( y 2 5 y) + 2 ( x 1) y). je zwei Schritte der folgenden Verfahren durch, jeweils startend bei (0, 0): 1. Verfahren des steilsten Abstiegs, 2. Koordinatensuche, 3. Newton-Verfahren. Der Gradient ist f (x, y) = (x, y) ( ) + (2, 1). Wir starten jeweils im Punkt (x 0, y 0 ) = (0, 0).
11 Aufgabe 9 steilster Abstieg Die Abstiegsrichtung ist jeweils f (x i, y i ).
12 Aufgabe 9 steilster Abstieg Die Abstiegsrichtung ist jeweils f (x i, y i ). f (0, 0) = (2, 1). Ermittle Schrittweite durch Minimieren von f ((x, y) + s( 2, 1)) = s 2 (2, 1) ( ) ( 2 1) s(2, 1) ( 2 1) = 17s 2 5s.
13 Aufgabe 9 steilster Abstieg Die Abstiegsrichtung ist jeweils f (x i, y i ). f (0, 0) = (2, 1). Ermittle Schrittweite durch Minimieren von f ((x, y) + s( 2, 1)) = s 2 (2, 1) ( ) ( ( 2 5 1) s(2, 1) 2 1) = 17s 2 5s. Diese Funktion wird minimal für s = 5 34.
14 Aufgabe 9 steilster Abstieg Die Abstiegsrichtung ist jeweils f (x i, y i ). f (0, 0) = (2, 1). Ermittle Schrittweite durch Minimieren von f ((x, y) + s( 2, 1)) = s 2 (2, 1) ( ) ( ( 2 5 1) s(2, 1) 2 1) = 17s 2 5s. Diese Funktion wird minimal für s = (x 1, y 1 ) = (0, 0) + s( 2, 1) = ( 5 17, 5 34).
15 Aufgabe 9 steilster Abstieg Die Abstiegsrichtung ist jeweils f (x i, y i ). f (0, 0) = (2, 1). Ermittle Schrittweite durch Minimieren von f ((x, y) + s( 2, 1)) = s 2 (2, 1) ( ) ( ( 2 5 1) s(2, 1) 2 1) = 17s 2 5s. Diese Funktion wird minimal für s = (x 1, y 1 ) = (0, 0) + s( 2, 1) = ( 5 17, 5 34). f ( 5 17, 5 34 ) = ( 5 17, 5 34 ) ( ) (2, 1) = ( 14 17, ) = ( 1, 2).
16 Aufgabe 9 steilster Abstieg Die Abstiegsrichtung ist jeweils f (x i, y i ). f (0, 0) = (2, 1). Ermittle Schrittweite durch Minimieren von f ((x, y) + s( 2, 1)) = s 2 (2, 1) ( ) ( ( 2 5 1) s(2, 1) 2 1) = 17s 2 5s. Diese Funktion wird minimal für s = (x 1, y 1 ) = (0, 0) + s( 2, 1) = ( 5 17, 5 34). f ( 5 17, 5 34 ) = ( 5 17, 5 34 ) ( ) (2, 1) = ( 14 17, ) = ( 1, 2). Minimiere die Funktion f entlang des Strahls (x 1, y 1 + s( 1, 2): ( 5 17 s, s) ( ) ( s ) ( (2, 1) 5 17 s ) 34 +2s = s 13s s
17 Aufgabe 9 steilster Abstieg Die Abstiegsrichtung ist jeweils f (x i, y i ). f (0, 0) = (2, 1). Ermittle Schrittweite durch Minimieren von f ((x, y) + s( 2, 1)) = s 2 (2, 1) ( ) ( ( 2 5 1) s(2, 1) 2 1) = 17s 2 5s. Diese Funktion wird minimal für s = (x 1, y 1 ) = (0, 0) + s( 2, 1) = ( 5 17, 5 34). f ( 5 17, 5 34 ) = ( 5 17, 5 34 ) ( ) (2, 1) = ( 14 17, ) = ( 1, 2). Minimiere die Funktion f entlang des Strahls (x 1, y 1 + s( 1, 2): ( 5 17 s, s) ( ) ( s ) ( (2, 1) 5 17 s ) 34 +2s = s 13s s Diese quadratische Funktion ist minimal für s = Also ist der dritte (und in diesem Aufgabenteil letzte) Iterationspunkt ( , ) = (200, 75) (0.4525, ).
18 Aufgabe 9 Koordinatensuche Wir starten wieder in (0, 0) und nehmen als Abstiegsrichtung (1, 0), nämlich die x-achse.
19 Aufgabe 9 Koordinatensuche Wir starten wieder in (0, 0) und nehmen als Abstiegsrichtung (1, 0), nämlich die x-achse. Wir müssen also die Funktion f ((0, 0) + s(1, 0)) = s 2 + 2s minimieren. Durch Nullsetzen der Ableitung erhalten wir als optimale Schrittweite s = 1.
20 Aufgabe 9 Koordinatensuche Wir starten wieder in (0, 0) und nehmen als Abstiegsrichtung (1, 0), nämlich die x-achse. Wir müssen also die Funktion f ((0, 0) + s(1, 0)) = s 2 + 2s minimieren. Durch Nullsetzen der Ableitung erhalten wir als optimale Schrittweite s = 1. Der zweite Iterationspunkt ist also (x 1, y 1 ) = ( 1, 0).
21 Aufgabe 9 Koordinatensuche Wir starten wieder in (0, 0) und nehmen als Abstiegsrichtung (1, 0), nämlich die x-achse. Wir müssen also die Funktion f ((0, 0) + s(1, 0)) = s 2 + 2s minimieren. Durch Nullsetzen der Ableitung erhalten wir als optimale Schrittweite s = 1. Der zweite Iterationspunkt ist also (x 1, y 1 ) = ( 1, 0). Nun suchen wir in y-richtung, minimieren also die Funktion f (( 1, 0) + s(0, 1)) = 5s 2 3s 1.
22 Aufgabe 9 Koordinatensuche Wir starten wieder in (0, 0) und nehmen als Abstiegsrichtung (1, 0), nämlich die x-achse. Wir müssen also die Funktion f ((0, 0) + s(1, 0)) = s 2 + 2s minimieren. Durch Nullsetzen der Ableitung erhalten wir als optimale Schrittweite s = 1. Der zweite Iterationspunkt ist also (x 1, y 1 ) = ( 1, 0). Nun suchen wir in y-richtung, minimieren also die Funktion f (( 1, 0) + s(0, 1)) = 5s 2 3s 1. Das Minimum wird in s = 0.3 angenommen, also ist der letzte Iterationspunkt ( 1, 0.3).
23 Aufgabe 9 Newtonverfahren Die Hessematrix ist 2 f (x, y) = ( ). Für den Newton-Schritt (x i+1, y i+1 ) = (x i, y i ) ( 2 f (x i, y i ) ) 1 f (xi, y i ) müssen wir diese invertieren. Die Inverse ist 1 4 Der erste Newton-Schritt lautet also (x 1, y 1 ) = (0, 0) 1 2 ( ( ) ( ) ( ) 2 4 = ) ( = ) Da der Gradient an dieser Stelle verschwindet, haben wir den Minimalpunkt ( 4, 3 2 ) gefunden und brauchen keine weitere Iteration.
24 Aufgabe 9 Newtonverfahren Die Hessematrix ist 2 f (x, y) = ( ). Für den Newton-Schritt (x i+1, y i+1 ) = (x i, y i ) ( 2 f (x i, y i ) ) 1 f (xi, y i ) müssen wir diese invertieren. Die Inverse ist 1 4 Der erste Newton-Schritt lautet also (x 1, y 1 ) = (0, 0) 1 2 ( ( ) ( ) ( ) 2 4 = ) ( = ) Da der Gradient an dieser Stelle verschwindet, haben wir den Minimalpunkt ( 4, 3 2 ) gefunden und brauchen keine weitere Iteration. Der Newtonalgorithmus löst die quadratische Approximation exakt. Bei einer quadratischen Funktion findet er also stets in einem Schritt das Minimum.
25 Aufgabe
Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line
Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2
Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung
Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme
Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh ([email protected]) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren
Übung 5, Analytische Optimierung
Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =
Das Gradientenverfahren
Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1
Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =
Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls
Optimieren unter Nebenbedingungen
Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht
Modulprüfung Numerische Mathematik 1
Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel
Aufgabensammlung zum UK Mathematische Optimierung
Aufgabensammlung zum UK Mathematische Optimierung Mehrdimensionale Analysis Stetigkeit. Man bestimme den natürlichen Definitionsbereich D f der folgenden Funktionen f: a) f(x, y) = ln(x y ) b) f(x, y)
Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =
Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt
Extrema multivariater Funktionen
Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater
Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1
1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.
Lagrange-Multiplikatoren
Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i
Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12
Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
Multivariate Analysis
Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09
................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar
Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung
TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen
Optimale Steuerung 1
Optimale Steuerung 1 Kapitel 6: Nichtlineare Optimierung unbeschränkter Probleme Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Beispiel: Parameteranpassung für Phasengleichgewicht
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass
Musterlösung zu Blatt 1
Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:
Monotonie, Konkavität und Extrema
Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1
Monotonie, Konkavität und Extrema
Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:
6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode
6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Das Trust-Region-Verfahren
Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein
Nachklausur Analysis 2
Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra
3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z
R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des
Überblick. Kapitel 7: Anwendungen der Differentialrechnung
Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Extremwertrechnung in mehreren Veränderlichen
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung
14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert
14 Optimierung unter Nebenbedingungen 14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert [1] Lösen sie die folgenden Probleme, indem Sie diese auf ein univariates Problem zurückführen. Zeigen
Lösungsskizzen zur Nachklausur
sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass
Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung
TU München Lehrstuhl Mathematische Optimierung Prof. Dr. Michael Ulbrich Dipl.-Math. Florian Lindemann Wintersemester 008/09 Blatt 1 Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Für die
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion
Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt
Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17
Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und
Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt
Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?
6.8 Newton Verfahren und Varianten
6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)
1 Übungsaufgaben zu Kapitel 1
Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:
Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. Aufgabe 1. Zeigen Sie, dass für alle k, n N gilt: 6 Punkte
Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL4 6 Punkte Aufgabe. Zeigen Sie, dass für alle k, n N gilt: (k + ) teilt ((k + ) n ). Wir zeigen Sie Behauptung per Induktion
KAPITEL 3. Konvexe Funktionen
KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn
Extrema mit Nebenbedingungen
Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 25. November 2010 1 Differentialrechnung Kurvendiskussion Trigonometrische Funktionen Bedeutung der Ableitung in
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration
C. Eicher Analysis Study Center ETH Zürich HS Extremwerte
C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der
Nichtlineare Optimierungsprobleme mit Komplexität
Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-
Teil 6. Differentialrechnung mehrerer Veränderlicher
Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält
II. Nichtlineare Optimierung
II. Nichtlineare Optimierung 1. Problemstellungen 2. Grundlagen 3. Probleme ohne Nebenbedingungen 4. Probleme mit Nebenbedingungen Theorie 5. Probleme mit Nebenbedingungen Verfahren H. Weber, FHW, OR SS06,
Mehrdimensionale Differentialrechnung Übersicht
Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph
Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.
Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =
Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester 204 24.09.204 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................
Übungsaufgaben zur Kurvendiskussion
SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte
3.2 Funktionsuntersuchungen mittels Differentialrechnung
3. Funktionsuntersuchungen mittels Differentialrechnung 46 3. Funktionsuntersuchungen mittels Differentialrechnung In diesem Abschnitt betrachten wir Funktionen f: D, welche je nach Bedarf zumindest ein-
z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix
Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i
a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n
Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen
Nelder-Mead Kriging-Verfahren NEWUOA
9 Ableitungsfreie Optimierung/Direkte Suchverfahren umfasst Verfahren zu min x R n f (x), die nur ein Orakel 0. Ordnung (nur Funktionswerte) benötigen. Sie werden in der Praxis oft eingesetzt, weil Funktionen
Seminarvortrag: Trust-Region-Verfahren
Seminarvortrag: Trust-Region-Verfahren Helena Klump Universität Paderborn Dezember 2012 Helena Klump 1 / 22 Trust-Region-Verfahren Problemstellung Sei die Funktion f : R n R gegeben. Betrachtet wird das
Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,
Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung
Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer
Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester
Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................
Kurvendiskussion für Funktionen mit einer Variablen
Kurvendiskussion für Funktionen mit einer Variablen Unter der Kurvendiskussion einer Funktionsgleichung versteht man die Zusammenstellung der wichtigsten Eigenschaften ihres Bildes mit anschließender Zeichnung.
Lineare Klassifikationsmethoden
Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung
Aufgabe 1 (12 Punkte)
Techn. Mechanik & Fahrzeugdynamik Optimierung Prof. Dr.-Ing. habil. D. Bestle 7. September 8 Familienname, Vorname Matrikel-Nummer Prüfung Optimierung dynamischer Systeme Fachrichtung. Die Prüfung umfasst
Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 7 3.9.7 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................
Wirtschaftsmathematik II
WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen
Regression IV: Anpassung mit nichtlinearen Funktionen. Teil B: Nicht linearisierbare Modelle. -Fortsetzung-
Regression IV: Anpassung mit nichtlinearen Funktionen Teil B: Nicht linearisierbare Modelle -Fortsetzung- T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung 13.06.2018 Vorlesung
6. Numerische Lösung des. Nullstellenproblems
6. Numerische Lösung des Nullstellenproblems 1 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt
Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren
Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren
Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x)
3.2.4. Analyse von Funktionen Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. Begriffe: Die Funktion f hat in x 0 I eine stationäre Stelle,
