Algorithmen und Datenstrukturen
|
|
|
- Erwin Ackermann
- vor 7 Jahren
- Abrufe
Transkript
1 1 Algorithmen und Datenstrukturen Wintersemester 2016/ Vorlesung Kürzeste Wege & Dijkstras Algorithmus Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I
2 Wozu kürzeste Wege? 2
3 3-8 Modellierung des Problems Routenplanung Straßenkreuzung Knoten Straßenabschnitt zwei entgegengerichtete Kanten Einbahnstraßenabschnitt in Fahrtrichtung gerichtete Kante Fahrtzeit für Abschnitt e Kantengewicht w(e) 0 Straßennetz gerichteter, gewichteter und zusammenhängender Graph G(V, E) Start Knoten s V Ziel Knoten t V Start-Ziel-Route s-t-weg, d.h. Folge von Kanten (s, v 1 ), (v 1, v 2 ),..., (v k, t) in G
4 Wozu kürzeste Wege? 4-3
5 Wozu kürzeste Wege? (II) 5
6 6-4 Was ist das Problem? Eingabe: gerichteter, zusammenhängender Graph G = (V, E) mit nicht-negativen Kantengewichten w : E Q + 0, a 6 b Knoten s und t 3 s Ausgabe: c 7 t kürzester s-t-weg W in G, d.h. e W w(e) minimal. Darstellung durch Vorgänger-Zeiger π: für jeden Knoten v sei π(v) V {nil} Vorgänger von v auf kürzestem s-v-weg.
7 6-6 Was ist das Problem? Eingabe: gerichteter, zusammenhängender Graph G = (V, E) mit nicht-negativen Kantengewichten w : E Q + 0, a 6 b Knoten s und t 3 s Ausgabe: } für alle {{ t V} c 7 t kürzester s-t-wege W in G, d.h. t e W w(e) minimal. Darstellung durch Vorgänger-Zeiger π: für jeden Knoten v sei π(v) V {nil} Vorgänger von v auf kürzestem s-v-weg. Nebenbemerkung: Analoge Berechnungsverfahren?
8 7-6 Dijkstra BFS mit Gewichten Dijkstra(WeightedGraph G = (V, E; w), Vertex s) // Gewichtung Initialize(G, s) Q = new PriorityQueue(V, d) while not Q.Empty() do u = Q.ExtractMin() foreach v Adj[u] do u.color = black if v.d > u.d + w(u, v) then v.color = gray v.d = u.d + w(u, v) v.π = u Q.DecreaseKey(v, v.d) BFS(Graph G, Vertex s) Initialize(G, s) Q = new Queue() Q.Enqueue(s) while not Q.Empty() do u = Q.Dequeue() foreach v Adj[u] do if v.color == white then v.color = gray v.d = u.d + 1 v.π = u Q.Enqueue(v) u.color = black
9 8-1 Dijkstra ein Beispiel Dijkstra(WeightedGraph G, Vertex s) Initialize(G, s) Q = new PriorityQueue(V, d) while not Q.Empty() do u = Q.ExtractMin() foreach v Adj[u] do u.color = black if v.d > u.d + w(u, v) then v.color = gray v.d = u.d + w(u, v) v.π = u Q.DecreaseKey(v, v.d) s 0 8 a 5 c Initialize(Graph G, Vertex s) foreach u V do u.color = white u.d = u.π = nil s.color = gray s.d = 0 t 6 b
10 8-2 Dijkstra ein Beispiel Dijkstra(WeightedGraph G, Vertex s) Initialize(G, s) Q = new PriorityQueue(V, d) while not Q.Empty() do u = Q.ExtractMin() foreach v Adj[u] do u.color = black if v.d > u.d + w(u, v) then v.color = gray v.d = u.d + w(u, v) v.π = u Q.DecreaseKey(v, v.d) s 0 8 a 5 c Initialize(Graph G, Vertex s) foreach u V do u.color = white u.d = u.π = nil s.color = gray s.d = 0 9 t 6 b
11 Dijkstra ein Beispiel Dijkstra(WeightedGraph G, Vertex s) Initialize(G, s) Q = new PriorityQueue(V, d) while not Q.Empty() do u = Q.ExtractMin() foreach v Adj[u] do u.color = black if v.d > u.d + w(u, v) then v.color = gray v.d = u.d + w(u, v) v.π = u Q.DecreaseKey(v, v.d) Kürzester-Wege-Baum mit Wurzel s s 0 8 a 5 c Initialize(Graph G, Vertex s) foreach u V do u.color = white u.d = u.π = nil s.color = gray s.d = 0 t 6 b 8-2
12 9-1 Dijkstra die Laufzeit Dijkstra(WeightedGraph G, Vertex s) Initialize(G, s) Q = new PriorityQueue(V, d) while not Q.Empty() do u = Q.ExtractMin() foreach v Adj[u] do u.color = black if v.d > u.d + w(u, v) then v.color = gray v.d = u.d + w(u, v) v.π = u Q.DecreaseKey(v, v.d) Abk. für O(V ) O( ) Zeit V genau V mal Wie oft wird Relax aufgerufen? Für jeden Knoten u V (out-) genau Adj[u] = deg u mal, also insg. Θ(E) mal. Also wird DecreaseKey O(E) mal aufgerufen.
13 10 - Dijkstra die Laufzeit Satz. Gegeben ein Graph G = (V, E), läuft Dijstras Alg. in O(V T ExtractMin (V ) + E T DecreaseKey (V )) Zeit. Implementierung einer PriorityQueue T ExtractMin (n) T DecreaseKey (n) T Dijkstra (V, E) als unsortiertes Feld O(n) O(1) O(V 2 +E) als Heap O(log n) O(log n) O((E+V ) log V ) als Fibonacci-Heap ) Das geht, weil O(log n) amortisiert O(1) amortisiert O(E +V logv ) im Worst-Case! wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz ( Direktzugriff) Korollar. In einem Graphen G = (V, E; w) mit w : E Q 0 kann man in O(E + V log V ) Zeit die kürzesten Wege von einem zu allen Knoten berechnen (SSSP-Problem).
14 11 - Dijkstra die Korrektheit siehe [CLRS], Kapitel 24.3., Satz 24.6: Korrektheisbeweis mittels Schleifeninvariante. oder MIT-Vorlesungsmitschnitt von Erik Demaine:
15 12 - Wozu kürzeste Wege? (III) SMSen GHI MNO DEF MNO PQRS 10:21 für T9 MNO ABC TUV GHI JKL
16 13 - Modellierung SMSen J 0,00001 T P W 0,001 0,03 0,02 K 0,03 0,15 L 0,00001 U V 0, ,02 Q R S 0, , ,03 X Y Z 0,001 0,010 0,020 Graph: Knoten ˆ= Buchstaben Kanten ˆ= aufeinanderfolgende Buchst. Gewichte ˆ= Wahrscheinlichkeiten w / Häufigkeiten Gesucht: Weg P von nach mit größter WK (= e P w(e)) Lösung: dynamisches Programmieren... [kommt noch!]
17 14 - Literatur A note on two problems in connexion with graphs. Edsger Wybe Dijkstra: Numerische Mathematik (1) 1959, S Lesen Sie mal rein! Das Geheimnis des kürzesten Weges. Ein mathematisches Abenteuer. Peter Gritzmann und René Brandenberg: Springer-Verlag, 3. Aufl., Beide Werke sind über die UB frei zugänglich und über unsere WueCampus-Seite verlinkt! Edsger Wybe Dijkstra 1930 in Rotterdam 2002 in Nuenen, Niederlande
18 15 - Kürzeste Wege nach Dijkstra nicht-neg. Kantengew. Dijkstra O(E + V log V ) ungewichteter Graph Breitensuche O(E + V ) azyklischer Graph topol. Sortieren O(E + V ) negative Kantengew. Bellman-Ford O(E V ) für alle Knotenpaare V Dijkstra O(V (E + V log V )) + negative Kantengew. Floyd-Warshall O(V 3 ) Johnson O(V (E + V log V )) k kürzeste s-t-wege Eppstein O(k + E + V log V ) Nächstes Mal! Vorlesung Alg. Graphentheorie (?)
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Graphen: Datenstrukturen und Algorithmen
Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.
4. Kreis- und Wegeprobleme Abstände in Graphen
4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume
Fachbereich IV, Informatik Softwarepraktikum C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Wintersemester 2004/2005 Dokumentation Algorithmen zur Lösung von MST - Problemen Nicolas
Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.
Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University
Algorithmen und Datenstrukturen Graphen - Einführung
Algorithmen und Datenstrukturen Graphen - Einführung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Definition / Eigenschaften Anwendungen Repräsentation
Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik
Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus
9. Übung Algorithmen I
INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung
Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.
Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a
2. Übungsblatt zu Algorithmen II im WS 2016/2017
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
Algorithmen und Datenstrukturen Kapitel 10
Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann [email protected] 6. Januar 2016 Frank Heitmann [email protected] 1/8 Flüsse Graphen Grundlagen Definition
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen
Routing Algorithmen. Begriffe, Definitionen
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 202/3 24. Vorlesung Amortisierte Analyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Hash-Tabellen Frage: Ziel: Problem: Lösung: Wie groß macht man
Effiziente Algorithmen I
H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug
11.1 Grundlagen - Denitionen
11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die
Vorlesung 4 BETWEENNESS CENTRALITY
Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers
Graphalgorithmen 2 Oleksiy Rybakov 3. Juni 2015 Betreuer: Tobias Werth, Daniel Brinkers 1 / 40 Inhaltsverzeichnis 1 Minimale Spannbäume und Datenstrukturen 2 Kürzeste Wege 3 Spezielle Graphen 2 / 40 Minimale
Erinnerung VL
Erinnerung VL 30.05.2016 Radix-Sort, Abschluss Sortieren Prioritätslisten: Warteschlange mit Prioritäten deletemin: kleinstes Element rausnehmen insert: Element einfügen Binäre Heaps als Implementierung
Datenstrukturen. Mariano Zelke. Sommersemester 2012
Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen
Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen
. Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter
Fully dynamic algorithms for the single source shortest path problem.
Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem
SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung
SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung Martin Dietzfelbinger Juni/Juli 2011 FG KTuEA, TU Ilmenau Effiziente Algorithmen SS11 Kapitel 5 Kapitel 5: Dynamische Programmierung Typische
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Wdhlg.: Dijkstra-Algorithmus I Bestimmung der
Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung
Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Viertes
23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108
23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf
Graphalgorithmen Knotentraversierung Breitensuche, (Breadth first search) Erst alle Knoten im Abstand i von s, dann i+1,...
Graphalgorithmen Knotentraversierung Breitensuche, (Breadth first search) Erst alle Knoten im Abstand i von s, dann i+,... bfs(knoten s) { Besuche jeden Nachfolger s' von s; Für jeden Nachfolger s' bfs
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
3. Musterlösung. Problem 1: Boruvka MST
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 3: Minimal aufspannende Bäume und Matroide Minimal aufspannende
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
DATENSTRUKTUREN UND ALGORITHMEN
DATENSTRUKTUREN UND ALGORITHMEN 2 Ist die Datenstruktur so wichtig??? Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen Dünn besetzte Graphen und Matrizen bilden
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
11. Übungsblatt zu Algorithmen I im SS 2010
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 11. Übungsblatt zu Algorithmen I im SS 2010 http://algo2.iti.kit.edu/algorithmeni.php
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum
Schnelle und genaue Routenplanung
Sanders/Schultes: Routenplanung 1 Schnelle und genaue Routenplanung Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe Uni für Einsteiger, 22. November
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
Algorithmen und Datenstrukturen
Lehrstuhl für Informatik I Algorithmen und Datenstrukturen Wintersemester 2013/14 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmiertutorium: Alexander Wolff (E29) Krzysztof Fleszar (E13)
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.
Single Source Sortest Path Negative Kreise All-Pair Shortest Path Problem Minimum Mean Cycle Zusammenfassung. Shortest Paths
Shortest Paths Label Correcting Algorithms Florian Reitz Universität Trier Fachbereich IV Fach Informatik Seminar Netzwerkalgorithmen WS 2005/2006 Einleitung: Problemübersicht Eben: Schnelle Algorithmen
Minimal spannende Bäume
http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen
Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09
Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
Algorithmische Graphentheorie
Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,
Dynamische Programmierung. Problemlösungsstrategie der Informatik
als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung
Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm [email protected]
Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm [email protected] Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische
Die k kürzesten Wege in gerichteten Graphen
Die k kürzesten Wege in gerichteten Graphen Marc Benkert Wintersemester 001/00 1 Einführung 1.1 Problemstellung In einem gerichteten, gewichteten Graphen G = (V, E) sollen die k kürzesten Wege zu zwei
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Flüsse, Schnitte, bipartite Graphen
Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten
- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:
6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)
Diskrete Strukturen Kapitel 1: Einleitung
WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung
Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling
Maximale s t-flüsse in Planaren Graphen
Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Grundlagen der Informatik
1 Vorlesung Grundlagen der Informatik Dr. Frank Sausen Skript und Folien: Prof. Dr. Wolfgang Ertel 6. Oktober 2008 Hochschule Ravensburg Weingarten Technik Wirtschaft Sozialwesen c W. Ertel 2 Inhaltsverzeichnis
κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).
5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende
5.4 Das Rucksackproblem
Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung
Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman
12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang
12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne
Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen
Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten
Sortierte Folgen 250
Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:
Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:
Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013
Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Informatik I Effiziente Algorithmen und wissensbasierte Systeme Seminarausarbeitung Entwurf und Analyse von Datenstrukturen
Referat zum Thema Huffman-Codes
Referat zum Thema Huffman-Codes Darko Ostricki Yüksel Kahraman 05.02.2004 1 Huffman-Codes Huffman-Codes ( David A. Huffman, 1951) sind Präfix-Codes und das beste - optimale - Verfahren für die Codierung
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Algorithmen und Datenstrukturen
1 Lehrstuhl für Informatik I Algorithmen und Datenstrukturen Wintersemester 2014/15 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Alexander Wolff (E29) Krzysztof Fleszar (E13) Alexej Grigorjew
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in
