Induktion und Polarisation

Größe: px
Ab Seite anzeigen:

Download "Induktion und Polarisation"

Transkript

1 Übung 2 Abgabe: bzw Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich Induktion und Polarisation 1 Magnetfelder in Spulen (35 Pkt.) Wir betrachten zunächst einen Elektromagneten, bestehend aus einer langen Spule der Länge L mit Durchmesser D in Luft. Diese wird von einem Strom I durchflossen (siehe Abb. 1, links). Abbildung 1: (links) Spule bestehend aus N Drahtwindungen. (rechts) Ringförmiger Elektromagnet mit ferromagnetischem Kern (µ Fe 1) und Luftspalt. (a) (10 Pkt.) Berechnen Sie mit Hilfe des Ampèreschen Durchflutungsgesetzes die magnetische Flussdichte B im Inneren des Magneten. Die Stromdichte j erzeugt ein B-Feld, dessen Stärke sich aus dem Ampèreschen Gesetz ergibt B(r, t) ds = µ µ 0 j(r, t) n da. (1) A Der Magnet besitzt eine Länge L und Durchmesser D (L D) und sei eng gewickelt, so dass das Feld in seinem Inneren homogen ist. Die magnetische Flussdichte im Inneren ergibt sich nach der Auswertung des Integrals Gl. 1 entlang des geschlossenen Pfades in Abb. 1 (links). Unter den obigen Annahmen trägt nur die Integration entlang AB bei; die anderen Strecken liefern verschwindend kleine Beiträge, da die Strecke CD ins Unendliche gelegt werden kann (dort gilt B 0) und B ds = 0 entlang AD and BC ist, da B ds. Das Integral j(r, t) n d a liefert dann NI, da der Strom im gesamten Draht konstant ist. A A 1

2 Das B-Feld im Inneren der Drahtspule mit N Windungen ist proportional zum Strom im Draht und es gilt µ Luft = 1, so dass folgt B A B(r, t) ds = B x L (2) B x = µ 0 N L I. (3) (b) (4 Pkt.) Skizzieren Sie das B-Feld innerhalb und ausserhalb der Spule. Abbildung 2: Magnetfeld einer Spule in Luft (links) und einer Ringspule mit Eisenkern (rechts). Die gestrichelte Line zeigt den Integrationsweg und die grünen Linien die Feldlinien. Unter Anwendung der Rechten-Hand-Regel folgt die Richtung des Magnetfeldes. (c) (5 Pkt.) Berechnen Sie die magnetische Flussdichte B für N = 1000, L = 2 cm, I = 250 ma. Unter obigen Annahmen ist das Feld Inneren der Spule homogen und die magnetische Flussdichte lautet N B x = µ 0 L I (4) B x = 15.7 mt. (5) Wir betrachten nun einen ringförmigen Elektromagneten mit Radius r, Eisenkern µ Fe 1 und Luftspalt der Länge d (d r). Der Elektromagnet wird von einem Strom I durchflossen (Abb. 1, rechts). 2

3 (d) (9 Pkt.) Berechnen Sie die magnetische Flussdichte B im Eisenkern. Wie hoch ist die magnetische Feldstärke H im Luftspalt? Hinweis: Berücksichtigen Sie, dass die Normalkomponente des B-Feldes an den Materialgrenzen kontinuierlich ist. Das B-Feld im Luftspalt der Breite d ist homogen für d r und die Normalkomponente B z,fe/air ist kontinuierlich/konstant im Luftspalt. (Die Randbedingungen an Grenzflächen werden in einer späteren Vorlesung detailliert besprochen.) Daraus folgt B z,fe = B z,air => µ Fe H z,fe = H z,air. Die Auswertung des Linienintegrals für die magnetische Feldstärke H für einen Pfad im Eisenkern ergibt das H air -Feld im Luftspalt Hds = H Fe (2πr d) + dh air (6) ( ) 2πr d = + d H air (7) µ Fe Nun gilt B z,fe = B z,air = µ 0 H z,air. H air = (e) (4 Pkt.) Skizzieren Sie das Magnetfeld im Luftspalt. Siehe Abb. 2. µ Fe NI 2πr d + µ Fe d. (8) (f) (3 Pkt.) Berechnen Sie H im Luftspalt für µ Fe =5000, N =1000, r =2 cm, I =250 ma, d=1 mm. Die Ringspule mit Eisenkern erzeugt ein Magnetfeld im Luftspalt der Stärke H air = A m 1, welches homogen und entlang e z gerichtet ist. 3

4 2 Dielektrisches Metamaterial (45 Pkt.) Die Nanotechnologie erlaubt die Herstellung von sogenannten Metamaterialien mit Eigenschaften, die in der Natur nicht vorkommen. Wir betrachten hier ein Material, das aus einem Medium mit dielektrischer Konstante ε 2 besteht, in das sphärische Partikel mit dielektrischer Konstante ε 1 eingebettet sind [siehe Abb. 3a]. Unser Ziel ist, die effektive Dielektrizitätskonstante des Metamaterials zu bestimmen. Dazu betrachten wir zunächst die Reaktion eines einzelnen Partikels mit Radius a auf ein angelegtes statisches elektrisches Feld E = E 0 n z. Wir suchen das Potential Φ innerhalb und ausserhalb des Partikels. (a) (b) (c) ε 1 ε 2 z a θ ε 1 x d z +q -q θ r r + r - E 0 ε 2 Abbildung 3: (a) Skizze eines Metamaterials bestehend aus kleinen Kugeln eingebettet in einem Matrixmaterial. (b) Einzelne dielektrische Kugel mit Radius a unter Einfluss eines externen statischen elektrischen Feldes. (c) Dipol bestehend aus zwei Ladungen ±q im Abstand d. (a) (5 Pkt.) Warum muss das Potential Φ im gesamten Raum die Laplace-Gleichung erfüllen? Das Problem enthält keinerlei freie Ladungen. Somit reduziert sich die Poisson-Gleichung Φ(r) = ρ(r) εε 0 auf die Laplace-Gleichung Φ = 0. (b) (6 Pkt.) Zeigen Sie, dass der folgende Ansatz für das Potential die Laplace-Gleichung erfüllt { Φ 1 = E 0 r cos θ + A cos θ, r > a Φ(r) = r 2 (9) Φ 2 = Br cos θ, r < a. Anwendung des Laplace-Operators in Kugelkoordinaten zeigt, dass der Ansatz die Laplace- Gleichung erfüllt. (c) (4 Pkt.) Argumentieren Sie, warum obiger Ansatz vom Azimuthalwinkel φ unabhängig sein muss. Das Problem ist rotationssymmetrisch um die z-achse. (d) (5 Pkt.) Zeigen Sie, dass das Feld in grosser Entfernung des Partikels, wie zu erwarten, gleich dem einfallenden Feld ist. Für grosse Entfernungen r gilt E(r) = φ = E 0 e z, da z = r cos θ. 4

5 (e) (9 Pkt.) Das Potential muss die Randbedingung Φ 1 r=a = Φ 2 r=a erfüllen. Ausserdem muss die Normalkomponente des Verschiebungsfeldes D auf der Grenzfläche stetig sein. Bestimmen Sie A und B entsprechend, und geben Sie das resultierende Potential an. Aus der Stetigkeitsbedingung für das Potential [ ] Φ 1 r=a = Φ [ 2 r=a ] folgt (B + E 0 )a 3 = A. Die Stetigkeitsbedingung für D bedeutet ε 0 ε Φ1 2 r = ε Φ2 0ε 1 r=a r. So erhalten wir B = r=a 3ε 2 ε 1 +2ε 2 E 0 sowie A = ε 1 ε 2 ε 1 +2ε 2 E 0 a 3. Das Potential lautet somit Φ(r) = { E 0 r cos θ + ε 1 ε 2 ε 1 +2ε 2 E 0 a 3 cos θ r 2 r > a 3ε 2 ε 1 +2ε 2 E 0 r cos θ r < a. (f) (7 Pkt.) Wir zeigen nun, dass das Feld der polarisierten Kugel gerade dem Feld eines statischen Dipols entspricht. Betrachten Sie dazu den Dipol in Abb. 3c und leiten Sie sein Potential Φ(r) her. Nehmen Sie an, dass der Abstand d zwischen den Dipolladungen infinitesimal klein ist, während der Betrag des Dipolmoments p = qd konstant bleibe. Vergleichen Sie das Dipolpotential mit dem Potential der Kugel im elektrischen Feld und bestimmen Sie das Dipolmoment p der polarisierten Kugel. Das Potential des Dipols ergibt sich aus der Superposition der Potentiale der beiden Dipolladungen Φ(r) = wobei r ± = r d 2 cos θ und somit dank r d Φ(r) = Der Vergleich mit dem Potential Φ 1 ergibt q 4πεε 0 r + (10) q 4πεε 0 r, (11) qd cos θ. (12) 4πεε 0 r2 p = 4πε 0 ε 2 ε 1 ε 2 ε 1 + 2ε 2 E 0 a 3 ẑ. (13) (g) (3 Pkt.) Die Polarisierbarkeit α ist definiert als Proportionalitätskonstante zwischen angelegtem elektrischem Feld und induziertem Dipolmoment. Bestimmen Sie α für das Partikel mit ε 1 im Medium mit Dielektrizitätskonstante ε 2. Wir erhalten mit p = αe die Polarisierbarkeit zu α = 4πε 2 ε 0 ε 1 ε 2 ε 1 + 2ε 2 a 3. (14) Wir betrachten nun ein Metamaterial bestehend aus einer Matrix mit dielektrischer Konstante ε 2, in die Partikel mit dielektrischer Konstante ε 1 mit einer Volumendichte N eingebettet sind. Die Dichte N sei klein genug, dass sich die Partikel gegenseitig nicht beeinflussen. Ausserdem sei der Beitrag des Matrixmaterials zur gesamten Polarisationsdichte vernachlässigbar. 5

6 (h) (3 Pkt.) Bestimmen Sie die Polarisationsdichte P sowie die Suszeptibilität χ e des Metamaterials in einem homogenen Feld der Stärke E 0. Die Polarisationsdichte ergibt sich aus der Volumendichte der Dipolmomente P = pn. Die Suszeptibilität resultiert wiederum aus der erreichten Polarisationsdichte P = ε 0 χ e E in Abhängigkeit von der Feldstärke E zu χ e = 4πε 2 ε 1 ε 2 ε 1 + 2ε 2 a 3 N. (15) (i) (3 Pkt.) Legen Sie dar, welche Parameter Ihnen zur Verfügung stehen, um die dielektrischen Eigenschaften des Metamaterials einzustellen. Die dielektrische Konstante ergibt sich aus der Suszeptibilität laut ε e = 1+χ e. Somit lassen sich durch Wahl von Partikelradius a, -dichte N und dielektrischer Konstante ε 1 die dielektrischen Eigenschaften des Metamaterials einstellen. 6

7 3 Der Hall-Effekt (20 Pkt.) Ein quaderförmiger Block aus n-dotiertem Silizium mit Ladungsträgerdichte n = cm 3 und dielektrischer Permittivität ε Si = 11.9 wird dank einer entlang der x-richtung angelegten Spannung U x von einem Strom I durchflossen und einem homogenen B-Feld entlang der y-richtung ausgesetzt (siehe Abb. 4). Der Querschnitt des Halbleiters besitzt die Dimensionen h = 0.5 cm und d = 0.1 cm. Die Stromdichte sei homogen im Material. Abbildung 4: Durch einen Hall-Sensor fliesst ein Strom I der Dichte j = n q v n x. Eine homogene magnetische Flussdichte B = Bn y wird von aussen angelegt. (a) (4 Pkt.) Berechnen Sie die auf die Ladungsträger wirkende Kraft F. Der Strom I im Halbleiter entspricht einer Stromdichte j, die durch die mit der Geschwindigkeit v D driftenden Ladungsträger erzeugt wird: I h d = j = nqv De x. (16) Hinweis: Die technische Stromrichtung ist von Plus nach Minus gerichtet, aber die Ladungsträger (Elektronen im Falle von n-typ Halbleiter) bewegen sich entgegengesetzt. Auf bewegte Ladungen in einem Magnetfeld wirkt die Lorentzkraft F = q(v D B). (17) Das Kreuzprodukt in Gl. 17 gibt die Richtung der der Kraft vor. In der in Abb. 4 gezeigten Anordnung zeigt diese in ±e z Richtung und folglich gilt U y = 0. Die resultierende Ladungsanreicherung an den Elektroden senkrecht zu v D und B erzeugt ein elektrisches Feld, welches die Lorentzkraft ausgleicht. Die DC-Dielektrizitätskonstante von Silizium ε Si = 11.9 erhöht die Kapazität der Hall-Sonde aber nicht die Spannung (Gleichgewicht aus Coulomb- und Lorentzkraft). qe Hall e z + q(v D B) = 0 (18) (b) (6 Pkt.) Berechnen Sie die Spannungen U z und U y, die durch den Strom I = 0.05 A und eine magnetische Flussdichte B = 0.5 T generiert werden. 7

8 Das Feld im Inneren des Halbleiters ist homogen und U z = E Hall h; damit ergibt sich eine Hall-Spannung U z = IB dnq. (19) Für einen Strom I = 0.05 A und ein B-Feld Be y = 0.5 T ergibt sich (q = As): U y = 0 V (20) U z V. (21) (c) (6 Pkt.) Berechnen Sie die Empfindlichkeit des Sensors S = U z /B. Welche Möglichkeiten bestehen, die Sensorempfindlichkeit zu erhöhen? S = I dnq (22) S V/T. (23) Die Empfindlichkeit des Sensors ist durch Gl. 22 gegeben. Der Ausdruck für die Stromdichte in Gl. 16 zeigt, dass die Driftgeschwindigkeit umgekehrt proportional zur Breite d und Ladungsträgerdichte n und folglich zum Anpassen der Hall-Spannung geeignet ist. Beide Grössen können bei der Herstellung über die Schichtdickenwahl bzw. Dotierungsdichte eingestellt werden. Für ein spezielles Design (d, n fest) besteht noch die Möglichkeit einer Erhöhung der Driftgeschwindigkeit durch eine Erhöhung von U x. (d) (4 Pkt.) Welche Spannung U z liefert der Sensor für das Erdmagnetfeld (B Erde = T)? U z,erde = S T = 15.6 µv (24) 8

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.3. bzw. 15.3.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )=

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )= Übung zur Vorlesung PN II Physik für Chemiker Sommersemester 2012 Prof. Tim Liedl, Department für Physik, LMU München Lösung zur Probeklausur (Besprechungstermin 08.06.2012) Aufgabe 1: Elektrostatik Elektrische

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

316 - Magnetfeldmessungen

316 - Magnetfeldmessungen 316 - Magnetfeldmessungen 1. Aufgaben 1.1 Die magnetische Induktion B eines Elektromagneten auf der Polschuhachse ist mit einer Hall- Sonde in Abhängigkeit vom Magnetisierungsstrom für unterschiedliche

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

5 Zeitabhängige Felder

5 Zeitabhängige Felder Carl Hanser Verlag München 5 Zeitabhängige Felder Aufgabe 5.13 Die spannungsabhängige Kapazität eines Kondensators kann für den Bereich 0... 60 V durch folgende Gleichung angenähert werden: Geben Sie allgemein

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Übungsblatt 4 ( )

Übungsblatt 4 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

Hall-Effekt und Magnetfeldmessung

Hall-Effekt und Magnetfeldmessung Hall-Effekt und Magnetfeldmessung erweitert aus Studiengebühren Vorbereitung: Halbleiter, Bändermodell: n-leitung, p-leitung, Kraft auf Ladungsträger in elektrischen und magnetischen Feldern, Hall-Effekt,

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben 1) Lorentz-Kraft Grundlagen der Elektrotechnik II Übungsaufgaben Ein Elektron q = e = 1.602 10 19 As iegt mit der Geschwindigkeit v = (v x, v y, v z ) = (0, 35, 50) km/s durch ein Magnetfeld mit der Flussdichte

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Elektrizität und Magnetismus

Elektrizität und Magnetismus Grundlagen- und Orientierungsprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 2010 Elektrizität und Magnetismus Donnerstag, 05. 08. 2010, 8:30 10:30 Uhr Zur Beachtung: Zugelassene Hilfsmittel:

Mehr

3.3. Prüfungsaufgaben zur Magnetostatik

3.3. Prüfungsaufgaben zur Magnetostatik 3.3. Prüfungsaufgaben zur Magnetostatik Aufgabe 1a: Magnetisches Feld a) Zeichne jeweils eine kleine Magnetnadel mit ord- und üdpol an den Orten A und b des rechts skizzierten Magnetfeldes ein. b) Wie

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Aufgabenkatalog ET2 - v12.2. σ 1 σ 2

Aufgabenkatalog ET2 - v12.2. σ 1 σ 2 2 Strömungsfeld 2.1 Geschichtetes Medium Gegeben ist ein geschichteter Widerstand (Länge 2a) mit quadratischen Platten der Kantenlänge a, der vom Strom durchflossen wird. Der Zwischenraum habe wie eingezeichnet

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Übung zur Magnetostatik Musterlösung. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Übung zur Magnetostatik Musterlösung. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Übung zur Magnetostatik Musterlösung 12. September 211 Michael Mittermair Aufgabe 1 Bestimmen sie das B-Feld eines dünnen,(unendlich)langen, geraden Leiters,

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt }

Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt } Elektromagnetische Felder und Wellen: zur Klausur 202- Aufgabe ( 6 Punkte) Gegeben ist das H-Feld einer elektromagnetischen Welle als H = H 0 exp{i(ωt kz)} e y + ih exp{i(ωt kz)} e x Geben Sie die Polarisation

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Aufgabe 1 ( 5 Punkte)

Aufgabe 1 ( 5 Punkte) Elektromagnetische Felder und Wellen: zur Klausur 2016-1 1 Aufgabe 1 ( 5 Punkte) Eine monochromatische Welle mit Kreisfrequenz ω befindet sich in einem ungeladenem, anisotropen Medium, in dem µ = 1 und

Mehr

Experimentalphysik II Strom und Magnetismus

Experimentalphysik II Strom und Magnetismus Experimentalphysik II Strom und Magnetismus Ferienkurs Sommersemester 2009 Martina Stadlmeier 08.09.2009 Inhaltsverzeichnis 1 Der elektrische Strom 2 1.1 Stromdichte................................. 2

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

1.1 Magnetfeld eines stromdurchflossenen Leiters

1.1 Magnetfeld eines stromdurchflossenen Leiters 1 Elektromagnetismus 1.1 Magnetfeld eines stromdurchflossenen Leiters Ein Strom, der durch einen Leiter fließt, erzeugt um diesen Leiter herum ein magnetisches Feld. Um diesen Sachverhalt zeichnerisch

Mehr

Marlene Marinescu. Elektrische und magnetische Felder

Marlene Marinescu. Elektrische und magnetische Felder Marlene Marinescu Zusätzliche Aufgaben mit ausführlichen Lösungen zu dem Buch Elektrische und magnetische Felder Eine praxisorientierte Einführung 2., bearbeitete Auflage Inhaltsverzeichnis 1 Elektrostatische

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

Schwerpunktfach Physik und Anwendungen der Mathematik

Schwerpunktfach Physik und Anwendungen der Mathematik Schriftliche Maturitätsprüfung 2014 Kantonsschule Reussbühl Luzern Schwerpunktfach Physik und Anwendungen der Mathematik Prüfende Lehrpersonen Klasse Hannes Ernst (hannes.ernst@edulu.ch) Luigi Brovelli

Mehr

Versuchsvorbereitung P1-80: Magnetfeldmessung

Versuchsvorbereitung P1-80: Magnetfeldmessung Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Stabmagnete haben 2 verschiedene Enden, den sog. Nord- und den Südpol. Nordpol zieht Südpol an, gleichnamige Pole stoßen sich ab.

Stabmagnete haben 2 verschiedene Enden, den sog. Nord- und den Südpol. Nordpol zieht Südpol an, gleichnamige Pole stoßen sich ab. 13 8 Magnetostatik 8.1 Qualitatives Neben der Gravitationskraft und der elektrostatischen Kraft stellt an i Alltag eine weitere Kraft fest, die sowohl zwischen zwei elektrischen Ströen als auch zwischen

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 26 1 Aufgabe 1 Eine Punkladung Q soll durch eine Kugel mit Radius a und der Oberflächenladung ϱ SO ersetzt werden. Wie groß muss ϱ SO gewählt

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L.

Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L. Kapitel 9 Die Lorentzkraft F L Im Kapitel 8 wurde gezeigt, wie ein elektrischer Strom in seiner Umgebung ein Magnetfeld erzeugt (Oersted, RHR). Dabei scheint es sich um eine Grundgesetzmässigkeit der Natur

Mehr

Einführung. in die. Der elektrische Strom Wesen und Wirkungen

Einführung. in die. Der elektrische Strom Wesen und Wirkungen Einführung in die Theoretische Physik Der elektrische Strom Wesen und Wirkungen Teil II: Elektrische Wirkungen magnetischer Felder Siegfried Petry Fassung vom 19 Januar 13 I n h a l t : 1 Kraft auf einen

Mehr

E19 Magnetische Suszeptibilität

E19 Magnetische Suszeptibilität Aufgabenstellung: 1. Untersuchen Sie die räumliche Verteilung des Magnetfeldes eines Elektromagneten und dessen Abhängigkeit vom Spulenstrom. 2. Bestimmen Sie die magnetische Suszeptibilität vorgegebener

Mehr

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0 *UXQGODJHQGHU3K\VLN Vorlesung im Fachbereich VI der Universität Trier Fach: Geowissenschaften Sommersemester 2001 'R]HQW 'U.DUO0ROWHU 'LSORP3K\VLNHU )DFKKRFKVFKXOH7ULHU 7HO )D[ (0DLOPROWHU#IKWULHUGH,QIRV]XU9RUOHVXQJXQWHUKWWSZZZIKWULHUGHaPROWHUJGS

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

5 Quasistationäre Felder. 5.1 Poyntingvektor

5 Quasistationäre Felder. 5.1 Poyntingvektor Das quasistationäre Feld 3 5 Quasistationäre Felder 5.1 Poyntingvektor 5.1 Für ein Koaxialkabel mit gegebenen Radien soll mit Hilfe des Poynting schen Vektors der Nachweis geführt werden, dass a) die transportierte

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr