Konfidenzintervalle - Lösung
|
|
|
- Valentin Friedrich
- vor 7 Jahren
- Abrufe
Transkript
1 Konfidenzintervalle - Lösung Aufgabe 1 Zeichne für verschiedene Werte von p ein Balkendiagramm der Binomialverteilung und finde eine Entscheidungsregel dafür, dass der zugrundeliegende Wert von p akzeptiert oder abgelehnt wird. #1: #: #3: k n - k B(k, n, p) := COMB(n, k) p (1 - p) k k B(k, n, p) diagramm(n, p) := VECTOR, k, 0, n k B(k, n, p) k ƒ x marke(x) := x 0.01 #4: diagramm(1000, 0.45) #5: marke(460) #6: diagramm(1000, 0.4) Seite: 1
2 #7: diagramm(1000, 0.51) Für die erste Verteilung liegt die absolute Häufigkeit x=460 nahe am Erwartungswert np=450. Bei der zweiten Verteilung mit p=0.4 ist die Wahrscheinlichkeit P(X=460) sehr klein. Der Erwartungswert np=40 liegt zu weit links von x=460. Der Erwartungswert der Binomialverteilung mit p=0.51 liegt zu weit rechts von x=460. Auch hier ist die Wahrscheinlichkeit P(X=460) sehr klein. Entscheidungsregel: Falls x=460 innerhalb eines Bereiches um den Erwartungswert mit der Wahrscheinlichkeit von z.b. 95% liegt, wird die zugrundeliegende Wahrscheinlichkeit akzeptiert, anderenfalls wird sie abgelehnt. (Bei vorsichtigerer Vorgehensweise können wir natürlich statt eines 95%-Bereiches auch einen 99%-Bereich vorsehen.) Aufgabe Schätze ein Intervall [p1, p] ab für die Wahrscheinlichkeit, einen SPD-Wähler zu treffen. #8: k F(k, n, p) := B(i, n, p) i=0 Für die linke Grenze dieses Intervalls ist der kleinste Wert p1 gesucht mit F(460,1000,p1) Diese Untersuchung führen wir mit Hilfe des vector-befehls durch: #9: VECTOR([p, F(460, 1000, p)], p, 0.4, 0.46, 0.01) Seite:
3 #10: p1 liegt also zwischen 0.4 und Für eine genauere Untersuchung verfeinern wir die Schrittweite: #11: VECTOR([p, F(460, 1000, p)], p, 0.4, 0.43, 0.001) #1: Also muß p1 zwischen 0.49 und anzutreffen sein. Abschätzung: p1=0.495 Für größere Werte von p wächst der Erwartungswert der Binomialverteilung immer weiter an. Als rechte Grenze des Intervalls ist der größte Wert p gesucht mit F(460,1000,p) #13: VECTOR([p, F(460, 1000, p)], p, 0.46, 0.5, 0.01) #14: p liegt damit zwischen 0.49 und Wieder verfeinern wir die Schrittweite: Seite: 3
4 #15: VECTOR([p, F(460, 1000, p)], p, 0.49, 0.5, 0.001) #16: Also muß p zwischen und 0.49 anzutreffen sein. Abschätzung: p= Das gesuchte Intervall kann damit zu [0.495, ] abgeschätzt werden. Aufgabe 3 a) Zeige: (c) - (-c) = (c) - 1 (c) - (-c) = (c) - (1 - (c)) = (c) - 1 b) Bestimme c mit (c) - 1 = 0.95 (c) - 1 = 0.95 ist äquivalent zu (c) = ( ) / Also: #17: #18: NORMAL(c) = APPROX SOLVE NORMAL(c) =, c ƒƒ #19: c = c) Durch Quadrieren der letzten Ungleichung erhält man (h - p)^ " (cþ/n)^. Löse diese Ungleichung mit den Werten des Eingangsbeispiels und gib damit das Vertrauensintervall zur Vertrauenszahl ª=0.95 an. Stelle allgemein die quadratische Ungleichung in p auf. #0: #1: c Þ (h - p) n c p - h p + h p (1 - p) n Seite: 4
5 #: c c p p h + + h 0 n ƒ n ƒ Setze nun die vorgegebenen Werte für c, n und h ein und löse dann die Ungleichung nach p: #3: #4: #5: p p ƒ 1000 ƒ p p APPROX(SOLVE( p p , p)) #6: p Das Vertrauensintervall zur Vertrauenszahl ª=0.95 ist also [0.493, 49098]. d) Zeige: P( h - p " cþ/n) = ª P( h - p cþ/n = P( x - µ cþ) = (c) - (-c) = ª Damit liegt die tatsächliche Wahrscheinlichkeit, einen SPD-Wähler anzutreffen, mit einer Wahrscheinlichkeit von 95% im oben bestimmten Vertrauensintervall. e) Bestimme auch die Vertrauensintervalle zur Vertrauenszahl ª=0.95 für die Wahrscheinlichkeit einen Wähler der CDU, der FDP oder der Grünen anzutreffen. CDU: [ , ] FDP: [ , ] Grüne: [ , ] Aufgabe 4 a) Zeige: p(1-p) "1/4 für alle p[0, 1] Führe eine Kurvendiskussion durch! Der Scheitelpunkt der nach unten geöffnete Parabel ist S( ). b) Berechne den mindestens erforderlichen Stichprobenumfang für eine maximale Breite des Vertrauensintervalls von d=.5%. Der erforderliche Stichprobenumfang beträgt mindestens n = #7: n 0.05 #8: n Aufgabe 5 a) Löse die Gleichung für die Grenzen des Vertrauensintervalls allgemein. #9: c c APPROX SOLVE p p h + + h = 0, p n ƒ n ƒ ƒƒ Seite: 5
6 #30: 0.5 ( (c - 4 h n (h - 1)) c - c - h n) p = - p = c + n 0.5 ( (c - 4 h n (h - 1)) c + c + h n) c + n b) Zur Bestimmung von c ist eine Gleichung der Form (x) = u zu lösen. Da eine Umkehrfunktion der Gaußschen Summenfunktion nicht elementar angegeben werden kann, lösen wir die äquivalente Gleichung (x) - u = 0 numerisch mit dem Newton-Verfahren. Gib die entsprechende Newton- Iteration mit dem Iterate-Befehl für 10 Iterationsschritte an und definiere eine Funktion wert_c(ª) zur Berechnung von c. #31: #3: NORMAL(x) - u inv_normal(u) := ITERATE x -, x, 1, 10 d NORMAL(x) dx ƒ 1 + ª wert_c(ª) := inv_normal ƒ c) Gib nun je eine Funktion zur Berechnung der linken und der rechten Grenze des Vertrauensintervalls in Abhängigkeit von h, n und ª an. Damit kann leicht auch eine Funktion zur Ermittlung des Vertrauensintervalls definiert werden. Zunächst werden die Grenzen des Vertrauensintervalls definiert: #33: links(h, n, ª) := - ~ 0.5 ( (wert_c(ª) - 4 h n (h - 1)) wert_c(ª) - wert_c(ª) - h ~ ~ ~ wert_c(ª) + n ~ n) #34: rechts(h, n, ª) := Seite: 6
7 ~ 0.5 ( (wert_c(ª) - 4 h n (h - 1)) wert_c(ª) + wert_c(ª) + h ~ ~ ~ wert_c(ª) + n ~ n) Für den gegeben Stichprobenumfang n und die ermittelte relative Häufigkeit h kann jetzt das Vertrauensintervall zur Vertrauenzahl ª berechnet werden. #35: konfidenzintervall(h, n, ª) := [links(h, n, ª), rechts(h, n, ª)] #36: konfidenzintervall(0.46, 1000, 0.95) #37: [ , ] d) Trage mit Hilfe des vector Befehls die Vertrauensintervalle für n = 10 (100 ; 1000) und ª = 0.9 graphisch über den relativen Häufigkeiten auf. Mit Hilfe des vector-befehls kann man die Berechnung aus c) auch für verschiedene relative Häufigkeiten h bei vorgegebenem n und ª durchführen. #38: h links(h, n, ª) ellipse(n, ª) := VECTOR, h, 0, 1, 0.05 h rechts(h, n, ª) ƒ #39: ellipse(10, 0.9) #40: ellipse(100, 0.9) #41: ellipse(1000, 0.9) Trägt man die Konfidenzintervalle über der relativen Häufigkeit auf, so entsteht als Einhüllende eine Ellipse. Seite: 7
8 Seite: 8
Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests
ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen
Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung.
Würfelsimulation 1) Bezeichnen Sie in den Säulendiagrammen (Histogrammen - 2. Graphik) die senkrechten Achsen und vervollständigen Sie im ersten Diagramm die Achseneinteilung. Lesen Sie im Histogramm für
Prüfungsteil 2, Aufgabe 8 Stochastik
Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 7: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 GK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl
Prüfungsteil 2, Aufgabe 8 Stochastik
Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 8: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 LK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Auswertung von Messungen Teil II
Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 15. Jänner Mathematik. Teil-2-Aufgaben. Korrekturheft
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 15. Jänner 2016 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 Quadratische Gleichungen und ihre Lösungen p = ( 1 z + z ) q = 1 z
Konfidenzintervalle. Einführung von Ac
Konfidenzintervalle Einführung von Ac Problem: ( Schluss von der Stichprobe auf die Gesamtheit - Schätzen ) Von einer binomialverteilten Zufallsgröße X sei n (der Stichprobenumfang) gegeben, aber p (Erfolgswahrscheinlichkeit)
Überblick Hypothesentests bei Binomialverteilungen (Ac)
Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung
d) Ermitteln Sie ein möglichst kleines, zum Erwartungswert symmetrisches Intervall, in dem mit mehr als 90% die Anzahl der geworfenen Vieren liegt?
Die Ungleichung von Tschebyschow für die Trefferanzahl X und die relative Anzahl der Treffer H n (X) bei Bernoulliketten =================================================================== 1. Ein Laplace-Tetraeder
Übungsaufgaben, Statistik 1
Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama
Statistik I für Betriebswirte Vorlesung 14
Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli
11. Approximation der Binomialverteilung durch die Normalverteilung
7. Approximation der Binomialverteilung durch die Normalverteilung Die Berechnung der Binomialverteilung ist wegen der Binomialkoeffizienten nicht unproblematisch. Man kann sie deshalb in gewissen Fällen
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1
SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das
Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel
Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Aufgaben Lösen Sie A1 und A sowohl mit der Bernoulli-Formel als auch mit dem TR(BV), die anderen Aufgaben lösen sie mit dem TR(BV). A1 Eine Familie
S tandardabweichung : σ= n p 1 p = 200 0,24 0,76 6,04
R. Brinkmann http://brinkmann-du.de Seite 1 14.10.2007 Wahrscheinlichkeiten von Umgebungen Bei einer Binomialverteilung ist der Erwartungswert der mit der größten Wahrscheinlichkeit. In der Umgebung des
HTL Saalfelden Taylorreihen Seite 1 von 13. Wilfried Rohm
HTL Saalfelden Taylorreihen Seite von 3 Wilfried Rohm [email protected] Taylorreihen Mathematische / Fachliche Inhalte in Stichworten: Approximation von Funktionen durch Taylorpolynome, Integration durch Reihentwicklung,
Kinga Szűcs
Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie
Rechne die Lösung im 2. Quadranten ohne Verwendung der speziellen TI 92- Funktionen auf die Polarform um.
1.Schularbeit 7b Klasse 1a) Gegeben ist die Gleichung z 2 + pz + (33 + 47i) = 0 mit der Lösung z 1 = 4-9i. Berechne den Koeffizienten p sowie die 2. Lösung der Gleichung. b) Berechne die Lösungen der Gleichung
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests
Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75
Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert
Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI
Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe
Θ Mathematik Stochastik
Θ Mathematik Stochastik Aufgabe 1: Als Spam-Nachricht wird eine unerwünschte E-Mail bezeichnet, die dem Empfänger unverlangt zugestellt wird. a) Statistische Untersuchungen an der Mailbox eines Benutzers
Beispiel 6 (Einige Aufgaben zur Gleichverteilung)
Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß
5 Numerische Mathematik
6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul
Das Konfidenzintervall und der Goldbär
Das Konfidenzintervall und der Goldbär Aufgabe 3 Blutgruppen c) In einer österreichischen Gemeinde, in der 1 800 Einwohner/innen Blut spenden könnten, nahmen 150 Personen an einer freiwilligen Blutspendeaktion
Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten
Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.
Lösungsskizzen zur Präsenzübung 09
Lösungsskizzen zur Präsenzübung 09 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 2016 von:
Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung
R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei
Mögliche Fehler beim Testen
Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)
Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - S I - Lösung
Abschlussprüfung Berufliche Oberschule 20 Mathematik 12 Nichttechnik - S I - Lösung Im Folgenden werden relative Häufigkeiten als Wahrscheinlichkeiten interpretiert. Teilaufgabe 1.0 Ein neues Medikament
Normalverteilung und Standardisierung
Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken
Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.
Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,
Analysis. 1.2 Bestimmen Sie die maximalen Intervalle, in denen die Funktion f a echt monoton zu- bzw. abnimmt.
1.0 Gegeben sind die reellen Funktionen f :xaf (x); D = R a a f a Analysis 1 3 fa (x) = (ax + 27x) mit a R a 0. 27 Der Graph einer solchen Funktion wird mit bezeichnet. 1.1 Berechnen Sie die Nullstellen
0, t 0,5
XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau
Aufgabe 8: Stochastik (WTR)
Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 8 a) (1) WAHRSCHEINLICHKEIT FÜR KEINE ANGABE ERMITTELN Nach der Laplace Formel ist Anzahl der Personen, die keine Angabe machten keine Angabe Gesamtzahl
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Beurteilende Statistik
Beurteilende tatistik igma-regeln Binomialverteilung n = 200 p = 0.7 μ = n p = 140 σ = np(1 p) 6,48 > 3 P(μ σ X μ + σ) 0,680 P(μ 2σ X μ + 2σ) 0,955 P(μ 3σ X μ + 3σ) 0,997 200 *.07 TO M 2nd ( 200 * 0.07
Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo)
Arbeitsblätter zum Ausdrucken von sofatutor.com Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo) 2 Gib an, wie du allgemein eine quadratische Ungleichung lösen kannst.
Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz
Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis
Aufgaben. 1. Quadratische Funktionen: 2. Quadratische Funktionen in Anwendungen
Aufgaben 1. Quadratische Funktionen: 1. Berechne für welche Werte von x die Funktion wird. 2. Gib zum gegenebenen Scheitelpunkt einer verschobenen Normalparabel jeweils den Funktionsterm in der Form an.
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 10. Mai Mathematik. Teil-2-Aufgaben. Korrekturheft
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 1. Mai 217 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 Quadratische Funktion a) Lösungserwartung: f(x) f d x x 1 x 2 a
f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5
11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =
Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung "Main" 7. Das Interaktivmenü 10. Variablen und Funktionen 15
3 Inhalt Übersicht über das Gerät 6 Die Hauptanwendung "Main" 7 Das Edit-Menü 8 Die Software-Tastatur 8 Kopieren und Einfügen 10 Das Interaktivmenü 10 Der Gleichlösungs-Befehl "solve" 11 Umformungen 12
Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6
1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,
Interpolation und Integration mit Polynomen
Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus
Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler
6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung
Jahrgangscurriculum 11.Jahrgang
Jahrgangscurriculum 11.Jahrgang Koordinatengeometrie Geraden (Lage von Geraden; Schnittwinkel) Abstände im KOSY Kreise Kreise und Geraden Parabeln und quadratische Funktionen (Parabel durch 3 Punkte, Anwendungsaufgaben)
Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit
Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann
2 Arbeiten mit dem TI-84 Plus
2 Arbeiten mit dem TI-84 Plus Lernziele Du erfährst in diesem Abschnitt, wie du mit dem TI-84 Plus Funktionen in Bezug auf interessante Punkte untersuchst; numerische Ableitungen durchführst und Wahrscheinlichkeitsverteilungen
8 Experimentieren: Sigma-Regeln
8 Experimentieren: Sigma-Regeln Didaktische Hinweise Mit dieser Station wird ein Unterrichtsbeispiel zur Einführung der Sigma-Regeln vorgestellt, die von den Schülerinnen und Schülern an mehreren Beispielen
Wahrscheinlichkeit und Statistik: Zusammenfassung
HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1
Anleitung: Standardabweichung
Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung
Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.
10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung
Prüfungsteil 2, Aufgabe 6. Stochastik. Nordrhein-Westfalen 2014LK. Aufgabe 6. Abitur Mathematik: Musterlösung
Abitur Mathematik: Prüfungsteil 2, Aufgabe 6 Nordrhein-Westfalen 2014LK Aufgabe 6 a) (1) 1. SCHRITT: MODELLIERUNG MIT EINER BERNOULLIKETTE Wir modellieren die Situation mit einer Bernoullikette der Länge
Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt.
Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.
5 Binomial- und Poissonverteilung
45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüfung Fachhochschulreife 01 Baden-Württemberg Aufgabe 7 Mathematik in der Praxis Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Februar 015 1 7.1
Approximation der Binomialverteilung durch die Normalverteilung
R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation
Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5
SS 2017 Torsten Schreiber
173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen
Analysis 5.
Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion
Klausur Statistik Lösungshinweise
Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei
Stochastik. Station 1. Kombinatorik
Der fx-991de im Mathematik- Unterricht Stochastik Station 1 Kombinatorik Die vier Grundformeln zur Kombinatorik sind in der Tabelle zusammengefasst: Mit Zurücklegen Ohne Zurücklegen Reihenfolge egal ncr
Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung
Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus
Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.
R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,
Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6
6. Diagramme mit Mathcad In diesem Kapitel geht es um andere, als X Y Diagramme. 6.. Kreisdiagramme. Schritt: Die darzustellende Funktion muß zunächst als Funktion definiert werden, zum Beispiel f(x):=
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen
1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung
0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Geben Sie das notwendige Gleichungssystem für die Berechnung der Koeffizienten von s 2 an und ermitteln Sie diese!
12 1 über Polynomfunktionen dritten Grades 04 a Splines werden allgemeine Polynomfunktionen dritten Grades genannt, die an einem bestimmten Punkt stetig aneinander gefügt werden. Für den Kontaktpunkt gilt
mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung
Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung Teilaufgabe 1.0 Ein Händler für Baby- und Keinkinderspielwaren hat in seinem Sortiment unter anderem Spielzeug aus
Stoffverteilungsplan Sek II
Klasse 11 (3-stündig) Stoffverteilungsplan Sek II Analysis - Differenzialrechnung Inhalte Hinweise Schulbuch Funktionen - Begriff der Funktion 12-15 - Symmetrien 22-24 - Verhalten im Unendlichen 20-21
Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:
Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt
73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments
73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind
Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion
Dr. Quapp: Statistik für Mathematiker mit SPSS Lösungs Hinweise. Übung Beschreibende Statistik & Verteilungsfunktion. Die folgende Tabelle enthält die Pulsfrequenz einer Versuchsgruppe von 39 Personen:
9 Prinzipien der statistischen Hypothesenprüfung
9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn
Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.
Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung
PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)
PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
numerische Berechnungen von Wurzeln
numerische Berechnungen von Wurzeln. a) Berechne x = 7 mit dem Newtonverfahren und dem Startwert x = 4. Mache die Probe nach jedem Iterationsschritt. b) h sei eine kleine Zahl, d.h. h. Wir suchen einen
Grundkompetenzkatalog. Mathematik
Grundkompetenzkatalog Mathematik AG - Algebra und Geometrie AG 1.1 AG 1.2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3.1 AG 3.2 AG 3.3 Wissen über Zahlenmengen N, Z, Q, R, C verständig einsetzen Wissen über
6.6 Poisson-Verteilung
6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt
Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"
Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen
QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades)
QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) I. Einführung: Allgemeine Funktionsgleichung: y = ax 2 + px + q Aufgabe 2 1 (Westermann EK, S.14) II. Terminologie: a.) Abhängige Variable (erklärte
Vorbemerkungen. Die Programmieroberfläche des ClassPad
Vorbemerkungen Erfahrungen zeigen, dass die Programmiermöglichkeiten des ClassPad im Unterricht kaum genutzt werden. Dabei bieten aus unserer Sicht viele Situationen die Gelegenheit, die Programmieroberfläche
