TECHNISCHE UNIVERSITÄT MÜNCHEN

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 Prof. Dr. Simone Warel Ma Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 8 (.2.29) Zentralübung 37. Gane Funktionen Eine auf gan C holomorphe Funktion f : C C heißt gan. Zeigen Sie, dass für gane Funktionen, die nicht konstant sind, f(c) C dicht liegt. Angenommen f(c) liegt nicht dicht. Dann gibt es mindestens einen Punkt w C \ f(c), so dass eine offene Kreisscheibe um w mit Radius r > eistiert, die disjunkt von f(c) ist, f(c) B r (w ). Daher gilt für alle C, dass f() w r ist. Somit ist die Funktion g() f() w auch gan. Sie muss aber auch durch r beschränkt sein. Da aber jede beschränkte gane Funktion konstant ist (Sat von Liouville), muss g konstant sein. Aber dann ist f konstant, Widerspruch!

2 38. Gauß-Integral Seien α a + ia 2, β b + ib 2 C derart, dass Re α 2 (a 2 a2 2 ) > ist. Dann gilt: + d e (α+β)2 π α Ist Im β Im α, brauchen wir nicht auf komplee Integration urückugreifen, sondern erhalten sofort + d e (α+β)2 π dy e y2 α α mittels der Substitution y : α + β. Ohne Einschränkung können wir daher Im α annehmen. In diesem Fall können wir das Integral +R R d e (α+β)2 als komplees Wegintegral beüglich der holomorphen Funktion e 2 entlang der Strecke [ αr+ β, +αr + β] auffassen, +R +R d e (α+β)2 ds α α e (αs+β)2 e 2. α R R [ αr+β,+αr+β] Der Vorfaktor /α stammt vom Nachdifferenieren: wird mit ψ(s) : αs + β, s [, +], parametrisiert, so ist ψ(s) α und dieser Faktor fehlt im ursprünglichen Integral. Um die Maschinerie kompleer Integration sowie + d e 2 π ausnuten u können, müssen wir die Strecken [ αr+β, +αr+β] und [ a R, +a R] miteinander verbinden, so dass ein geschlossener Pfad entsteht. Da e 2 eine gane Funktion ist, muss dann die rechte Seite sein, e 2 + e 2 + [ a R,+a R] + [+a R,+αR+β] [+αr+β, αr+β] e 2 + e 2. [ αr+β, a R] Der erste Term strebt gegen π, der dritte Term ist das Integral, welches wir ausrechnen möchen. Wir werden gleich eigen, dass weiter und vierter Term gegen gehen, falls R. Somit erhalten wir + π d e 2 lim e 2 lim e 2 R [ a R,+a R] R [ αr+β,+αr+β] α + d e (α+β)2. Hinweis: wir haben die Richtung des Pfads [+αr + β, αr + β] umgedreht. Daher steht auf der rechten Seite kein Minus-Zeichen. Wir eigen nun, dass die beiden übrigen Terme im Limes R verschwinden: der Betrag des weiten Integrals kann durch ds ( ia 2 R + β ) e ((a +isa 2 )R+sβ) 2 ds ( a 2 R + β ) e ((a +isa 2 )R+sβ) 2 2

3 abgeschätt werden. Um den Betrag ausrechnen u können, müssen wir den Eponenten ausmultipliieren, ( (a + isa 2 )R + sβ ) 2 (a + isa 2 ) 2 R 2 + 2(a + isa 2 )βr + s 2 β 2 (a 2 s 2 a 2 2)R 2 + i2sa a 2 R 2 + 2(a + isa 2 )βr + s 2 β 2. Der erste Vorfaktor ist nach Vofraussetung immer positiv, denn mit s [, ] folgt auch a 2 s 2 a 2 2 a2 a2 2 Re α2 >. Der Vorfaktor des weiten Terms, der R 2 enthält, ist rein imaginär und trägt nach dem Eponentieren nicht bei, ( a2 R + β ) e (a R+s(ia 2 R+β)) 2 ( a 2 R + β ) e (a 2 s2 a 2 2 )R2 e i2sa a 2 R 2 e 2(a +isa 2 )βr s 2 β 2 ( a 2 R + β ) e (a2 s2 a 2 2 )R2 e 2(a +isa 2 )βr s 2 β 2 R. Daher ist der Integrand für alle R > beschränkt und wir können Limes und Integration vertauschen (dominierte Konvergen). Der Integrand geht punktweise gegen, da der dominierende Beitrag von e (a2 s2 a 2 2 )R2 herrührt. Damit muss auch das Integral gegen gehen. Ähnlich kann man den letten Integranden abschäten, ( a2 R + β ) e ( (a +isa 2 )R+sβ) 2 ( a 2 R + β ) e (a2 s2 a 2 2 )R2 e +2(a +isa 2 )βr s 2 β 2 R, was ur Folge hat, dass auch das lette Integral gegen strebt. 3

4 39. Der Residuenkalkül Berechnen Sie die folgenden Integrale mittels Residuenkalkül: (a) (b) + + d e ik 2 + b 2 d cos k 2 + b 2 ( /r (c) K lim r (d) 2π r a + sin t, a > +r ) d ei + d ei +/r (a) Wir schreiben das reelle Integral als Grenwert: die Strecke [ R, +R] wird mit einem. B. mit einem Kreisbogen γ R in der oberen Halbebene geschlossen, ( ) lim e ik R [ R,+R] 2 + b γr 2 + e ik e ik 2 + b 2 2πi Res ib 2 + b 2. Dort befindet sich bei +ib eine Singularität des Integranden. Das Residuum an dieser Stelle ist e ik Das weite Residuum gibt gan analog dau e ik(ib) 2πi Res ib 2 2πi + b2 ib + ib π b ekb. e ik 2πi Res ib 2 + b 2 π b e kb. Soll der weite Term, der um in der oberen Kreisbogen gehört, verschwinden, erhalten wir die Bedingung k < : γr e ik π 2 + b 2 ire it e ikreit π R 2 e i2t + b 2 R R 2 e i2t + b 2 e ikr cos t e i 2 kr sin t π R R 2 e i2t + b 2 e +kr sin t Der erste Term geht war wie /R gegen, der weite eplodiert aber eponentiell (sin t für t [, π]), falls k >. Daher muss k sein, damit der Restterm verschwindet. Will man das Integral für k > berechnen, so schließt man die Strecke über eine Kreislinie in der unteren Halbebene. Somit erhalten wir für das Integral + d e ik 2 + b 2 π b e b k. (b) Wir schreiben den cos als cos k 2( e ik + e ik). Mit Aufgabe (a) bedeutet das + d cos k 2 + b d e+ik 2 + b π 2 b e b k + π 2 b e b k π b e b k. d e ik 2 + b 2 (c) Wir können die beiden Wegstrecken über wei Halbkreise in der oberen Halbebene mit Radius r und /r u einem geschlossenen Weg ergänen. Für jedes r > wird die Singularität im Ursprung ausgespart und das Wegintegral verschwindet, [ r, /r] ei ei γ(/r) + 4 [+/r,+r] ei + ei γ(r).

5 Hier beeichnet γ(ρ), ρ { /r, r} den positiv orientierten Halbkreis in der oberen Halbebene mit Radius ρ. Deshalb müssen wir das Integral über den kleineren Halbkreis auch abiehen, wir laufen ja eigentlich im Uhreigersinn statt gegen den Uhreigersinn. Das Integral über den größeren Halbkreis verschwindet für große r, π π ei eireit ireit re it e ir cos t e i 2 r sin t γ(r) π r sin t r e. Hier haben wir wieder dominierte Konvergen benutt, denn wir können den Integranden unabhängig von r abschäten. Der Integrand geht punktweise bis auf die Ränder gegen und daher muss auch das Integral im Limes großer r verschwinden. Nun um kleinen Halbkreis: dieses Integral liefert den eigentlichen Beitrag. Auch hier können Limes-Bildung und Integration wegen dominierter Konvergen vertauscht werden, π ei γ(/r) i ei r eit π π r eit e sin t/r r π. Somit ist π lim r Insgesamt erhalten wir i r eit ei r eit r eit r eit π π i lim r ei r eit i iπ. ( /r +r ) ( ) lim d ei r r + d ei lim ei +/r r γ(/r) ei γ(r) iπ. (d) Wir schreiben das Integral als komplees Wegintegral um: 2π 2π a + sin t ie it a + ( 2i e it e it) i2a ieit Das Polynom im Nenner hat wei rein komplee Nullstellen,,2 ia ± i a 2. i ( a + 2i ( + ) ) 2 ia i a 2 liegt allerdings außerhalb der Kreisschreibe mit Radius und das Integral muss gleich 2πi mal dem Residuum bei sein, 2π a + sin t 2πi Res i2a 2πi 2 2 2π a 2. 4πi i2 a 2 5

6 Hausaufgaben 4. Identitätssat Seien f, g : U C holomorph, U C offen und usammenhängend. (a) Eistieren a, b R, a < b, mit (a, b) U und f() g() für alle (a, b). Dann gilt f g. (b) Sei U C. Finden Sie Beispiele von Funktionen für f und g derart, dass Re f() Re g() für alle R, aber f g. (a) Jede Folge ( n ) in (a, b) U, die in (a, b) konvergiert, ist eine Folge, auf der f g immer ist. Somit muss nach dem Identitätssat f g identisch sein, f g. Daher ist f g. (b) Sei beispielsweise f() e i und g() e i. Für alle R gilt Re f() cos Re g(), obwohl f und g nicht identisch sind, denn die Imaginärteile untscheiden sich sehr wohl, Im f() sin sin Im g(). 6

7 4. Kausalität Sei f : U C, U C offen, eine holomorphe Funktion, die in der oberen Halbebene { C Im } U beschränkt ist. Zeigen Sie, dass für alle t < gilt: R f()e it d lim f()e it d. R R Da f in der oberen Halbebene beschränkt ist, liegen dort höchstens hebbare Singularitäten und keine Pole. Schließen wir die Kurve [ R, +R] über eine Halbkreislinie γ R in der oberen Halbebene, so gilt +R R d f() e it + f() e it. γ R Falls t < ist, verschwindet der weite Term im Limes R, denn f() e it π ds ire is f(re is π ) e itreis ds f(re is ) Re ( t)r sin s. γ R Ist s (, π), geht der Integrand gegen im Grenwert R, denn f ist nach Annahme in der oberen Halbebene beschränkt und Re ( t)r sin s punktweise. Da der Integrand für alle R > beschränkt ist, kann er durch die konstante Funktion abgeschätt werden, die auf dem kompakten Intervall [, π] integrierbar ist. Nach dem Sat über dominierte Konvergen können wir Integration und Limesbildung vertauschen und das Integral verschwindet im Limes großer R. Daraus folgt + d f() e it. 7

8 42. Der Residuenkalkül Berechnen Sie folgende Integrale bw. eigen Sie die angegebenen Identitäten mittels Residuenkalkül. i sgn b 2π e + kb kb > (a) d e ik + ib kb < + (c) d i sgn b π k, b 3 + undefiniert b (b) + d cos k + ib (d) + d sin Hinweis: Benuten Sie in Teilaufgabe (c) die Kurve, die aus der Strecke [, R], dem Kreisbogen von R bis Re i 2π 3 und der Strecke [Re i 2π 3, ] besteht. (a) Falls b ist, liegt eine nicht integrierbare Singularität auf dem Integrationsweg und das Integral ist undefiniert. Wieso k auch nicht funktionieren kann, wird erst später klar werden. Sei also beispielsweise b >. Wir schreiben das reelle Integral wieder als Limes der von R bis +R gehenden Strecke, die über einen Halbkreis γ R geschlossen wird. Damit der Pol im Inneren des Integrationsweges liegt, müssen wir nach unten schließen: [ R,+R] d e ik + ib γr e ik + ib 2πi Res e ik ib 2πi e bk + ib Man beachte die Minuseichen: wird der Pfad geschlossen und positiv orientiert, so integriert man von +R nach R, also entgegengesett u dem obigen Integral. Das gilt erst mal unabhängig davon, ob k größer oder kleiner ist. Allerdings verschwindet das Pfadintegral über den Kreisbogen nur, wenn k > ist: γr e ik + ib ire it e ikreit π Re it + ib R π Re it + ib e ikreit R sin t Re it + ib e+kr π Der erste Faktor ist immer beschränkt, der weite geht aber nur gegen, falls k > (für t ( π, ) ist ja sin t < ). Ist k <, so muss der Kreisbogen in der oberen Halbebene verlaufen. Dort liegt aber kein Residuum und das Integral muss wangsweise ergeben. Egal, über welchen Integrationsweg das Integral geschlossen wird, ist es nicht möglich, den weiten Term, der den Pfad schließt, abuschäten. Egal, ob man das Integral nach oben oder unten rum schließt, das Hilfsintegral wird im Limes R nicht verschwinden, sondern einen endlichen Wert annehmen, nämlich lim R γ R + ib lim ire it R π Re it + ib lim i R π + ibr e it i lim R + ibr i iπ, e it π wobei wir wieder den Sat über dominierte Konvergen angewendet haben um Limesbildung und Integration u vertauschen. Daher erhalten wir für den Fall b > ( ) lim d R [ R,+R] + ib + d γ R + ib + ib + iπ! 2πi Res ib + ib 2πi, 8 π π

9 woraus folgt. + d + ib iπ Der Fall b < geht bis auf das Fehlen des Minuseichens analog, dort muss für k < der Pfad nach oben geschlossen werden. Für k bemerken wir, dass dann auf der rechten Seite steht (das Residuum wird nicht vom Pfad umschlossen). Somit haben wir geeigt, dass ist. + d e ik + ib i sgn b 2π e kb kb > kb < i sgn b π k, b undefiniert b (b) Da cos k 2( e ik + e ik), können wir Aufgabe (a) benuten: ist k, ist das Integral nicht definiert. Für k erhalten wir + d cos k + ib 2 + iπ sgnb e kb. d eik + ib d e ik + ib 22πi e kb (c) Vom vorgeschlagenen Integrationspfad ist ein einfacher Pol eingeschlossen, nämlich e i π 3. Daher erhalten wir γ R [Re i 2π 3,] 3 + 2πi Res e i π [,R] Die rechte Seite berechnet sich u 2πi Res e i π 3 [Re i 2π 3,] 3 + 2πi ( 3 + ) e i π 3 e i π 3 2πi 3e i 2π 3 2π 3 ei π 6. Den letten Term können wir umformen, so dass, abgesehen von einem Vorfaktor, wieder der erste Term dasteht: 3 + ds Re i 2π sre i 2π 3 3 s 3 R 3 e i2π + e i 4π 3 Der mittlere Term verschwindet im Limes großer R: 2π/3 γ R 3 + ire it Re it R 3 e i3t + ds sr 4π s 3 R 3 ei 3 + 2π/3 [,R] 3 + R 2 R 3 e i3t + R Der Integrand kann unabhängig von R auf dem Intervall durch eine integrierbare Funktion abgeschätt werden (in diesem Fall durch das Supremum). Daher können Limes-Bildung und Integration miteinander vertauscht werden. Der Integrand geht aber punktweise gegen und somit verschwindet der Term im Grenfall. Es bleibt also übrig: ( lim R [,R] γ R ( e i ) 4π 3 d 3 + 3e i π 6 9 ) [Re i 2π 3,] 3 +! 2π 3 e i π 6

10 Daraus folgt d 3 + 2π 3 3. (d) Wir schreiben den sin als sin 2i( e i e i) und berechnen mit Aufgabe 39 (c) ( r lim d sin +r r /r + d sin + /r +/r + d sin ) /r 2i( iπ iπ ) Im iπ π. Wir haben ausgenütt, dass sin um beschränkt bleibt und daher der der lette Term verschwindet wenn r geht.

11 43. Residuen Berechnen Sie die Residuen von f n () ( 2 + ) n, n N. Falls n, ist f die konstante Funktion, die natürlich keine Pole hat. Ansonsten hat f n für n jeweils eine n-fache Nullstelle bei ±i, f n () ( + i) n ( i) n, und wir können die Formel aus der Vorlesung anwenden, d n Res i f n (n )! n ( d n i)n f n () i (n )! n ( + i i) n (n )! ( )n n (n + ) (2n 2) ( + i) (2n ) i (2n 2)! ( ) n i (2n ) (2n 2)! i ( ) 2 (n )! 2 2n ( ) 2 (n )! 2 2n. Gan ähnlich kann man das weite Residuum berechnen, d n Res i f n (n )! n ( + d n i)n f n () i (n )! n ( i i) n (n )! ( )n n (n + ) (2n 2) ( i) (2n ) i (2n 2)! ( ) n ( ) 2n i (2n ) (2n 2)! i ( ) 2 (n )! 2 2n + ( ) 2 (n )! 2 2n.

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

52 Andreas Gathmann. =: f + (z)

52 Andreas Gathmann. =: f + (z) 52 Andreas Gathmann 9. Laurent-Reihen In den letten beiden Kapiteln haben wir gesehen, dass sich holomorphe Funktionen lokal um jeden Punkt 0 in eine Potenreihe a n( 0 n entwickeln lassen, und daraus viele

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://www-m5.ma.tum.de/allgemeines/ma923 216S Sommersem. 216 Lösungsblatt 3 (29.4.216)

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung:

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung: Beispiel 1: Wegverformung Berechne: Lösung: [Man sagt: Folglich ist, mit existiert für alle hat eine "Singularität" oder "Pol".] analytisch auf Deswegen kann Wegunabhängigkeit (i.2) genutzt werden, um

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Das Gauss-Integral e x2 dx TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (nalysis 3 http://www.ma.tum.de/hm/m924 2W/

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 014 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion abhängig,

Mehr

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Strömungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204 200W/ Wintersemester

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Cauchysche Integralformel

Cauchysche Integralformel Aus der komplexen Differenzierbarkeit folgt somit die Existenz und Stetigkeit von Ableitungen beliebiger Ordnung. auchysche Integralformel 1-1 auchysche Integralformel Für ein beschränktes Gebiet D, das

Mehr

Mathematik für Ingenieure III Kurs-Nr WS 2007/08

Mathematik für Ingenieure III Kurs-Nr WS 2007/08 Mathematik für Ingenieure III Kurs-Nr. 93 WS 7/8 Kurseinheit 7: Lösungsvorschläge zu den Einsendeaufgaben Aufgabe : Es sollen die Singularitäten deren Art der folgenden Funktionen bestimmt werden. a fz

Mehr

Scheinklausur zur HM3 (vertieft) für LRT und MaWi

Scheinklausur zur HM3 (vertieft) für LRT und MaWi Prof. M. Eisermann Höhere Mathematik (vertieft). Deember 7 Scheinklausur ur HM (vertieft) für LRT und MaWi Aufgabe. Bitte füllen Sie folgendes aus! ( Punkt) Name: Musterlösung Matrikelnummer: Musterlösung

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 9/ 9..9 3. Übungsblatt zur Analysis II Gruppenübung Majorantenkriterium für uneigentliche Riemann-Integrale: Es seien f : [, ) [, ) und g

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

H.J. Oberle Komplexe Funktionen SoSe Residuensatz

H.J. Oberle Komplexe Funktionen SoSe Residuensatz H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Analysis 3 - Klausur - Lösung

Analysis 3 - Klausur - Lösung Wintersemester 23/24, Universität Bonn Analysis 3 - Klausur - Lösung Aufgabe : Sigma-Algebren (4+6 Punkte) a) Sei X eine Menge. Sei F = {{} : X}. Bestimmen Sie σ(f). b) Sei X eine Menge, Sei S P(X). Zeigen

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

(a) Laurentreihe. Dann gilt:a n = 0 n Z mitn<0. (a) Laurentreihe. Dann gilt: (1): k N:a k 0 und (2):

(a) Laurentreihe. Dann gilt:a n = 0 n Z mitn<0. (a) Laurentreihe. Dann gilt: (1): k N:a k 0 und (2): Lösungen ur Funktionentheorie Blatt Ergänendes Material: In der Funktionentheorie gibt drei Arten von isolierten Singularitäten: Hebbare Singularitäten, Pole Polstellen und wesentliche Singularitäten.

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Konvergenzverbesserung und komplexe Integrale

Konvergenzverbesserung und komplexe Integrale Konvergenzverbesserung und komplee Integrale Konvergenzverbesserung und komplee Integrale von Friedhelm Götze, Jena Vor kurzem erschien ein Artikel über den Residuensatz [] in der, in dem schon einige

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis ) MA903 http://www-m5.ma.tum.de/allgemeines/ma903 06S Sommersem. 06 Lösungsblatt 8 (3.6.06)

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Musterlösung zu Blatt 11, Aufgabe 1

Musterlösung zu Blatt 11, Aufgabe 1 Musterlösung zu Blatt, Aufgabe Analysis II MIIA SoSe 7 Martin Schottenloher Musterlösung zu Blatt, Aufgabe I Aufgabenstellung Berechnen Sie folgende komplexe Kurvenintegrale vgl. 3.9: a zn dz für n N,

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Aufgabe : Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Bilden die Lösungsmengen der folgenden linearen Gleichungssysteme jeweils einen Unterraum des IR 3? Begründen Sie. (i) (ii) + 3 =

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 24 2.5.24 Funktionentheorie Lösungsvorschläge zum 3. Übungsblatt Aufgabe (K) a) Beweisen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physiker (Analysis 3) I... Hinweise: II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physiker (Analysis 3) I... Hinweise: II... ................ Note I II Name Vorname Matrikelnummer tudiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNICHE UNIVEITÄT MÜNCHEN Fakultät für Mathematik

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

auf U heisst die Divergenz von K.

auf U heisst die Divergenz von K. 11.5 Integralsat von Gauss im R 2 11.5 Integralsat von Gauss im R 2 Seien weiter K = K ( ) x =(K1,K y 2 ) ein C 1 -Vektorfeld auf einer offenen Teilmenge U R 2 und eine kompakte Teilmenge von U mit orientiertem

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr