14. elektrischer Strom
|
|
|
- Miriam Hildegard Grosse
- vor 10 Jahren
- Abrufe
Transkript
1 Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger = Elektronen, die nicht an best. Atome im Kristallgitter gebunden sind. In einem elektr. Leiter sind Ladungsträger frei beweglich Legt man an einen solchen Leiter eine Spannung U, so geraten die Ladungen in Bewegung, es fließt ein elektr. Strom: Elektr. Strom: I= Q/ t [I]= Ampere; 1 A = 1 C/s
2 Elektronenbewegung: 14. elektrischer Strom - Beschleunigung durch elektr. Felder für kurze Zeiten (~10-14 s) - Abbremsung durch Stöße mit Atomen -> konstante Driftgeschwindigkeit v (ähnlich dem Fall einer Kugel im zähen Medium: geschwindigkeitsabh. Reibungkraft) im Leiter: -Reibungskraft F R - Kraft durch äußeres Feld: F e ρ = Ladung im Teilvolumen: Q Q = Q = A ρ x V A x F e = F R Q I = t U e E = e = γ R v : v ~ U d x = A ρ = A ρ v : I ~ v t I~U Ohmsches Gesetz: U= R. I R: elektr. Widerstand [R]: Ω : Ohm =V/A
3 14. elektrischer Strom Die Driftgeschwindigkeit der Elektronen ist typisch einige mm/s. Dagegen ist die elektrische Schalt- oder Signalgeschwindigkeit durch die Ausbreitungsgeschwindigkeit der Kraftfelder gegeben und fast gleich der Lichtgeschwindigkeit ( km/s). Analogie: Schalter Leitungsdraht Lampe Wasserhahn gefüllter Wasserschlauch Rasensprenger Widerstandsdraht: R= ρ. l/a, ρ: spezif. Widerstand (Länge l, Querschnitt A) - allgemein ist der Widerstand R nicht konstant, sondern hängt z.b. von der Temperatur ab. - Metalle: R steigt mit der Temperatur ( Reibung nimmt zu) - Halbleiter: R sinkt mit T (mehr freie Ladungsträger) - das Ohmsche Gesetz gilt für den Fall eines konstanten Widerstands. - für viele Materialien gilt dies bei konstanter Temperatur
4
5 Stromleitung in Flüssigkeiten galvanisches Element (Batterie): Zn Ionen gehen eher in Lösung als Cu Ionen ( Spannungsreihe der Metalle) Für 1 mol NaCl ( 58 gramm): Es werden N A = Kationen/Anionen abgeschieden ( Elektrolyse ) Q = e = 9, Coulomb = Faraday-Konstante = Ladung pro abgeschiedenes Mol
6 Stromleitung in Flüssigkeiten - geladene Atome-Moleküle = Ionen (pos., neg.) übernehmen Ladungstransport anstatt der Elektronen im Festkörper - Stromtransport = Materialtransport transportierte Ladung: I=Q/t - pro mol werden Q= Z. N A. e Ladungen benötigt (Z: Wertigkeit) H 2 O + NaCl (Elektrolyt): Na + Cl - : Z=1 (+ =Kationen > Kathode) Zn 2+ SO 2-4 : Z=2 N A. e: Faraday-Konstante F= C/mol 14. elektrischer Strom Stromleitung hängt von Konzentration und Beweglichkeit der Ionen ab ca mal geringer als in Metallen an Elektroden: Neutralisierung der Ionen durch Elektronenaufnahme/ -abgabe und Materialablagerung oder Lösung (Elektrolyse)
7 Stromleitung in Gasen Gase sind Nichtleiter, geringe Ionendichte durch radioaktive Strahlung und UV-Licht geringer Strom bei niedriger Spannung Gasentladung bei hoher Spannung (Blitz in Luft bei 10 6 V/m) Zwischen den Stößen gewinnt das Elektron im E-Feld genügend Energie, um weitere Elektronen aus den Atomhüllen zu stoßen ( Stoßionisation, dabei auch Anregung der Atome mit nachfolgender Lichtemission).
8 Stromleitung in Gasen: 14. elektrischer Strom Gasentladung: Beschleunigung durch Felder, Abbremsung durch Stöße ->konstante Driftgeschwindigkeit Anregen der Gasmoleküle (Leuchterscheinungen) Stoßionisation (neue Ladungsträger werden erzeugt, Lawinenverstärkung) Anwendungen: Leuchtstofflampen: niedriger Druck, ca mbar Strahlung durch Leuchtstoffe an Röhrenwand sichtbar machen (selbst meist UV) Nachweis v. rad. Strahlung: Geiger-Müller Zählrohr, Natur: Blitz
9 Stromleitung im Vakuum: - keine freien Ladungsträger vorhanden - Erzeugung z.b. durch Glühemission: > freie Elektronen im Vakuum: benötigt wird genügend Energie zur Überwindung der Austrittsarbeit beschleunigt durch Hochspannung - Anwendungen: Röntgenröhre, Fernsehröhre Oszilloskop, Elektronen-Mikroskop, Teilchenbeschleuniger 14. elektrischer Strom r r (F = e E) In der Atom-, Kern- und Teilchenphysik oft benutzte Einheit: Elektronenvolt [ev]: 1 ev = 1, C V = 1, J Ein Elektron hat nach Durchlaufen einer Potentialdifferenz von 1 Volt die kinetische Energie 1 Elektronenvolt.
10 14. elektrischer Strom Elektrische Stromkreise: U Widerstand Widerstand R (Leiter) Kennlinie: Zusammenhang zwischen Strom und Spannung Ohmscher Widerstand (U=R. I): Gerade
11 14. elektrischer Strom Parallel- und Serienschaltung von Widerständen: Parallelschaltung: Serienschaltung (Reihen-): Der Strom I spaltet sich in die Ströme I 1 und I 2 auf: U U I = I 1 + I 2 mit I 1 = und I 2 = R R I = U ( + ) = + R 1 R 2 R ges R R U=R ges I 1 2 Die Spannung U fällt nacheinander an den Widerständen R 1 und R 2 ab: U = U 1 + U 2 R ges = R 1 + R 2
12 Allgemein: Kirchhoffsche Gesetze 14. elektrischer Strom
13 Leistung Q x E r Widerstandsdraht U Arbeit Leistung W = F x = Q E { x = Q U P = W t = U Q U = I U t Für Ohmschen Widerstand: P = R I² Wärmeenergie (+ Strahlungsenergie) Einheit von P: Volt Ampere = Watt V A = W
14 Magnetostatik: zeitlich konstante Magnetfelder Ein stromdurchflossener Leiter ist von einem kreisförmigen Magnetfeld umgeben (Ørsted, 1820) Bewegte Ladungen (elektrische Ströme) erzeugen magnetische Kraftfelder: B-Feld 15. magnetische Felder - B-Feld ist Wirbelfeld, hat keine Quellen oder Senken - es gibt keine magnetische Ladung (Ampère sches Gesetz) In einer Spule addieren sich die Felder benachbarter Drähte vektoriell. Es ergibt sich eine im Vergleich zum Einzeldraht höhere Feldliniendichte im Inneren der Spule, die annähernd homogen ist. Mit Eisenfeilspänen läßt sich das magnetische Kraftfeld sichtbar machen.
18. Vorlesung III. Elektrizität und Magnetismus
18. Vorlesung III. Elektrizität und Magnetismus 17. Elektrostatik Zusammenfassung Nachtrag zur Influenz: Faraday-Käfig 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen; elektrische Stromkreise)
17. Vorlesung EP. III. Elektrizität und Magnetismus
17. Vorlesung EP III. Elektrizität und Magnetismus 17. Elektrostatik (Fortsetzung) Spannung U Kondensator, Kapazität C Influenz 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen) Stromkreise
3.4. Leitungsmechanismen
a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie
Der elektrische Strom
Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei
3. Halbleiter und Elektronik
3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden
Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron
Sehr gute Leiter Cu Z=29 Ag Z=47 Au Z=79 64 29 Cu 108 47 Ag 197 79 Au 1 Valenzelektron Die elektrische Ladung e - p + Die Grundbausteine der Atome (und damit aller Materie) sind Elektronen und Protonen
4.2 Gleichstromkreise
4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()
1 Grundwissen Energie. 2 Grundwissen mechanische Energie
1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt
Verbraucher. Schalter / offen
Elektrischer Strom Strom... treibt Maschinen an... Licht... Heizung... Kraftwerk... GEFAHR Begriffe: Stromkreis Stromquelle Schaltskizze (Schaltplan) Symbole für die Schaltskizze: Verbraucher (z. B. Glühlämpchen)
Grundlagen der Elektronik
Grundlagen der Elektronik Wiederholung: Elektrische Größen Die elektrische Stromstärke I in A gibt an,... wie viele Elektronen sich pro Sekunde durch den Querschnitt eines Leiters bewegen. Die elektrische
Frühjahr 2000, Thema 2, Der elektrische Widerstand
Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov [email protected] Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei
Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung
Kern-Hülle-Modell Ein Atom ist in der Regel elektrisch neutral: das heißt, es besitzt gleich viele Elektronen in der Hülle wie positive Ladungen im Kern Modellvorstellung zum elektrischen Strom - Strom
Begriffe zur Elektrik und Elektrochemie
Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zur Elektrik und Elektrochemie Akkumulator Atom Atomkern Batterie Ein Akkumulator ist eine Energiequelle, die wie eine Batterie Gleichstrom
Elektrische Spannung und Stromstärke
Elektrische Spannung und Stromstärke Elektrische Spannung 1 Elektrische Spannung U Die elektrische Spannung U gibt den Unterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei
Elektrischer Strom. Strommessung
Elektrischer Strom. Elektrischer Strom als Ladungstransport. Wirkungen des elektrischen Stromes 3. Mikroskopische Betrachtung des Stroms, elektrischer Widerstand, Ohmsches Gesetz 4. Elektrische Netzwerke
Beschreibung Magnetfeld
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei
Grundlagen der Elektrotechnik
Grundlagen der Elektrotechnik Was hat es mit Strom, Spannung, Widerstand und Leistung auf sich Michael Dienert Walther-Rathenau-Gewerbeschule Freiburg 23. November 2015 Inhalt Strom und Spannung Elektrischer
1. Theorie: Kondensator:
1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und
Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.
Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische
Verschiedene feste Stoffe werden auf ihre Leitfähigkeit untersucht, z.b. Metalle, Holz, Kohle, Kunststoff, Bleistiftmine.
R. Brinkmann http://brinkmann-du.de Seite 1 26/11/2013 Leiter und Nichtleiter Gute Leiter, schlechte Leiter, Isolatoren Prüfung der Leitfähigkeit verschiedener Stoffe Untersuchung fester Stoffe auf ihre
3. Stromtransport in Gasen i) Erzeugung von Ladungsträgern ii) Unselbständige Entladung iii) Selbständige Entladung
Netz Hochspannung 0 1 0 20 Elektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) Eigen- und Fremdleitung in Halbleitern iii) Stromtransport
2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten
Leitungsversuche: Destilliertes Wasser Leitungswasser NaCl i Wasser Abhängigkeiten: Vorhandensein von Ladungsträgern Beweglichkeit der Ladungsträger ("Häufigkeit von Stößen", " Reibung") Anode + Kathode
Kleine Elektrizitätslehre 4001
Kleine Elektrizitätslehre 4001 Fischereiinspektorat des Kantons Bern (Ausbildungsunterlagen Elektrofischerei EAWAG 2010) 1 Kleine Elektrizitätslehre Wassersystem 4002!! Je grösser die Höhendifferenz desto
Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:
Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von
12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker
12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein
oder: AK Analytik 32. NET ( Schnellstarter All-Chem-Misst II 2-Kanäle) ToDo-Liste abarbeiten
Computer im Chemieunterricht einer Glühbirne Seite 1/5 Prinzip: In dieser Vorübung (Variante zu Arbeitsblatt D01) wird eine elektrische Schaltung zur Messung von Spannung und Stromstärke beim Betrieb eines
18. Magnetismus in Materie
18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der
TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis
TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 9 Einphasenwechselspannung 9.1 Induktivität einer Drosselspule (Fluoreszenzleuchte) 9.2 Induktivität ohne Eisenkern an Wechselspannung 9.3 Induktivität mit
Widerstandsdrähte auf Rahmen Best.-Nr. MD03803
Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Beschreibung des Gerätes Auf einem rechteckigen Rahmen (1030 x 200 mm) sind 7 Widerstandsdrähte gespannt: Draht 1: Neusilber Ø 0,5 mm, Länge 50 cm, Imax.
3 Elektrische Leitung
3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung
Elektrische Energie, Arbeit und Leistung
Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen
EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:
david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit
Die elektrische Spannung ist ein Maß für die Stärke einer Quelle.
Elektrisches und magnetisches Feld -. Grundlagen. Die elektrische Spannung: Definition: Formelzeichen: Einheit: Messung: Die elektrische Spannung ist ein Maß für die Stärke einer Quelle. V (Volt) Die Spannung
= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden
2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte
Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung)
Übungsaufgaben Elektrizitätslehre Klassenstufe 8 Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung) 4 ufgaben mit ausführlichen Lösungen (3 Seiten Datei: E-Lehre_8_1_Lsg) Eckhard Gaede
11. Elektrischer Strom und Stromkreise
11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand d 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter und
Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion
(Graphit) Cl - Abgabe von Elektronen: Oxidation Anode Diaphragma H + Elektrolyse Wird in einer elektrochemischen Zelle eine nicht-spontane Reaktion durch eine äußere Stromquelle erzwungen Elektrolyse-Zelle
Elektrische Ladung und elektrischer Strom
Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht
Grundlagen der Elektrotechnik im Überblick. Brückenkurs Physik, 5. Tag
Grundlagen der Elektrotechnik im Überblick Brückenkurs Physik, 5. Tag Worum geht es? Elektrische Ladung Elektrische Spannung Elektrische Stromstärke Reihen- und Parallelschaltung von Widerständen 24.09.2014
ELEXBO. ELektro - EXperimentier - BOx
ELEXBO ELektro - EXperimentier - BOx 1 Inhaltsverzeichnis 2 Einleitung.3 Grundlagen..3 Der elektrische Strom 4 Die elektrische Spannung..6 Der Widerstand...9 Widerstand messen..10 Zusammenfassung der elektrischen
Grundwissen Physik (8. Klasse)
Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:
Inhalt. Thema: Energie. Gedanke. Experiment/Spiel. Thema. Batterietests. Batterie. Batterien haben zwei Pole. Strom erzeugen
Inhalt Experiment/Spiel Thema Gedanke Batterietests Batterie Batterien haben zwei Pole. Experiment Elektrizität herstellen Strom erzeugen Elektrizität kann durch Bewegung erzeugt werden. Experiment Stromkreis
M316 Spannung und Strom messen und interpretieren
M316 Spannung und Strom messen und interpretieren 1 Einstieg... 2 1.1 Hardwarekomponenten eines PCs... 2 1.2 Elektrische Spannung (U in Volt)... 2 1.3 Elektrische Stromstärke (I in Ampere)... 3 1.4 Elektrischer
Strukturen und Analogien im Physikunterricht der Sekundarstufe 1. Das elektrische Potenzial im Anfangsunterricht (Klasse 7 / 8)
Strukturen und Analogien im Physikunterricht der Sekundarstufe 1 Das elektrische Potenzial im Anfangsunterricht (Klasse 7 / 8) Vorgaben der Standards für Klasse 8:... 7. Grundlegende physikalische Größen
Atomphysik NWA Klasse 9
Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB Auf dem Weg zum Quantennormal für die Stromstärke Doris III am DESY 1 Versuch zur Stromwirkung: Leuchtende Gurke 2 2.1.2 Stromdichte
Werkstoffkunde Chemische Bindungsarten
Folie 1/27 Die Elektronen auf der äußersten Schale eines Atoms (Außenelektronen oder Valenzelektronen genannt) bestimmen maßgeblich die chemischen Eigenschaften. Jedes Atom hat dabei das Bestreben die
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger
Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder.
Newton 10 und / Elektrizitätslehre Kapitel 1 Gesetzmäßigkeiten des elektrischen Stromkreises 1.1 Widerstände hemmen den Stromfluss Ohm sches Gesetz und elekt- rischer Widerstand Seite 13 / 14 1. Welche
Grundlagen der Elektrik Kapitel 1
Grundlagen der Elektrik 1. Atomaufbau 2 2. Elektrische Leitfähigkeit 4 3. Elektrische Spannung 5 4. Elektrischer Strom 7 5. Elektrischer Widerstand 11 6. Ohmsches Gesetz 14 7. Grundschaltungen 17 8. Elektrische
8. Halbleiter-Bauelemente
8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung
PS II - Verständnistest 24.02.2010
Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:
Das statische magnetische Feld
Das statische magnetische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Magnetisches Feld (2 Std.) 2 (6 Std.) Lorentzkraft E Magnetfeld (B-Feld) eines Stabmagneten LV: Eisenfeil-
Versuchsprotokoll. Die Röhrendiode. zu Versuch 25. (Physikalisches Anfängerpraktikum Teil II)
Donnerstag, 8.1.1998 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 25 Die Röhrendiode 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische
Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)
Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen
Elektrische Leitfähigkeit
A. Allgemeines Unter der elektrischen Leitfähigkeit versteht man die Fähigkeit F eines Stoffes, den elektrischen Strom zu leiten. Die Ladungsträger ger hierbei können k sein: Elektronen: Leiter 1. Art
Rotierende Leiterschleife
Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische
Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)
Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie
Chemische Bindung. Chemische Bindung
Chemische Bindung Atome verbinden sich zu Molekülen oder Gittern, um eine Edelgaskonfiguration zu erreichen. Es gibt drei verschiedene Arten der chemischen Bindung: Atombindung Chemische Bindung Gesetz
Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.
Spannung und Strom E: Klasse: Spannung Die elektrische Spannung gibt den nterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole, mit unterschiedlichen Ladungen. uf der
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der
Energieströme im elektromagnetischen Feld
πάντα ῥεῖ alles fließt Karlsruhe 28. März 2011 Energieströme im elektromagnetischen Feld Peter Schmälzle Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Karlsruhe [email protected] Elektrisches
Berechnungsgrundlagen
Inhalt: 1. Grundlage zur Berechnung von elektrischen Heizelementen 2. Physikalische Grundlagen 3. Eigenschaften verschiedener Medien 4. Entscheidung für das Heizelement 5. Lebensdauer von verdichteten
Wärmeleitung und thermoelektrische Effekte Versuch P2-32
Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock
Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.
Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......
Elektrik Grundlagen 1
Elektrik Grundlagen. Was versteht man unter einem Stromlaufplan? Er ist die ausführliche Darstellung einer Schaltung in ihren Einzelheiten. Er zeigt den Stromverlauf der Elektronen im Verbraucher an. Er
TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg
TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die
Christian-Ernst-Gymnasium
Christian-Ernst-Gymnasium Am Langemarckplatz 2 91054 ERLANGEN GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie C 9.1 Stoffe und en Element kann chemisch nicht mehr zerlegt werden Teilchen
Peltier-Element kurz erklärt
Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4
RFH Rheinische Fachhochschule Köln
4. 8 Meßzangen für Strom und Spannung Für die Messung von hohen Strömen oder Spannungen verwendet man bei stationären Anlagen Wandler. Für die nichtstationäre Messung von Strömen und Spannung, verwendet
Grundlagen der Chemie Elektrochemie
Elektrochemie Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrischer Strom Ein elektrischer Strom ist ein
Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie
Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der
Elektrische Einheiten und ihre Darstellung
Die Messung einer physikalischer Größe durch ein Experiment bei dem letztlich elektrische Größen gemessen werden, ist weit verbreitet. Die hochpräzise Messung elektrischer Größen ist daher sehr wichtig.
Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010
1 Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 Themen: Metallische Bindungen (Skript S. 51 53, inkl. Arbeitsblatt) Reaktionsverlauf (Skript S. 54 59, inkl. Arbeitsblatt, Merke, Fig. 7.2.1
Elektrischer Widerstand
In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren
GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie
Christian-Ernst-Gymnasium Am Langemarckplatz 2 91054 ERLANGEN GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie C 9.1 Stoffe und Reaktionen Reinstoff Element Kann chemisch nicht mehr zerlegt
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.
3B SCIENTIFIC PHYSICS
B SCIENTIFIC PHYSICS Triode S 11 Bedienungsanleitung 1/15 ALF 1 5 7 1 Führungsstift Stiftkontakte Kathodenplatte Heizwendel 5 Gitter Anode 7 -mm-steckerstift zum Anschluss der Anode 1. Sicherheitshinweise
Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse
Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter
5. Arbeit und Energie
Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von
Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit
Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.
Physikalisches Praktikum Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert E 0 Ohmsches Gesetz & nnenwiderstand (Pr_Ph_E0_nnenwiderstand_5, 30.8.2009).
Klassenstufe 6.1 Licht und Schatten
Klassenstufe 6.1 Licht und Schatten Inhalte Sehen und gesehen werden Lichtquellen Kompetenzbereiche Ein Gegenstand wird Die Schüler sammeln Beispiele für Viele Beispiele für leuchtende gesehen, wenn von
Strom - Spannungscharakteristiken
Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.
IPN Curriculum Physik. Der elektrische Stromkreis als System
IPN Curriculum Physik Unterrichtseinheiten für das 7. und 8. Schuljahr Der elektrische Stromkreis als System Stromstärke Spannung Widerstand orschläge für Testaufgaben 2 3 1 Teil 1: Strom und Widerstand
ELEXBO A-Car-Engineering
1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben
Aufgaben Wechselstromwiderstände
Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose
16 Übungen gemischte Schaltungen
6 Übungen gemischte Schaltungen 6. Aufgabe Gemischt (Labor) a) Berechne alle Ströme und Spannungen und messe diese nach! 3 = Rges = + 3 = 4,39kΩ 3 =,939kΩ Iges= Rges =2,46mA=I U = * I = 5,32V = U3 = U
Elektrizitätslehre 3.
Elektrizitätslehre 3. Elektrischer Strom Strom = geordnete Bewegung der Ladungsträgern Ladungsträgern: Elektronen Ionen Strom im Vakuum Strom im Gas Strom in Flüssigkeit (Lösung) Strom im Festkörper Leiter
Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.
Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn
Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur
Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen
Energie, mechanische Arbeit und Leistung
Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können
Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND
112 KAPTEL 2. STROMFLSS DRCH LETER; EL. WDERSTAND 2.3 Spannungsquellen n diesem Abschnitt wollen wir näher besprechen, welche Arten von Spannungsquellen real verwendet werden können. 2.3.1 Kondensatoren
Elektrischen Phänomene an Zellmembranen
Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene
1 Wechselstromwiderstände
1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt
Gase, Flüssigkeiten, Feststoffe
Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.
