Die Programmieraufgaben
|
|
|
- Gerhardt Schräder
- vor 7 Jahren
- Abrufe
Transkript
1 Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS 2006 Die Programmieraufgaben Jan Mayer 18. Mai 2006
2 Lösung zur ersten Aufgabe Tschebyscheff Stuetzstellen.m function xs = Tschebyscheff Stuetzstellen(n); % berechnet die Nullstellen des n-ten Tschebyscheff-Polynoms. xs = cos( (2*((1:n) )-1)*pi/(2*n) ); Runge.m function y = Runge(x) % Berechnet 1 / (1+ 25x^2) y = 1./ (1+25*x.^2); Matlab: eine kleine Einführung 2
3 NewtonInterpolation.m function s = NewtonInterpolation(xs,f) % Eingabe: Stützstellen xs. % Stützwerte y. % Ausgabe: Steigungen s. n = length(xs); F = zeros(n,n); F(:,1) = f; for m = 2:n for k = m:n F(k,m) = (F(k-1,m-1)-... F(k,m-1))/(xs(k-m+1)-xs(k)); s=diag(f); Matlab: eine kleine Einführung 3
4 Lösung zur ersten Aufgabe eval NewtonPolynom.m function y = eval NewtonPolynom(xs,s,x) % Wertet das Newtonpolynom mit Horner-Schema aus. % Eingabe: Stützstellen xs. % Steigungen s. % Stelle x. % Ausgabe: Funktionswerte y. n = length(s); y = s(n)*ones(size(x)); for k = n-1:-1:1 y = y.*(x-xs(k)) + s(k); Matlab: eine kleine Einführung 4
5 Lösung zur ersten Aufgabe visualisierung aequidistant.m function visualisierung aequidistant(ssz) xplot = (-1:0.01:1) ; Y = []; for k = SSZ xs = (-1:(2/(k-1)):1) ; s = NewtonInterpolation(xs,Runge(xs)); yplot = eval NewtonPolynom(xs,s,xplot); Y = [Y,yplot]; Y = [Runge(xplot),Y]; plot(xplot,y); Matlab: eine kleine Einführung 5
6 Lösung zur ersten Aufgabe visualisierung aequidistant.m function visualisierung aequidistant(ssz) xplot = (-1:0.01:1) ; Y = []; for k = SSZ xs = (-1:(2/(k-1)):1) ; s = NewtonInterpolation(xs,Runge(xs)); yplot = eval NewtonPolynom(xs,s,xplot); Y = [Y,yplot]; Y = [Runge(xplot),Y]; plot(xplot,y); Matlab: eine kleine Einführung 6
7 Lösung zur ersten Aufgabe visualisierung Tschebyscheff.m function visualisierung Tschebyscheff(SSZ) xplot = (-1:0.01:1) ; Y = []; for k = SSZ xs = Tschebyscheff Stuetzstellen(k); s = NewtonInterpolation(xs,Runge(xs)); yplot = eval NewtonPolynom(xs,s,xplot); Y = [Y,yplot]; Y = [Runge(xplot),Y]; plot(xplot,y); Matlab: eine kleine Einführung 7
8 Die 2. Aufgabe: Kubische Spline-Interpolation der Lemniscate Die Lemniscate ist gegeben in Parameterform durch: cos t x 1 + sin 2 t = Φ(t) = y sin t cos t, t R 1 + sin 2 t Matlab: eine kleine Einführung 8
9 Die 2. Aufgabe visualisierung natuerlicher spline.m function visualisierung natuerlicher spline(ssz) % t-werte für Plot: t = (0 : 2*pi/200 : 2*pi) ; % exakte Werte für Lemniscate abspeichern: [X,Y] = lemniscate(t); Matlab: eine kleine Einführung 9
10 Die 2. Aufgabe visualisierung natuerlicher spline.m for k = SSZ % äquidistante Stützstellen bestimmen: ts = (0:2*pi/(k-1):2*pi) ; % Werte für Stützstellen berechnen: [fx,fy] = lemniscate(ts); % sigmas für x bzw. y Werte berechnen: sigmax = sigma natuerlicher spline(ts,fx); sigmay = sigma natuerlicher spline(ts,fy); % Splines for x bzw. y Werte erzeugen: Sx = spline erzeugen(ts,fx,sigmax); Sy = spline erzeugen(ts,fy,sigmay); Matlab: eine kleine Einführung 10
11 Die 2. Aufgabe visualisierung natuerlicher spline.m % Splines auswerten: x = spline auswerten(sx,t); y = spline auswerten(sy,t); % Matrix zum plotten aufbauen: X = [X,x]; Y = [Y,y]; plot(x,y); Matlab: eine kleine Einführung 11
12 Die 2. Aufgabe visualisierung periodischer spline.m: verwe: sigma periodischer spline statt sigma natuerlicher spline Matlab: eine kleine Einführung 12
13 Weitere Hinweise zur 2. Aufgabe Ein kubischer Spline kann dargestellt werden in der Form: s(x) = γ j (x x j 1 ) 3 + δ j (x j x) 3 + α j (x x j 1 ) + β j (x j x) für x [x j 1,x j ], j = 2,...,n und mit γ j = σ j 6h j 1 δ j = σ j 1 6h j 1 α j = f j 1 6 h2 j 1 σ j h j 1 β j = f j h2 j 1 σ j 1 h j 1. Beachte: diese Formeln unterscheiden sich von denen aus der Vorlesung, da die Indizierung bei 1 statt 0 beginnt! Matlab: eine kleine Einführung 13
14 Weitere Hinweise zur 2. Aufgabe Speicher deswegen ab in einer (n 5)-Matrix S spaltenweise: S(1:n,1) = xs S(2:n,2) = γ S(2:n,3) = δ S(2:n,4) = α S(2:n,5) = β. Beachte: Die Elemente S(1, 2: 5) sind bedeutungslos. Matlab: eine kleine Einführung 14
15 Weitere Hinweise zu MATLAB Vektorisierung for-schleifen werden normalerweise verwet um: eine Rekursion durchzuführen. Die berechneten Werte hängen von einander ab, z.b. x n+1 = f(x n ), n = 1,...,N. Hier muss eine for-schleife verwet werden! Matlab: eine kleine Einführung 15
16 Weitere Hinweise zu MATLAB Vektorisierung for-schleifen werden normalerweise verwet um: diesselbe Rechnung für alle Einträge in einem Vektor bzw. Matrix durchzuführen. In diesem Fall hängt keiner der berechneten Werte von anderen ab, z.b. x n = 4 x n oder x n = n x n, n = 1,...,N. Hier sollte durch Vektorisierung die for-schleife vermieden werden! x = 4*x bzw. x = (1:length(x)).*x Matlab: eine kleine Einführung 16
17 Nach dem 1. Schritt: Vektorisierung Gauß sche Elimination keinen Zugriff : nur gelesen, unverändert verändert Matlab: eine kleine Einführung 17
18 Vektorisierung for i = k+1:n for j = k+1:n A(i,j) = A(i,j) - A(i,k)*A(k,j)/A(k,k); i = k+1:n j = k+1:n A(i,j) = A(i,j) - A(i,k)*A(k,j)/A(k,k); Rechenzeit 1 für n=300 und k=1: mit for-scheifen: 3.46 sec. mit Vektorisierung: 0.11 sec. 1 Higham, D.; Higham N.: Matlab Guide. SIAM Matlab: eine kleine Einführung 18
19 Weitere Hinweise zu MATLAB Speicherplatzreservierung x(1:2)=1; for i = 3:n x(i) = 0.25*x(i-1)^2 - x(i-2); x = ones(n,1); for i = 3:n x(i) = 0.25*x(i-1)^2 - x(i-2); Rechenzeit 2 für n=10000: ohne Speicherplatzzuweisung im Voraus: 5.88 sec. mit Speicherplatzzuweisung im Voraus: 0.38 sec. 2 Higham, D.; Higham N.: Matlab Guide. SIAM Matlab: eine kleine Einführung 19
Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006
Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS 2006 Matlab: Fortsetzung Jan Mayer 4. Mai 2006 Manipulation von Matrizen und Vektoren [M,N]=size(A); speichert die Dimension einer Matrix bzw.
6. Polynom-Interpolation
6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für
Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) =
Übungen zur Ingenieur-Mathematik II SS 2017 Blatt 6 2.5.2017 Aufgabe 1: Betrachten Sie die Funktion Lösung: f(x) = 1, x [, 1]. 1 + 25x2 a) Bestimmen Sie die Interpolationspolynome vom Grad m p m (x) =
H.J. Oberle Analysis II SoSe Interpolation
HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,
Analysis II für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 2014 Prof. Dr. Armin Iske Dr. Hanna Peywand Kiani Analysis II für Studierende der Ingenieurwissenschaften Blatt 3, Hausaufgaben Aufgabe 1: a) Es sei
19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .
Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe
5 Interpolation und Approximation
5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)
(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)
33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen
Numerisches Programmieren, Übungen
Technische Universität München SoSe 20 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 6 Übungsblatt:
D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2
D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)
Übungsblatt 3 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale
Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.
Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen
Interpolation, numerische Integration
Interpolation, numerische Integration 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. Mai 2014 Gliederung 1 Interpolation polynomial Spline 2 Numerische
Übungsblatt 4 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome
Inhalt Kapitel IV: Interpolation
Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten
Übungsblatt 2 Musterlösung
MSE SS17 Übungsblatt Musterlösung Lösung 5 (Transformation von Variablen) Zur Transformation gehen wir analog zur Vorlesung vor. Zunächst bestimmen wir die durch die PDGL definierte Matrix A und deren
Matlab: eine kurze Einführung
Matlab: eine kurze Einführung Marcus J. Grote Christoph Kirsch Mathematisches Institut Universität Basel 4. April 2 In dieser Einführung zu Matlab sind die im Praktikum I erworbenen Kenntnisse zusammengefasst.
Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:
5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)
8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.
8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis
Matlab: eine kleine Einführung 2
Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS 6 Matlab: eine kleine Einführung Jan Mayer 27. April 6 Linux Matlab: eine kleine Einführung 2 Linux Matlab starten: 1. Konsole öffnen (Bildschirm-Icon
Die Interpolationsformel von Lagrange
Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten (x i,f i ), i =,...,n mit paarweise verschiedenen Stützstellen x i x j, für i j, gibt es genau ein Polynom π n P n
Interpolation, numerische Integration, Eigenwerte
Neunte Vorlesung, 29. Mai 2008, Inhalt Interpolation, numerische Integration, Eigenwerte Polynomiale Interpolation (Lagrange, Newton, Neville) Splines und weitere Interpolationsverfahren numerische Integration
c) Realisierung des Gauß Algorithmus in Gleitpunktarithmetik: Fehlerschranke hängt linear ab von max i,k l ik. 8n 3 max i,j,k a (k) ij ε.
Matrix unverändert: A = QR cond 2 (R) = cond 2 (A). c) Realisierung des Gauß Algorithmus in Gleitpunktarithmetik: Fehlerschranke hängt linear ab von max i,k l ik. Spaltenpivotisierung: l ik 1 kleine Fehlerschranke
Numerische Methoden 7. Übungsblatt
Karlsruher Institut für Technologie (KIT) SS 01 Institut für Analysis Prof Dr Michael Plum Dipl-Mathtechn Rainer Mandel Numerische Methoden 7 Übungsblatt Aufgabe 17: Quadratur II Die Menge aller Polynome
Matlab: eine kurze Einführung
Matlab: eine kurze Einführung Marcus J. Grote, Christoph Kirsch, Imbo Sim Department of Mathematics, University of Basel, INRIA 26. März 27 In dieser Einführung zu Matlab sind die im Praktikum I erworbenen
1/26. Integration. Numerische Mathematik 1 WS 2011/12
1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren
5 Interpolation und numerische Approximation
Numerik I 194 5 Interpolation und numerische Approximation 5.1 Polynominterpolation 5.2 Spline-Interpolation 5.3 Diskrete Fourier-Transformation 5.4 Schnelle Fourier-Transformation (FFT) 5.5 Eine Anwendung
MATLAB: Kapitel 3 Programmieren
Bisher wurde gezeigt, wie Matlab sequentiell (d.h. in unverzweigten Strukturen) Anweisungen abarbeitet. Sollen jedoch komplizierter Sachverhalte programmiert werden, sind verzweigte Strukturen unerlässlich.
Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016
Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.
12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx
12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant
Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010
Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte
Nachklausur am Donnerstag, den 7. August 2008
Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:
VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.
IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei
Einführung in die numerische Mathematik
Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis
Übungsblatt 1 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel
Klassische Polynom Interpolation.
Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster
Programmieraufgaben zur Vorlesung Numerik (Lehramt) Sommersemester
Programmieraufgaben zur Vorlesung Numerik (Lehramt) Sommersemester 2018 1 Aufgabe 1 Ein überaus beliebter Mathematikprofessor bietet vier Studenten eine zusätzliche Konsultation zur Numerik an. Leider
KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.
MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw
Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b.
Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. - Polynome, - rationale Funktionen, - trigonometrische Polynome, - Splines. Interpolationsproblem 4: Sei f : [a,b]
6 Polynominterpolation
Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}
1 2 x x x x x x2 + 83
Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die
T n (1) = 1 T n (cos π n )= 1. deg T n q n 1.
KAPITEL 3. INTERPOLATION UND APPROXIMATION 47 Beweis: Wir nehmen an qx) für alle x [, ] und führen diese Annahme zu einem Widerspruch. Es gilt nach Folgerung ii) T n ) T n cos π n ). Wir betrachten die
Klausur zur Vordiplom-Prüfung
Technische Universität Hamburg-Harburg SS Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren. Juli Sie haben Minuten Zeit zum Bearbeiten der Klausur. Bitte
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim
Numerische Verfahren
Numerische Verfahren Jens-Peter M. Zemke [email protected] Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht
Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017
Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die
Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17
Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Regression, Interpolation, numerische. Integration
,, numerische 9. Vorlesung 170004 Methoden I Clemens Brand 20. Mai 2010 Gliederung : Aufgabenstellung Gesucht ist ein Polynom, das die Datenpunkte möglichst gut approximiert Gegeben m+1 Wertepaare (x i,
NUMERISCHE MATHEMATIK I
D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x
Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017
Numerik gewöhnlicher Differentialgleichungen (MA234) Modulprüfung F. Bornemann, C. Ludwig 4. August 27 Aufgabe ( min) (a) Implementiere in Julia mit den Eingaben a, b, f und n die summatorische Trapez-Regel
Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016
Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b
Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015
Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix
KAPITEL 8. Interpolation
KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0
NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002
NUMERISCHE MATHEMATIK II 1 (Studiengang Mathematik) Prof Dr Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2001/2002 1 Korrekturen, Kommentare und Verbesserungsvorschläge bitte
Interpolation und Approximation von Funktionen
Kapitel 6 Interpolation und Approximation von Funktionen Bei ökonomischen Anwendungen tritt oft das Problem auf, dass eine analytisch nicht verwendbare (oder auch unbekannte) Funktion f durch eine numerisch
2.2. Übung. Einführung in die Programmierung (MA 8003)
Technische Universität München M2 - Numerische Mathematik Dr. Laura Scarabosio 2.2. Übung. Einführung in die Programmierung (MA 8003) Hinweis: Ab jetzt werden Schleifen benötigt. Aufgabe 2.2.1: Verändern
Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen
Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)
Polynominterpolation
Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses
Numerische Verfahren Übungen und Lösungen, Blatt 1
Technische Universität Hamburg-Harburg Institut für Numerische Simulation, E-0 Dr. Jens-Peter M. Zemke Sommersemester 2008 Numerische Verfahren Übungen und Lösungen, Blatt Aufgabe : (Thema: relativer und
7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)
Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl
Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.
Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade
Numerische Integration und Differentiation
Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)
Extremwertrechnung in mehreren Veränderlichen
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung
Einführung in Matlab, 2. Teil
1 / 18 Einführung in Matlab, 2. Teil Christof Eck, Monika Schulz und Jan Mayer Plotten von Funktionen einer Veränderlichen 2 / 18 Matlab plottet keine Funktionen, sondern Wertetabellen als Polygonzug!
Approximation, Interpolation, numerische Integration
Approximation, Interpolation, numerische Integration 7. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 12. Mai 2016 Approximation, Interpolation, numerische
8 Polynominterpolation
8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum
Institut für Geometrie und Praktische Mathematik
RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen
Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8
Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Umgang mit der Matlab-Umgebung Darstellung einfacher Graphen Analyse der
Approximation durch Polynome
durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz
Numerische Mathematik für das Lehramt - Formelsammlung
Numerische Mathematik für das Lehramt - Formelsammlung n + 1 reele Zahlen x 0,, x n und f 0,, f n (x i, f i x i heiÿen Stützstellen f i heiÿen Stützwerte von Julian Merkert, Sommersemester 006, Prof Alefeld
ÜBUNGSAUFGABEN ZUR NUMERIK 1
ÜBUNGSAUFGABEN ZUR NUMERIK 1 MARTIN EHLER, WS 2015/16 Teil 1. Matlab,... Aufgabe 1. Arbeiten Sie die Matlab Einführung von Waltraud Huyer durch, die unter dem Link http://www.mat.univie.ac.at/ huyer/matlab.pdf
Interpolation. Kapitel 3
Kapitel 3 Interpolation Die Interpolation von Funktionen oder Daten ist ein häufig auftretendes Problem sowohl in der Mathematik als auch in vielen Anwendungen Das allgemeine Problem, die sogenannte Dateninterpolation,
, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3
Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen
MATLAB-Toolskurs HS17
4 Kontrollstrukturen 1. Gegeben sei der Vektor x = [1 8 3 9 0 1]. Erstellen Sie kurze Kommandos, die: (for) Die Summe aller Elemente bilden (Kontrolle mit sum) (length) x = [1 8 3 9 0 1] s = 0; for k =
Übungen zu Splines Lösungen zu Übung 20
Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)
Tschebyscheff-Polynome
Institut für Numerische Mathematik Martin-Luther-Universiät Halle-Wittenberg 23. November 2006 1 Anwendung Definition Rekursionsgleichung 2 Symmetrie Nullstellen Extremwerte Asymtotisches Verhalten 3 Verhalten
Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,
Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.
a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.
Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.
