2.1 Gleichungen 2.Grades mit einer Unbekannten (Thema aus dem Bereich Algebra)



Ähnliche Dokumente
Thema aus dem Bereich Algebra Gleichungen III

F u n k t i o n e n Quadratische Funktionen

Repetitionsaufgaben: Quadratische Gleichungen

1.9 Ungleichungen (Thema aus dem Gebiet Algebra)

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen

Arbeitsblatt Gleichungen höheren Grades

J Quadratwurzeln Reelle Zahlen

2.3 Potenzen (Thema aus dem Bereichen Algebra)

2.6 Potenzen (Thema aus dem Bereichen Algebra)

Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo)

Ein Experte ist ein Mensch der in einem sehr kleinen Gebiet alle möglichen Fehler begangen hat.

1.2 Mengenlehre-Einführung in die reellen Zahlen

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Über das Rechteck weißt du, dass der Umfang 32 cm beträgt. Die Formel für den Umfang eines Rechtecks lautet 2 2.

Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A Schreiben Sie ohne Klammern und vereinfachen Sie so weit wie möglich.

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

Quadratische Gleichungen

6 Gleichungen und Gleichungssysteme

Polynomgleichungen. Gesetzmäßigkeiten

Lösungsmethoden von quadratischen Gleichungen

Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A 2015

Quadratische Gleichungen

1. Ermitteln Sie zunächst sämtliche Nullstellen und deren Vielfachheit und geben Sie den Funktionsterm als Produkt an

2 Multiplikation. 2. Berechne die folgenden Terme: a) 2x 2 2x = 2(x 2 x) b) 2x 5 + x 4 c) 6a 2 b + 3a 2 = 3(2a 2 b + a 2 ) d)

1.8 Mengenlehre-Einführung in die reellen Zahlen

Zahlen und Funktionen

Repetition Mathematik 8. Klasse

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Quadratische Gleichungen

Berufsmaturitätsprüfung 2016

Lösungen Prüfung Fachmaturität Pädagogik

Mathematikaufgaben zur Vorbereitung auf das Studium

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Quadratische Gleichungen

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 1: Gleichungen & Gleichungssysteme

Die Umkehrung des Potenzierens ist das Logarithmieren.

1 Nullstellen quadratischer Funktionen

1.2 Mengenlehre I-Einführung in die reellen Zahlen

Quadratische Gleichungen Teil 1. Nach diesem reichhaltigen Übungsmaterial sollte man fit sein. Wenig Theorie und viel Training. Datei Nr.

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

1 Algebra Klass-Algebra. 1.2 Bruchterme und Bruchgleichungen

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form

1.3 Gleichungen und Ungleichungen

Quadratische Gleichungen

Mathe Leuchtturm Übungsleuchtturm 5.Kl.

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

Gleichungsarten. Quadratische Gleichungen

Mathematikaufgaben zur Vorbereitung auf das Studium

Aufgabe 1 Gleichungen vereinfachen und lösen: 28

Wirtschaftsmathematik: Mathematische Grundlagen

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

F u n k t i o n e n Gleichungssysteme

mindestens zweiten Grades 1. Teil:

Inhaltsverzeichnis Mathematik

1.2 Rechnen mit Termen II

Algebraische Gleichungen

Partialbruchzerlegung für Biologen

1.Rationale und irrationale Zahlen. Quadratwurzel.

Teil I.2 Lösen von Bestimmungsgleichungen

QUADRATWURZELN FRANZ LEMMERMEYER

Übungen zu dem Mathe-Fit Kurs

6 Polynomielle Gleichungen und Polynomfunktionen

JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr

(Unvollständige) Zusammenfassung Analysis Grundkurs

1.5 lineare Gleichungssysteme

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16

(1) Werte berechnen und Definitionsbereich finden. (2) Kürzen und Erweitern von Bruchtermen

Graphen quadratischer Funktionen und deren Nullstellen

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

Teil 2. Mittelstufen-Algebra. Auf dem Niveau der Klasse 8 bis 10. Datei Nr

Lö sungen zu Wiederhölungsaufgaben Mathematik

KLASSE: NAME: VORNAME: Erreichte Punktzahl: LÖSUNG JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit:

2.2 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

Übungen zu dem Mathe-Fit Kurs

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Einführung in die quadratischen Gleichungen

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen

Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger

Juni 2015 Aufgabe 1: Flächenanteile (4)

Welche Nullstellen hat der Graph der Funktion a)

Mathematik für Wirtschaftswissenschaftler

Mathematik Klasse 8 Zusammenfassung

Quadratische Gleichungen

Abschlussprüfung 2010 Mathematik

4. Mathematikschulaufgabe

Erfolg in der Mathe-Prüfung 2019

Grundlagen Trainingsheft mit einer Sammlung an Übungsaufgaben zu Gleichungen dritten bis fünften Grades. Datei Nr Friedrich W.

Analysis: Ganzrationale Funktionen Analysis

1. Schularbeit. Gruppe A

Semesterprüfung Mathematik 2. Klasse KSR 2010

Aufgabe 1. Aufgabe 2. Aufgabe 3. Berufsmaturaprüfung 1998 Aufgaben

Aufgaben zu den ganzrationalen Funktionen

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

Mathematikaufgaben zur Vorbereitung auf das Studium

Transkript:

2.1 Gleichungen 2.Grades mit einer Unbekannten (Thema aus dem Bereich Algebra) Inhaltsverzeichnis 1 Definition der Gleichung 2.Grades mit einer Unbekannten 2 2 1.Spezialfall: Die Gleichung lässt sich faktorisieren 2 3 2.Spezialfall: Wurzel ziehen 4 4 Allgemeine Gleichung 2.Grades 4 4.1 Einschub: Zerlegen von Wurzeln............................... 4 4.2 Wir lösen eine Gleichung 2.Grades mit quadratischem Ergänzen.............. 5 4.3 Die Lösungsformel...................................... 6 5 Anzahl Lösungen einer Gleichung 2.Grades. 7 6 Biquadratische Gleichungen 8 6.1 Definition........................................... 8 6.2 Wie ermittle ich die Lösungsmenge einer biquadratischen Gleichung?........... 8 7 Textaufgaben, die auf Gleichungen 2.Grades führen. 9 1

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 2 1 Definition der Gleichung 2.Grades mit einer Unbekannten Beispiele von Gleichungen 2.Grades: 3x 2 + 4x 2 = 0 3x 2 + 4x 2 = x 3x 2 2 = 0 2x 2 + 2x 3 = x 2 (x 2) 2 + 3x = 0 x 3 + x 2 + x+1 = x 3 Folgende Gleichungen sind keine Gleichungen 2.Grades: x 2 4x = x 2 (Gleichung 1.Grades) x 3 + x 2 = 0 (Gleichung 3.Grades) 4 x 2 = 0 (Wurzelgleichung) Definition 1 Eine Gleichung heisst Gleichung 2.Grades mit einer Unbekannten, wenn sie durch Äquivalenzumformungen auf folgende Form gebracht werden kann: 1. Überprüfe, ob es sich bei den folgenden Gleichungen um Gleichungen 2.Grades handelt. Bestimme gegebenenfalls die Parameter a,b und c. a) x 2 (x+1) = 0 b) x 2 + 2x+1 = x 2 c) (x+1)(x 2) = 2x 2 2 1.Spezialfall: Die Gleichung lässt sich faktorisieren Gleichungen mit Faktoren, deren Produkt 0 ist, lassen sich besonders einfach lösen. Zur Repetition der Begriffe Faktoren und Produkt: 3 4 = 12 a b = 0 Es gilt folgender Satz (der Pfeil bedeutet: daraus folgt ): Satz 1 Wenn beim Produkt a b mindestens ein Faktor 0 ist, dann hat das Produkt den Wert 0, d.h.

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 3 Beispiele 3 0 = 0 0 4 = 0 3 0 (8 x)(25+x 3 ) = 0 2 100 0 9z = 0 Es gilt auch die Umkehrung des Satzes. Satz 2 Wenn das Produkt a b den Wert 0 hat, dann ist mindestens einer der Faktoren 0, d.h. Beispiel (x 1)(x 3) = 0 2. Finde die Lösung(en) der folgenden Gleichungen in Q. Gib Dein Ergebnis in der Form L = {...} an. a) 7777(2x 37) = 0 b) 1234(444 10x) = 0 c) x(12x+96) = 0 d) 35x(7x+91) = 0 [L = {18.5},L = {44.4},L = { 8,0},L = { 13,0}] 3. Finde die Lösung(en) der folgenden Gleichungen in Q. Gib Dein Ergebnis in der Form L = {...} an. a) (x 6)(2x+9) = 0 b) (5x 2)(4x+3) = 0 c) (120 8x)(12+8x) = 0 d) (x+2.5)(5x 2) = 0 e) x(x 9)(2x+13)(3x 15) = 0 f) (5x+7)(6x 90)(9x+60) = 0 g) (4x+3+7x)(15 7x 1) = 0 h) x(3x+17 20x)(25+7x+3) = 0

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 4 [L = { 4.5,6},L = {0.4, 0.75},L = { 1.5,15},L = { 2.5,0.4},L = { 6.5,0,5,9},L = { 6.6, 1.4,15}] [L = { 3/11,2},L = { 4,0,1}] 4. Finde die Lösung(en) der folgenden Gleichungen in Q. Gib Dein Ergebnis in der Form L = {...} an. a) x 2 + 4x+4 = 0 b) x 2 + 9x+20 = 0 c) x 2 9 = 0 d) x 2 2x+1 e) x 2 5x+6 = 0 f) x 2 9x+20 = 0 g) x 2 x 20 = 0 h) x 2 5x 24 = 0 i) x 2 2x = 63 j) x 2 = 5x+14 [L = { 2},L = { 4, 5},L = { 3,3},L = {1},L = {2,3},L = {4,5},L = { 4,5},L = { 3,8},L = { 7,9},L = { 2,7}] 3 2.Spezialfall: Wurzel ziehen Bei der zweiten Methode können wir nach x auflösen, indem wir die Wurzel ziehen. Ein Beispiel: (x 2) 2 3 = 0 5. Finde die Lösung(en) der folgenden Gleichungen 2.Grades in den reellen Zahlen. a) 9u 2 100 = 4u 2 [L = {± 20}] b) (11 z) 2 + 22z = 125 [L = {±2}] c) (x 4) 2 144 = 0 [L = { 8,16}] d) (x+1) 2 = 0 [L = { 1}] e) (x 2) 2 + 3 = 0 [L = {}] f) x 2 + 6x = 9 [L = { 3}] 4 Allgemeine Gleichung 2.Grades 4.1 Einschub: Zerlegen von Wurzeln In den folgenden Abschnitten werden wir in den Endergebnissen immer wieder Wurzelausdrücke antreffen. Ähnlich wie wir bei Brüchen soweit wie möglich kürzen, wollen wir die Wurzeln soweit wie möglich zerlegen. Beispiel

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 5 8 = 4 2 = 4 2 = 2 2 54 = 9 6 = 9 6 = 3 6 6. Zerlege die folgenden Wurzeln soweit wie möglich. a) 75 b) 27 c) 72 [5 5,3 3,6 2] 4.2 Wir lösen eine Gleichung 2.Grades mit quadratischem Ergänzen Wir suchen die Lösung der folgenden Gleichung: x 2 + 6x+2 = 0 Problem: Weder die Methode des Faktorisierens noch die Methode des Wurzelziehens hilft uns hier weiter. Wir brauchen eine neue Methode, diejenige des quadratischen Ergänzens. Die Idee dahinter: Wir versuchen, die Gleichung auf eine Form zu bringen, wie wir sie z.b. bei Aufgabe 5c) angetroffen haben. Dazu müssen wir den x 2 - und x-term in die Klammer () 2 verpacken. Lösungsweg: 7. Fülle die untenstehenden Lücken aus. a) x 2 + 4x+... = (x+...) 2 b) u 2 6u+... = (u...) 2 c) y 2 3 2 y+... = (y...)2 8. Finde die Lösungen der folgenden Gleichungen ohne TR. Gib Dein Ergebnis in der Form L = {...} an. Überprüfe anschliessend bei (a) Deine Lösung.

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 6 a) x 2 + 6x+7 = 0 [L = { 3 ± 2}] b) x 2 + 16x+3 = 0 [L = { 8 ± 61}] c) 2x 2 + x 10 = 0 [L = { 2.5,2}] d) x 2 + x+1 = 0 [L = {}] 4.3 Die Lösungsformel Die Lösungsformel können wir jetzt mit quadratischem Ergänzen herleiten: 9. Berechne die Lösungsmenge der folgenden Gleichungen mit Hilfe der Lösungsformel. Gib Deine Lösung(en) als Dezimalzahl in der Form L = {...} an. a) 2x 2 7x+3 = 0 [L = {0.5,3}] b) 4x 2 + 5x 6 = 0 [L = { 2,0.75}] c) 2x 2 + x+6 = 0 [L = {2, 1.5}] d) 5x 2 + 8x = 4 [L = { 2,0.4}] 10. Berechne die Lösungsmenge der folgenden Gleichungen mit Hilfe der Lösungsformel. Gib Deine Lösung(en) exakt (d.h. in Wurzelform, wobei die Wurzel so weit wie möglich zerlegt werden soll) in der Form L = {...} an. a) x 2 6x+4 = 0 [L = {3 ± 5}] b) x 2 + 2x+1 = 0 [L = {1 ± 2}]

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 7 c) 4x 2 4x 7 = 0 [L = {0.5 ± 2}] d) 2x 2 + x 2 = 0 [L = { 2, 2/2}] 11. Berechne die Lösungsmenge der folgenden Gleichungen mit Hilfe der Lösungsformel. Gib Deine Lösung(en) in der Form L = {...} an. 1 a) 2 x 2 + 3 1x 1 6 = 0 [L = { 1,1/3}] b) 1 6 x 2 5 4 x+ 2 3 = 0 [L = {1.5,6}] 12. Die Gleichung 2x 2 + x 1 = 0 hat zwei Lösungen. Stelle eine Gleichung auf, deren Lösungen um 5 grösser sind und bringe das Ergebnis auf die Form ax 2 + bx+c = 0 wobei die Parameter a,b und c ganze Zahlen sein sollen. [2x 2 19x+44 = 0] 5 Anzahl Lösungen einer Gleichung 2.Grades. 13. Wie viele Elemente hat die Lösungsmenge? a) x 2 + 100x+1 = 0 b) 2x 2 x+3 = 0 c) 4x 2 + 12x+9 = 0 d) 16x 2 + 25x+10 = 0 14. Für welchen Wert des Parameters hat die Gleichung genau eine Lösung? a) 2x 2 3x+a = 0 b) x 2 + bx+b+3 = 0 c) bx 2 + bx+1 = 8x [2,0,1,2] [a = 1.125,b 1 = 2,b 2 = 6;b 1 = 4,b 2 = 16] 15. Für welche Werte des Parameters hat die Gleichung x 2 + 2x+3a = 0 genau 2 Lösungen? [a < 1/3]

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 8 6 Biquadratische Gleichungen 6.1 Definition Definition 2 Eine Gleichung heisst biquadratisch, wenn sie durch Äquivalenzumformungen auf folgende Form gebracht werden kann: Beispiele x 4 + x 2 + 1 = 0 3x 4 + 2x 2 + 1 = 0 6.2 Wie ermittle ich die Lösungsmenge einer biquadratischen Gleichung? Beispiel x 4 + 3x 2 3 16. Löse die folgenden Gleichungen mit Hilfe einer geeigneten Substitution (ersetzen). Gib Dein Ergebnis in der Form L = {...} an. a) x 4 11x 2 + 18 = 0 [L = {± 2,±3}] b) x 4 + 8 = 9x 2 [L = {±2 2,±1}] 17. Löse die folgenden Gleichungen mit Hilfe einer geeigneten Substitution. Gib Dein Ergebnis in der Form L = {...} an. a) x 6 + 61x 3 8000 = 0 [L = { 5,4}] b) x 8 + 17x 4 + 16 = 0 [L = {}]

Gleichungen 2.Grades mit einer Unbek. 27.06.2008 Theorie und 9 18. Löse die folgenden Gleichungen mit Hilfe einer geeigneten Substitution (Term ersetzen durch einen einfacheren Term). Gib Dein Ergebnis in der Form L = {...} an. a) (x 10) 2 8(x 10)+15 = 0 [L = {13,15}] b) (x+4) 2 12(x+4)+34 = 0 [L = {2 ± 2}] 7 Textaufgaben, die auf Gleichungen 2.Grades führen. 19. Von zwei reellen Zahlen ist eine um 50 grösser als die andere und das Produkt um 50 grösser als die Summe. Bestimme die beiden Zahlen. [2 und 52 oder -50 und 0] 20. Das Produkt der beiden kleinsten von sechs aufeinander folgenden ganzen Zahlen ist dreimal so gross wie die Summe der vier übrigen Zahlen. Berechne die kleinste Zahl. [-3 oder 14] 21. Welche Zahlen unterscheiden sich um 0.24 von ihrer Quadratzahl (z.b. ist die Quadratzahl von 4 die Zahl 16)? [-0.2,0.4,0.6,1.2] 22. Eine Schulklasse fährt mit einem Autocar ins Skilager. Die Fahrtkosten von 300 Franken werden gleichmässig unter den Teilnehmern aufgeteilt. Da ein Schüler krankheitshalber nicht mitfahren kann, ist der Kostenanteil für die übrigen Teilnehmer um 50 Rappen grösser. Wie viele sind mitgefahren? [24] 23. Ein Blumenbeet von 3m Länge und 2m Breite ist ringsum mit konstanter Breite von Rasen eingefasst, sodass Einfassung und Beet gleichen Flächeninhalt haben. Wie breit ist die Einfassung? [5dm] 24. Der Umfang eines Rechtecks misst 25m, der Flächeninhalt 25m 2. Berechne die Seiten. [10m und 2.5m] 25. Jemand verkauft eine Uhr für Fr. 144.- und gewinnt dabei so viele Prozente, wie die Uhr Franken gekostet hat beim Ankauf. Wie viele Prozente sind es? [80%]