Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Ähnliche Dokumente
Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Inhaltsverzeichnis. Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher

2 Zufallsvariable und Verteilungsfunktionen

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis

Stochastik Wiederholung von Teil 1

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

KAPITEL 5. Erwartungswert

TU DORTMUND Sommersemester 2018

Prüfungsvorbereitungskurs Höhere Mathematik 3

Wichtige Definitionen und Aussagen

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

Statistik I für Betriebswirte Vorlesung 2

Prüfungsvorbereitungskurs Höhere Mathematik 3

Ausgewählte spezielle Verteilungen

KAPITEL 3 DISKRETE ZUFALLSVARIABLEN UND VERTEILUNGEN

Kapitel 5. Kapitel 5 Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Mathematik für Biologen

Stochastik. 1. Wahrscheinlichkeitsräume

2.2 Ereignisse und deren Wahrscheinlichkeit

Sabrina Kallus, Eva Lotte Reinartz, André Salé

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

Wirtschaftsmathematik

Wahrscheinlichkeitstheorie und Statistik

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Inhaltsverzeichnis (Ausschnitt)

Allgemeine diskrete Wahrscheinlichkeitsräume II

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

Allgemeine diskrete Wahrscheinlichkeitsräume I

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

Grundlagen der Wahrscheinlichkeitstheorie

Kapitel N. Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Einführung in die Wahrscheinlichkeitsrechnung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Übungen Abgabetermin: Freitag, , 10 Uhr

Fit for Abi & Study Stochastik

Zufallsvariable X. 30 e. 40 e = 33,33...% 6

Numerische Methoden und Algorithmen in der Physik

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Klausur vom

5 Binomial- und Poissonverteilung

Woche 2: Zufallsvariablen

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

3.3 Bedingte Wahrscheinlichkeit

Hauptklausur zur Stochastik für Lehramt

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Stochastik I. Vorlesungsmitschrift

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Inhaltsverzeichnis: Lösungen zur Vorlesung Statistik Kapitel 4 Seite 1 von 19 Prof. Dr. Karin Melzer, Fakultät Grundlagen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

1.3 Zufallsgrößen und Verteilungsfunktionen

Statistik I für Betriebswirte Vorlesung 3

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

Statistik für Ingenieure Vorlesung 3

Woche 2: Zufallsvariablen

Sprechstunde zur Klausurvorbereitung

12 Erwartungswerte. Erwartungswerte 111. Überblick

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Satz 16 (Multiplikationssatz)

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

1 Grundlagen Wahrscheinlichkeitsrechung

Kombinatorik kompakt. Stochastik WS 2016/17 1

Biostatistik, Sommer 2017

Wahrscheinlichkeitstheorie Klausurvorbereitung Lösungen

Inhaltsverzeichnis (Ausschnitt)

Zufallsvariablen [random variable]

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Einführung in die Stochastik. Das komplette Material finden Sie hier:

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Statistik I für Betriebswirte Vorlesung 4

Grundbegriffe der Wahrscheinlichkeitsrechnung

Satz von der totalen Wahrscheinlichkeit

Wahrscheinlichkeitsrechnung und Statistik

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

2 Zufallsvariable, Verteilungen, Erwartungswert

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Statistik für Ingenieure Vorlesung 2

Klausur zu Analysis und Wahrscheinlichkeitsrechnung

Willkommen zur Vorlesung Statistik (Master)

Sachrechnen/Größen WS 14/15-

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

Transkript:

Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis jetzt gekommen bin. Ich denke, dies wird Euch eine Hilfe in der Vorbereitung der Klausur sein, da die wichtigsten Dinge zusammengefaÿt sind. Für Korrekturen an ctornau@yahoo.de oder an die Mailingliste bin ich sehr dankbar. Inhaltsverzeichnis Christoph Tornau 1 Wahrscheinlichkeiten 2 1.1 Denition.................................... 2 1.1.1 Mathematische Modellierung zufälliger Ereignisse.......... 2 1.1.2 Grundlegende Eigenschaften von Wahrscheinlichkeiten....... 2 1.2 Wahrscheinlichkeitsräume........................... 2 1.2.1 Diskreter Wahrscheinlichkeitsraum.................. 2 1.2.2 Laplacescher Wahrscheinlichkeitsraum................ 2 1.3 Mehrstuge Wahrscheinlichkeitsexperimente (Produktwahrscheinlichkeiten) 3 1.3.1 Wahrscheinlichkeitsbäume....................... 3 1.3.2 Das Ziegenproblem........................... 3 1.3.3 Unendliche Produkte von Wahrscheinlichkeitsräumen........ 4 1.4 Satz von Bayes................................. 4 2 Urnenmodelle (Kombinatorik) 4 2.1 Übersicht über die einzelnen Urnenmodelle.................. 4 2.2 Anordnung unterschiedliche Dinge...................... 4 2.3 Zwei Urnenmodelle für Wahrscheinlichkeiten................. 4 2.3.1 Ohne Zurücklegen........................... 4 2.3.2 Mit Zurücklegen............................ 4 2.4 Bernoilli-Experiment.............................. 5 3 Diskrete Zufallsvariable 5 3.1 Verteilungen................................... 5 3.1.1 Polynomialverteilung.......................... 5 3.1.2 Geometrische Verteilung........................ 5 3.1.3 Binominalverteilung.......................... 5 3.1.4 Poissonverteilung............................ 5 3.2 Erwartungswert................................. 6 3.3 Varianz..................................... 6 3.4 Standardabweichung.............................. 6 3.5 Kovarianz.................................... 6 4 Stetige Zufallsvariable 6 4.1 Dichte...................................... 6 1

1 Wahrscheinlichkeiten 1.1 Denition 1.1.1 Mathematische Modellierung zufälliger Ereignisse Ω ist die Menge der möglichen Ereignisse eines Zufallsexperimentes. Man kann eine Zufallsvariable X denieren, die zufällig einen Wert in Ω annimmt: X : Ω R 1.1.2 Grundlegende Eigenschaften von Wahrscheinlichkeiten Denition: Wahrscheinlichkeit Sei Ω die Menge der möglichen elementaren Ereignisse. Ein (nicht elementares) Ereignis A ist eine Teilmenge von Ω: A Ω. Eine Wahrscheinlichkeit ist eine Abbildung P : Ω R für die folgende Eigenschaften erfüllt sind: 1. Für jedes Ereignis A gilt 0 P 1 2. Für das sichere Ereignis A = Ω gilt P(A) = 1 3. Für jede Folge von disjunkten Ereignissen A n gilt P( n A n ) = n P(A n) 1.2 Wahrscheinlichkeitsräume 1.2.1 Diskreter Wahrscheinlichkeitsraum Ein diskreter Wahrscheinlichkeitsraum Ω wird endlich oder abzählbar genannt. Die Menge der reellen Zahlen R ist abzählbar. 1.2.2 Laplacescher Wahrscheinlichkeitsraum Alle Ereignisse in Ω kommen gleichwahrscheinlich vor: Ω = {ω 1, ω 2,..., ω n } und Ω = n LaPlace: p ω1 = p ω2 =... = p ωn Hierraus läÿt sich des weiteren schlieÿen, daÿ die Wahrscheinlichkeit für ein Ereignis P i = 1 n beträgt, da die Wahrscheinlichkeit für das totale Ereignis P = 1 ist. Beispiel: Würfelexperiment: Ein Würfel hat 6 Seiten. Es ist für jede Seite gleichwahrscheinlich, daÿ sie nach dem Wurf nach oben zeigt. (Wir setzen in diesem Beispiel einen Würfel heraus, der nicht manipuliert worden ist.) Somit gilt für die elementaren Ereignisse: p ω1 = p ω2 = p ω3 = p ω4 = p ω5 = p ω6 = 1 6 Wir können nun auch andere Ereignisse denieren. Zum Beispiel: P(Gerade Augenzahl) = p ω2 + p ω4 + p ω6 = 1 6 + 1 6 + 1 6 = 3 6 = 1 2 oder P(Augenzahl durch drei teilbar) = p ω3 + p ω6 = 2 6 = 1 3 Ebenso können diese beiden Ereignisse verknüpft werden. Hierbei ist jedoch darauf zu achten, daÿ das elementare Ereignis, daÿ die 6 vorkommt, in beiden Ereignissen enthalten ist: A(Gerade Augenanzahl) A(Augenzahl durch drei teilbar) = {ω 2, ω 4, ω 6, ω 3 } 2

P(Gerade Augenanzahl Augenzahl durch drei teilbar) = 4 6 = 2 3 Wir sehen hier, daÿ sich die Wahrscheinlichkeit eines Ereignisses A auch wie folgt berechnen läÿt: P(A) = A Anzahl der günstigen Ereignisse = Ω Anzahl der möglichen Ereignisse Es ist manchmal von enormer Bedeutung die richtige Modellierung des Experimentes zu nden. Beispielsweise kann man das Zufallsexperiment Augenzahl zweier Würfel mit dem Wahrscheinlichkeitsraum Ω = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} modelieren. Dies ist allerdings ungeschickt, da die einzelnen Augenzahlen unterschiedlich häug gewürfelt werden. Zum Beispiel wird die 12 nur durch zwei Sechsen gewürfelt. Die 7 kann man jedoch durch (1,6),(2,5),(3,4),(4,3),(5,2) und (6,1) erzeugen. Somit wird die 7 häuger gewürfelt, als die 12, da jeder Würfel selbst Laplace-verteilt ist. Es ist also günstiger ein Modell wie folgt zu wählen: Ω = (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) Nun ist für jedes Ereignis die Wahscheinlichkeit wieder gleich hoch, nämlich 1 36. 1.3 Mehrstuge Wahrscheinlichkeitsexperimente (Produktwahrscheinlichkeiten) 1.3.1 Wahrscheinlichkeitsbäume Wahrscheinlichkeitsbäume sehen wie folgt aus. An jedem Ast steht eine Wahrscheinlichkeit. Die Wahrscheinlichkeit, mit der das am Astende erzeugte Ereignis eintritt wird durch Multilikation der einzelnen Astwahrscheinlichkeiten berechnet. 1.3.2 Das Ziegenproblem Das Ziegenproblem ist nach eine Fernsehshow benannt. Bei dieser gibt es drei Türen, hinter denen der Showmaster bei einer Tür einen Preis versteckt. Hinter den anderen beiden Türen jedoch keinen, sondern eine Ziege. Nun darf der Kandidat eine Tür wählen, die er önen will. Danach önet der Showmaster eine Tür mit einer Ziege. Nun hat der Kandidat die Möglichkeit seine Entscheidung noch einmal zu wiederholen und die Tür zu wechseln oder beizubehalten. Erstaunlicherweise ergibt sich eine Treerwahrscheinlichkeit für den Gewinn von 2 3, wenn der Kandidat grundsätzlich wechselt. Siehe hierzu auch: http://www.phiba.de/divers/ziege.htm 3

1.3.3 Unendliche Produkte von Wahrscheinlichkeitsräumen Wenn man unendlich viele Zufallsexperimente machen möchte, dann ist der Baum unendlich lang. Es muÿ jedoch auch sichergestellt sein, daÿ wir jede Wahrscheinlichkeit in diesem Baum berechnen können, so daÿ wir sie zusammen multiplizieren können. Berechenbar sind somit nur Erereignisse, die abzählbar unendlich sind und die man mit einer Folge approximieren kann. 1.4 Satz von Bayes kommt später, vielleicht auch nie, ist aber für die Klausur zu lernen. 2 Urnenmodelle (Kombinatorik) 2.1 Übersicht über die einzelnen Urnenmodelle n Elemente k Ziehungen ohne Zurücklegen Reihenfolge wichtig (n k)! = n (n 1)... (n k + 1) Sonderfall n=k: Reihenfolge unwichtig ( n ) k = ) mit Zurücklegen n k ( n+k 1 n 2.2 Anordnung unterschiedliche Dinge n Dinge, von denen jeweils n 1, n 2,...n r gleich sind, lassen sich auf ( ) n 1! n 2!... n r! =: n n 1, n 2,...n r Weise anordnen. Siehe hierzu auch Polynomialverteilung 2.3 Zwei Urnenmodelle für Wahrscheinlichkeiten 2.3.1 Ohne Zurücklegen k!(n k)! Die Wahrscheinlichkeit, daÿ wir bei n maligem Ziehen k Kugeln von der ersten Sorte, von denen es M Stück gibt, und n-k von der zweiten Sorte, von denen es N-M gibt (wobei N die Gesamtanzahl der Kugeln) gezogen haben ist: P k Kugeln erste Sorte und n k Kugeln zweite Sorte = M ögliche Ziehungen erste Sorte M ögliche Ziehungen zweite Sorte M ögliche Ziehungen insgesamt ( M ) ( k N M ) n k = ( N n) Beispiel für ein solches Urnenmodell ist eine Produktion bei der M Stücke kaputt sind und man nach der Wahrscheinlichkeit fragt, daÿ k der n gezogenen Stücke defekt sind. Siehe hierzu auch Binominalverteilung 2.3.2 Mit Zurücklegen Wenn wir aus n Dingen ziehen, und k-mal ein besonderes Ding ziehen wollen (z.b. die auf einem Kartenstapel oben liegende Karte ist ein Ass) und wenn wir alle Ziehungen 4

immer wieder zurücklegen, so ergibt sich daraus: ( ) n P k mal Erfolg = p k (1 p) n k k 2.4 Bernoilli-Experiment Ein Bernoilli-Experiment ist ein Experiment bei dem ein Zufallsexperiment mit gleichen Bedingungen öfters wiederholt wird. 3 Diskrete Zufallsvariable 3.1 Verteilungen 3.1.1 Polynomialverteilung Ein Versuch wird n-mal durchgeführt. Dabei sind p 1, p 2,..., p r die Wahrscheinlichkeiten für unabhängige Ereignisse A 1, A 2,..., A r. Eines dieser Ereignisse muÿ immer eintreten. Wir können nun die Gesamtwahrscheinlichkeit für eine vorgegebene Häugkeit der Ereignisse berechnen. Dabei sind n 1, n 2,..., n r die gewünschten Häugkeiten der Ereignisse: P n1,n 2,...,n r = 3.1.2 Geometrische Verteilung n 1! n 2!... n r! pn 1 1 pn 2 2... pnr r Wird ein Zufallsexperiment solange wiederholt, bis ein Erfolg eintritt, so gilt für die Wahrscheinlichkeit, daÿ beim genau k-ten Versuch der Erfolg eintritt: P Genau beim k ten V ersuch Erfolg = p (1 p) k 1 Die Wahrscheinlichkeit, daÿ nach n Versuchen ein oder mehrere Erfolge eingetreten sind, ist gegeben durch: 3.1.3 Binominalverteilung P Nach n V ersuchen Erfolg gehabt = n p (1 p) k 1 Wenn bei n Versuchen genau k-mal der Erfolg eintreten soll, so ist die Wahrscheinlichkeit hierfür: ( ) n P Genau k mal Erfolg = p k (1 p) n k k Dabei wird immer zurückgelegt. 3.1.4 Poissonverteilung Bei der Binominalverteilung geraten wir bei groÿen n in Probleme. Wir können die Werte nur mühsam ausrechnen. Hierbei hilft die Poissonverteilung als Approximation. Sie läuft darüber, daÿ bei kleinen Wahrscheinlichkeiten (1 p = λ n ) und groÿen Versuchsanzahlen n folgendes gilt: ( 1 λ ) n e λ n k=1 5

Wenn nun n = 2000 und p = 0, 001, so erhalten wir als Binominalverteilung ( ) 2000 P (X = k) = (0, 001) k (1 0, 001) 2000 k k Somit gilt für k = 0: ( ) 2000 P (X = 0) = (0, 001) 0 (1 0, 001) 2000 0 = 0 1 1 (1 2 2000 )2000 e 2 0, 135 Um Werte für k > 0 zu erhalten, wenden wir eine Rekursionsformel an: Somit gilt: 3.2 Erwartungswert P (X = k + 1) = P (X = 1) = Der Erwartungswert von X ist (n k) p P (X = k) (k + 1) (1 p) (2000 0) 0, 001 (0 + 1) 0, 999 EX = E(X) = ω Ω X(ω)P(ω) 0, 135 = 0, 27 Wobei X(ω) die Gewinne und P(ω) die Wahrscheinlichkeiten für die Gewinne. Falls E(X) = so sagt man, daÿ der Erwartungswert nicht exisitert. 3.3 Varianz Für die Varianz σ 2 einer diskreten Zufallsvariable gilt die Beziehung Wobei µ = E(X). V ar(x) = σ 2 = (x 1 µ) 2 p 1 + (x 2 µ) 2 p 2 +... + (x n µ) 2 p n n = x 2 i P (X = x i ) µ 2 = E(X 2 ) µ 2 3.4 Standardabweichung i Die Standardabweichung ist die Quadradwurzel aus der Varianz: 3.5 Kovarianz Die Kovarianz ist wie folgt deniert: σ = σ 2 Kov(X, Y ) = E(X Y ) E(X) E(Y ) = E[(X E(X)) (Y E(Y ))] 4 Stetige Zufallsvariable 4.1 Dichte 6