Immunologie 10: B-Zellimmunantworten

Ähnliche Dokumente
Übersicht: T-Zell-unabhängige und T-Zellabhängige. Humorales Gedächtnis

B-Zell-vermittelte Immunantwort

Antigen Präsentierende Zellen

Antikörperstruktur, -funktion und -affinitätsreifung

Angeborene und erworbene Immunantwort

Medizinische Immunologie. Vorlesung 6 Effektormechanismen

Immunologie. Entwicklung der T- und B- Lymphozyten. Vorlesung 4: Dr. Katja Brocke-Heidrich. Die Entwicklung der T-Lymphozyten

Grundlagen der Immunologie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Einführung in die Immunbiologie. Das komplette Material finden Sie hier:

Alien Invasion II. Univ.-Prof. Dr. Albert Duschl

Komponenten und Aufbau des Immunsystems Initiation von Immunantworten. lymphatische Organe. Erkennungsmechanismen. Lymphozytenentwicklung

Grundlagen der Immunologie

Komponenten und Aufbau des Immunsystems Initiation von Immunantworten. lymphatische Organe. Erkennungsmechanismen. Lymphozytenentwicklung

Humorale Immunität. Priv.-Doz. Dr. rer. nat. Michael Stassen

Grundlagen der Immunologie

Einführung-2 Block Blut und Immunologie Teil Immunologie

Monoklonale Antikörper sind Antikörper, immunologisch aktive Proteine, die von einer auf einen einzigen B-Lymphozyten zurückgehenden Zelllinie

Antikörperstruktur, -funktion und -affinitätsreifung

Matthias Birnstiel. Allergien. Modul. Medizinisch wissenschaftlicher Lehrgang CHRISANA. Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung

Grundlagen der Immunologie

Y Y. Natürliche (Angeborene) Immunität. Spezifische (erworbene) Immunität. Bakterien. Lymphozyt. T-Lymphozyten. EPITHELIALE Barriere PHAGOZYTEN

IMMUNANTWORT, IMMUNREGULATION und IMMUNTOLERANZ Vorlesung 5

Immunbiologie. Teil 2

Einführung. in die Immunologie I. Spezifische Abwehr Adaptive Immunantwort. Immunologische Prozesse bei einer Infektion. Antigen.

** 9. IMMUNOLOGIE + PATHOGENITÄT VON VIREN **

Einführung, Zellen und Organe

B-Zellentwicklung. Grundlagen der Immunologie 5. Semester - Dienstags Uhr Ruhr-Universität Bochum, HMA 20 HEV.

B-Zellentwicklung. Grundlagen der Immunologie 5. Semester - Dienstags Uhr Ruhr-Universität Bochum, HMA 20

Dr. rer. nat. Andreas Schendler Praktikumsseminar Immunologie Praktikumsseminar Immunologie WS 17/18

Abwehr II/1. Seminar Block 8 WS 08/09. Dr. Mag. Krisztina Szalai krisztina.szalai@meduniwien.ac.at

B-Zellen und Antikörper

Stoffe des Immunsystems (Zellprodukte, Zytokine)

Einführung, Zellen und Organe

Inhaltsverzeichnis.

T-Lymphozyten. T-Lymphozyten erkennen spezifisch nur zell- ständige Antigene (Proteine!) und greifen sie direkt an. verantwortlich.

Jiirgen Neumann. Immunbiologie. Eine Einfiihrung. Mit 124 Abbildungen. ^y Springer

T-Zellen werden zur Kontrolle intrazellulärer Pathogene benötigt und um B Zellen gegen die meisten Antigene zu aktivieren

1. Einleitung Die Funktion von B-Zellen im Immunsystem. Einleitung 1

Inhalt 1 Das Immunsystem Rezeptoren des Immunsystems

Hygiene Medical Advice Medizinische Beratung Dr. Helmut Pailer

B-Zellen und Antikörper Bakk-Modul Immunologie. Prof. Dr. Albert Duschl

B-Lymphozyten. Erstellt von Dr. Hans-Martin Jäck Molekulare Immunologie Erlangen

B-Zellen und Antikörper

2. An&asthma&ka Omalizumab Xolair /Novar&s CHO K1

Grundlagen der Immunologie

Basiskenntnistest - Biologie

Grundlagen der Immunologie

Die Rolle Langerin + Zellen für die Induktion einer humoralen Immunantwort gegen. Leishmania major

Abwehr II/2. Seminar Block 8 WS 09/10. Dr. Mag. Krisztina Szalai

Die Zellen des Immunsystems Kein umschlossenes Organsystem; Immunzellen zirkulieren im Blut und im lymphatischen System

Grundlagen des Immunsystems. Rainer H. Straub

Immunologie für Einsteiger AKADEMISCHER VERLAG

Komponenten und Aufbau des Immunsystems Initiation von Immunantworten. lymphatische Organe. Erkennungsmechanismen. Lymphozytenentwicklung

Immunbiologie. Teil 3

4. Diskussion 4.1 Die Rolle von Antigen für die Aufrechterhaltung des B-Zell Gedächtnisses

Kurzinhalt. Rink, Lothar Immunologie fr Einsteiger digitalisiert durch: IDS Basel Bern

Tumorimmunologie. Querschnitt Immunologie-Infektiologie Mittwochs Uhr Hörsaal 3 (Pathologie) Bergmannsheil. Albrecht Bufe

APS, Pathogenese und klinischer Impact auf das spezifische Immunsystems. Dr. Sebastian Pfeiffer, Düsseldorf

Komponenten und Aufbau des Immunsystems Initiation von Immunantworten. lymphatische Organe. Erkennungsmechanismen. Lymphozytenentwicklung

T-Zell-vermittelte Immunantwort

Abwehr I-III. Seminar Block 8 WS 07/08. Mag. Krisztina Szalai

Die Entwicklung von B Lymphozyten

Natürliche Killerzellen. Welche Rolle spielen Sie in der Immunabwehr?

Immunbiologie. Teil 6

Alien Invasion I. Univ.-Prof. Dr. Albert Duschl

4 Immunbiologie. Immunantwort. Die Zellen unseres Immunsystems

T-Zell-Rezeptor, T-Zellentwicklung, Antigen präsentierende Zellen

1. Welche Aussagen zum Immunsystem sind richtig?

Grundlagen der Immunologie

Veränderungen des Immunsystems im Alter

Antikörper und B-Zellen

Abwehrmechanismen des Immunsystems Prof. Dr. Rainer H. Straub

T-Zell Subsets Bakk-Modul Immunologie. Prof. Dr. Albert Duschl

Grundlagen der Immunologie

Komponenten und Aufbau des Immunsystems. 1) Zelltypen 2) angeborene und erworbene Immunität 3) humorale und zelluläre Immunfunktion

Das spezifische Immunsystem. T-Lymphozyten und deren Effektormechanismen

kappa Gensegmente x J Segmente : 40 x 5 = 200 lambda Gensegmente x J Segmente : 30 x 4 = Vh x 27 Dh x 6 Jh Segmente : 65 x 27 x 6 = 11000

System im Körper, das ihn vor Krankheiten schützt. Es zerstört deshalb fremde Substanzen, die in den Körper eindringen.

APS, Pathogenese und klinischer Impact auf das spezifische Immunsystems. Dr. Sebastian Pfeiffer, Düsseldorf

Transplantation. Univ.-Prof. Dr. Albert Duschl

Komponenten und Aufbau des Immunsystems. 1) Zelltypen 2) angeborene und erworbene Immunität 3) humorale und zelluläre Immunfunktion

Movie dendritic cell migration_iv_8_2. Komponenten und Aufbau des Immunsystems Initiation von Immunantworten. lymphatische Organe

Immunsystem: Organe, Gewebe, Zellen und Proteine, die Krankheitserreger bekämpfen. Infektionskrankheiten

Neue Homepage. uni-freiburg.de/molekulareimmunologie

Lymphatische Organe. Das lymphatische System. Immunsystem. Klinik: Zirkulation immunkompetenter Zellen. Neuroendokrine Steuerung des Immunsystems

IMMUNOLOGIE UND IMMUNPATHOLOGIE

Wie kommt eine Immunreaktion in Gang? 6

Selbstmoleküle HLA oder MHC

Immunbiologie. Teil 4

angeboren erworben Komponenten und Aufbau des Immunsystems 1) Zelltypen 2) angeborene und erworbene Immunität 3) humorale und zelluläre Immunfunktion

Entzündung. Teil 18.

Lymphatische Organe. Rotes Knochenmark, Thymus, Lymphknoten, Milz, Tonsillen, MALT

Aus der Abteilung für Klinische Pharmakologie. Leiter: Prof. Dr. med. S. Endres. Medizinische Klinik Innenstadt. Klinikum der

Zellen des Immunsystems

Was leistet die Körperzelle chemische Reaktionen pro Sekunde

Gliederung Motivation biologische Grundlagen Immunzellen wichtige Prozesse Ablauf der Immunreaktion Modellierung Immunorgane Immunzellen Immunreaktion

Komponenten und Aufbau des Immunsystems Initiation von Immunantworten. lymphatische Organe. Erkennungsmechanismen. Lymphozytenentwicklung

Transkript:

Immunologie 10: B-Zellimmunantworten

Zur Erinnerung: Frühe B-Zellentwicklung

B-Zellen in der Peripherie

Eigenschaften und Lokalisation peripherer B-Zellen - B-Zellen in Blut, Lymphe - B-Zellen in Körperhöhlen Lymphknoten: B-Zellen in Follikeln Milz: B-Zellen in B-Zellzone und in Marginalzone B-Zellen exprimieren funktionellen B-Zellrezeptor auf der Oberfläche. Es wurden Kontrollpunkte zur Selektion gegen Autoreaktivität passiert...kurzlebige B-Zellen in Blut, längeres Überleben in Follikeln

Periphere B-Zellsubsets B-1 Zellen (ca. 5% aller B-Zellen) Werden bereits früh in der Ontogenie gebildet: fötale Leber produziert B-1 Zellen, Im Nabelschnurblut v.a. B-1 Zellen, selbsterneuernd Exprimieren CD5 auf ihrer Oberfläche (im Menschen daher: CD5+ B-Zellen) Kommen vor allem in Körperhöhlen vor (Peritonealraum etc.), schützen diese Produzieren natural antibodies, da intrinsisch höhere Ig-Sekretion B-2 Zellen Konventionelle B-Zellen in Follikeln und in Körperflüssigkeiten Beteiligen sich an T-zellabhängigen Immunantworten (z.b. Keimzentren) Marginalzonen-B-Zellen In der Marginalzone der Milz sind Makrophagen angereichert, die Pathogene/Antigene aus dem Blut früh in der Infektion präsentieren Marginalzonen-B-Zellen sind daher evtl. spezialisiert, Körper vor Infektionen zu schützen die über den Blutstrom eindringen Zeigen besonders schnelle, z.t. T-Zellunabhängige Reaktionen auf Antigene

Gemeinsamkeiten und Unterschiede peripherer B-Zellsubsets

Organisation peripherer lymphoider Organe durch Chemokine Stromale Zellen und vasculäre endotheliale Zellen initiieren Follikelbildung: CCL21 Dendritische Zellen mit CCR7 (=CCL21-Rezeptor) werden angezogen DCs exprimieren CCL18 und CCL19, dafür haben T-Zellen Rezeptoren Diese Chemokinkombination zeht auch initial B-Zellen an B-Zellen induzieren Differenzierung follikulärer dendritischer Zellen (Keine Leukozyten/Dcs, entstehen nicht im Knochenmark!) Follikuläre dendritische Zellen ziehen über CXCL13 weitere B-Zellen an...follikel

B-Zellaktivierung

Zur Erinnerung: B-Zellaktivierung und Effekte T-Helferzellen (CD4) aktivieren B- Zellen Aktivierung von B-Zellen führt zur Bildung von Plasmazellen Antikörperproduktion durch Plasmazellen Antikörperfunktionen: Neutralisierung Opsonisierung Komplementaktivierung

Interaktion von B- und T-Zellen bei Aktivierung 1) B-Zelle erkennt ihr Antigen über membranständigen B-Zellrezeptor 2) Sie nimmt das Antigen über Phgozytose auf und generiert daraus Peptide 3) Diese Peptide werden auf der Oberfläche der B-Zelle mit MHCII-Molekülen präsentiert 4) T-Zellen, die diese Peptid/MHC- Kombination erkennen, können dann mit der B-Zelle interagieren ( cognate T cells, linked recognition) und werden dabei selbst aktiviert 1) Aktivierte T-Zellen exprimieren den CD40-Liganden und IL-4 2) Beide Moleküle sind zur Costimulation von B-Zellen erforderlich 3) B-Zellen werden üblicherweise durch Stimulation (B-Zellrezeptor, Antigen) und Kostimulation (CD40/CD40-Ligand, IL4 und andere Zytokine) aktiviert, wenn nur eines dieser Signale vorliegt, gehen die meisten Zellen in Anergie / Apoptose

Antigenpräsentation durch B-Zellen 1) B-Zellen dienen als besonders effiziente antigenpräsentierende Zellen für ihr spezifisches Antigen 2) Auch andere Antigene können von B-Zellen präsentiert werden, allerdings mit 10.000 fach niedrigerer Effizienz

Immunologische Synapse zwischen B- und T-Zellen 1) An der Kontaktstelle von B- und T-Zellen konzentrieren sich Membranproteine (MHC, TCR, CD4, CD40, CD40- Ligand) 2) Cytokine werden spezifisch an der Kontaktstelle ausgeschüttet 3) Das Cytoskelett fokussiert sich ebenfalls auf den Kontaktpunkt hin (z.b. Talin) 4) Der sekretotische Apparat wird auf die Synapse hin ausgerichtet (z.b. Verschiebung des Golgi-Apparates)

Lokalisation der B-Zellaktivierung: 2 Wege 1) Exrafollikulär: Foci, schnell, Plasmazellen 2) Im Follikel: Keimzentren, langsam, aber: hohe Affinität, Gedächtnis- und Plasmazellen

Extrafollikuläre Aktivierung von B-Zellen 1) Antigenbindende B-Zellen werden in T-Zellzone festgehalten 2) Hier interagieren sie mit T-Helferzellen (Chancen so erhöht!) und teilen sich 3) B-T-Zellklumpen wandern zur Grenze der T-Zellzone, bilden dort primary focus (nach etwa 5 Tagen = Effektor-T-Zellreifung)... Weitere B-Zellteilung und Differenzierung zu Plasmablasten... Plasmazellen 4) Hierbei kann Klassenwechselrekombination passieren, Isotyp abhängig von Zytokinmilieu in Umgebung der B-Zellen

Änderung der B-Zelleigenschaften bei extrafollikulärer Aktivierung Plasmazellen sind terminal differenzierte B-Zellen, die einige typische Eigenschaften von B-Zellen nicht mehr aufweisen (B-Zellrezeptorexpression auf Oberfläche, Antigenpräsentation, Aktivierbarkeit) und sich auf Produktion von Antikörpern spezialisiert haben

Zur Erinnerung: Die Keimzentrumsreaktion In sekundären lymphatischen Organen (Tonsille, Milz, Lymphknoten) Plasmazellen: Antikörperproduktion Gedächtniszellen: Langzeitschutz Somatische Hypermutation Klassenwechselrekombination AID VDJ CµC! AID AID VDJ Cµ C! C"3 C"1 VDJ CµC! VDJ C"1 C"2b C"2a

Keimzentren - Mantelzone: verdrängte naive B-Zellen die nicht an Reaktion teilnehmen - Follikuläre dendritische Zellen (FDC): nicht aus Knochenmark! Tragen Antigen- Antikörper-Immunkomplexe auf ihrer Oberfläche zur Übergabe an B-Zellen - Dunkle Zone: Zentroblasten, stark proliferierende B-Zellen, Hypermutation - Helle Zone: Zentrozyten; B-Zellen werden Selektion unterworfen und können differenzieren, dafür: T-Helferzellen und FDCs

Schicksal von B-Zellen im Keimzentrum - B-Zellen verändern B-Zellrezeptor durch Hypermutation. In dieser Phase sind die Zellen bereits sehr anfällig für programmierten Zelltod (Apoptose) - B-Zellen mit hochaffinem Rezeptor können Antigene besser von FDCs aufnehmen und T-Zellen präsentieren - diese B-Zellen erhalten dann von T- Zellen Überlebenssignal über CD40L/IL4 - B-Zellen mit niedrigeraffinen oder nichtfunktionellen B-Zellrezeptoren können sich in der Kompetition um die T- Zellhilfe nicht durchsetzen und sterben - nur B-Zellen mit hochaffinen Rezeptoren differenzieren zu Plasmazellen oder Gedächtnis-B-Zellen

Interaktion von B-Zellen mit follikulären dendritischen Zellen

Interaktion von B-Zellen mit follikulären dendritischen Zellen - Antigene sind auf Oberfläche der FDCs als Immunkomplexe in Form von Icconosomen gespeichert (Bindung über Fc-Rezeptoren und Komplementrezeptoren), sie werden NICHT von den FDCs internalisiert - Diese Immunkomplexe werden von B-Zellen erkannt und können aufgenommen werden

Differenzierung zu Plasmazellen und Gedächtnis-B-Zellen Gedächtnis-B-Zellen (Memory B cells) - werden nur in der Keimzentrumsreaktion gebildet - haben oft, aber nicht immer Klassenwechsel vollführt - zeichnen sich durch Langlebigkeit und schnellere/größere Reaktion auf Reaktivierung aus Plasmazellen Werden bei extrafollikulärer Aktivierung oder bei Keimzentrumsreaktion gebildet Produzieren große Mengen Antikörper, IgM oder andere Isotypen BLIMP-1 unterdrückt viele typische B-Zellmoleküle in diesen Zellen - andere Eigenschaften - Kurzlebige Plasmazellen: nach extrafollikulärer Aktivierung für Produktion großer Mengen spezifischer Antikörper - Langlebige Plasmazellen: nach Keimzentrumsreaktion, wandern in Knochenmarksnische, für Aufrechterhaltung der Serumtiter des Antikörpers

T-Zellunabhängige Immunantworten von B-Zellen

Thymus-abhängige und -unabhängige Antigene Thymusunabhängige (TI) Antigene können B-Zellen ohne T-Zellhilfe aktivieren, indem sie entweder andere intrinsische Formen der Kostimulation in B-Zellen auslösen oder genügend B-Zellrezeptoren vernetzen um B-Zelle auch so zu aktivieren

T-Zellunabhängige Antigene: TI-1 Thymusunabhängige Antigene vom Typ 1 (TI-1) aktivieren B-Zellen ohne T- Zellhilfe, da sie andere intrinsische Formen der Kostimulation in B-Zellen auslösen z.b. LPS: aktiviert LPS-Rezepetor Bei hoher Konzentration dieser TI-1 Antigene können B-Zellen auch antigenunspezifisch aktiviert werden (daher polyklonale Reaktion) Bei Niedriger Konzentration der TI-1 Antigene ist eine B-Zellaktivierung nur bei Antigenerkennung durch B- Zellrezeptor UND Kostimulation durch Antigenstruktur möglich (klonale Antwort)

T-Zellunabhängige Antigene: TI-2 Simultane Quervernetzung vieler B-Zellrezeptoren auf der Zelloberfläche Dendritische Zellen und Makrophagen könnten hier kostimulatorische Signale bieten

Eigenschaften T-Zellabhängiger und -unabhängiger Antigene?

Antikörperfunktionen - Humorale Immunität

Zur Erinnerung: Antikörperisotypen Vor Infektion: IgM, IgD Nach Infektion: auch alle anderen Isotypen

IgG: Wesentlicher Mediator von Immunantworten Verteilung der Immunglobuline im Körper: IgM/IgG im Blut IgG auch sonst überall Dimeres IgA uf allen Schleimhäuten IgE in allen epidermalen Bereichen, meist gebunden an Mastzellen

IgA: Mucosale Immunität

Neutralisierung von Toxinen, Viren, Bakterien durch Antikörper

Komplementaktivierung durch Antikörper

Bildung und Clearance von Immunkomplexen im Blut

Rekrutierung von Effektorzellen über F c -Rezeptoren Fc-Rezeptoren binden konstanten (Fc) Teil des Antikörpers Werden auf Effektorzellen exprimiert, die von Antikörpern zur Antigenaufnahme / Bekämpfung herangezogen werden

Quervernetzung von F c -Rezeptoren und Phagozytose

Angriff auf Würmer / Parasiten über F c -Rezeptoren Würmer / Parasiten können nicht phagozytiert werden Phagozytn haften an Eindringling an und fusionieren ihre Lysosomen mit der anhaftenden Oerflächenmembran - Oberfläche des Parasiten wird geschädigt z.b. Eosinophile Zellen bei Hemintheninfektion

Allergien: Mastzellaktivierung über F c -Rezeptoren (IgE) Mastzellen sezernieren Granulainhalt zur Wurmbekämpfung --- Rötung der haut, ähnlich Entzündung Und lösen Juckreiz aus (z.b. Niesen zum Herausschleudern des Parasiten) Im Normalfall : Parasitenbekämpfung Im Fall der Fehlaktivierung : Allergie

Aktivierung von NK-Zellen über Antikörper Konzept: T-Zellen für zelluläre Immunität B-Zellen / Antikörper für humorale Immuntät Hier: Antikörper vermitteln zelluläre Immunität über Aktivierung von NK-Zellen NK-Zellen wird über Fc-Rezeptor rekrutiert und setzt ihre zytoplasmatischen Granula frei ADCC: Antibody-dependent cell-mediated cytotoxicity

Zusammenfassung: B-Zellentwicklung

Testfragen 1) Welche wesentlichen B-Zelltypen gibt es in der Peripherie und wo kommen sie vor? Nennen Sie wesentliche Gemeinsamkeiten und Unterschiede! 2) Wie kommt es zur Bildung von Lymphknoten und zur Rekrutierung von B-Zellen? 3) Welche Kontakte/Stimulationen zwischen B- und T-Zellen sind für die B-Zellaktivierung notwendig, und was sind die jeweiligen Voraussetzungen dafür und Auswirkungen davon? 4) Wie werden B-Zellen als antigenspezifische antigenpräsentierende Zellen wirksam? 5) Welche wesentlichen Eigenschaften kennzeichnen die Synapse von B- und T-Zellen? 6) Was sind wesentliche Gemeinsamkeiten und Unterschiede zwischen extrafollikulärer B- Zellaktivierung und der Keimzentrumsreaktion bzgl. Voraussetzungen, Mechanismus, Konsequenzen? 7) Welche Zelltypen enthält ein Keimzentrum, und was ist die jeweilige Funktion? 8) Wie funktioniert die Selektion hochaffiner Antikörper bei der Keimzentrumsreaktion? 9) Nennen Sie wesentliche Eigenschaften von Plasmazellen und Gedächtnis-B-zellen! 10) Was sind T-independent antigens und wodurch zeichnen sie sich aus (Ti-1, Ti-2) 11) Was sind die wesentlichen Eigenschaften und Lokalisationen der Ig-Subklassen? 12) Was sind die drei wesentlichen Antikörperfunktionen? Beschreiben Sie je ein Beispiel! 13) Wie werden Effektorzellen durch Antikörper rekrutiert? Welche Auswirkungen kann das haben?