Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009



Ähnliche Dokumente
Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Eigenwerte und Eigenvektoren von Matrizen

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

3.3 Eigenwerte und Eigenräume, Diagonalisierung

Mathematik 1 für Wirtschaftsinformatik

Umgekehrte Kurvendiskussion

Übungen zum Ferienkurs Lineare Algebra WS 14/15

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

Musterlösungen zur Linearen Algebra II Blatt 5

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Im Jahr t = 0 hat eine Stadt Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Lineare Gleichungssysteme

DIFFERENTIALGLEICHUNGEN

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

( ) als den Punkt mit der gleichen x-koordinate wie A und der

Modulabschlussklausur Analysis II

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester gehalten von Harald Baum

Lineare Gleichungssysteme

7 Die Determinante einer Matrix

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Lineare Gleichungssysteme

Extrema von Funktionen in zwei Variablen

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Definition 27 Affiner Raum über Vektorraum V

7 Rechnen mit Polynomen

2 Die Darstellung linearer Abbildungen durch Matrizen

Optimierung für Nichtmathematiker

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

5 Eigenwerte und die Jordansche Normalform

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte


Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Funktionen (linear, quadratisch)

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Kapitel 15. Lösung linearer Gleichungssysteme

1.9 Eigenwerte und Eigenvektoren

Kevin Caldwell. 18.April 2012

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Charakteristikenmethode im Beispiel

Z = 60! 29!31! 1,

Optimalitätskriterien

Vorkurs Mathematik Übungen zu Polynomgleichungen

Rekursionen. Georg Anegg 25. November Methoden und Techniken an Beispielen erklärt

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

Theoretische Grundlagen der Informatik WS 09/10

Mathematischer Vorkurs für Physiker WS 2009/10

Approximation durch Taylorpolynome

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

Mathematischer Vorbereitungskurs für Ökonomen


Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Einführung in die Algebra

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Absolute Stetigkeit von Maßen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

Lösungen zum 3. Aufgabenblatt

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

Zeichen bei Zahlen entschlüsseln

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x y = x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

Lineare Gleichungssysteme I (Matrixgleichungen)

4. Übungsblatt Matrikelnr.:

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

DAS ABI-PFLICHTTEIL Büchlein

6.2 Scan-Konvertierung (Scan Conversion)

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli Fachbereich für Mathematik und Statistik Universität Konstanz

3.1. Die komplexen Zahlen

4 Vorlesung: Matrix und Determinante

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Professionelle Seminare im Bereich MS-Office

0, v 6 = , v 4 = span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

Primzahlen und RSA-Verschlüsselung

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Unterlagen für die Lehrkraft

6 Symmetrische Matrizen und quadratische Formen

Die reellen Lösungen der kubischen Gleichung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Transkript:

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung. Welche der folgenden Aussagen sind richtig bzw. falsch? Lösung: Die Antworten lauten: a) Ja! b) Ja! a) Der Spaltenraum von A wird von den ersten r Spalten von U aufgespannt. b) Jeder Vektor y im Kern von A T steht senkrecht auf jeder Spalte von A. c) Der Kern von A T wird von den letzten n r Spalten von U aufgespannt. d) Der Spaltenraum von A T wird von den ersten r Spalten von V aufgespannt. e) Der Kern von A wird von den letzten m r Spalten von V aufgespannt. c) Nein! Der Kern von A T wird von den letzten m r Spalten von U aufgespannt. d) Ja! e) Nein! Der Kern von A wird von den letzten n r Spalten von V aufgespannt. Aufgabe 36: Thema: Zu einer Matrix assoziierte Unterräume Sei A eine m n Matrix mit Rang r. Welche der folgenden Aussagen sind richtig bzw. falsch? a) Es gilt dim BildA = r und dim KerA = m r. b) Es gilt dim BildA T = r und dim KerA T = n r. c) Es gilt dim BildA T = r und dim KerA T = m r. d) Es gilt BildA = (KerA T ) und BildA T = (KerA). e) Das lineare Gleichungssystem Ax = b ist genau dann lösbar, wenn aus A T y = 0 stets b T y = 0 folgt.

Lösung: Die Antworten lauten: a) Nein! dim KerA = n r b) Nein! dim KerA T = m r c) Ja! d) Ja! e) Ja! Aufgabe 37: Thema: Eigenschaften schiefsymmetrischer Matrizen Sei A eine n n Matrix mit A T = A, d. h. A ist schiefsymmetrisch. Welche Aussagen sind richtig? a) Die Spur von A, tr A, ist gleich null. b) Es gilt det A = 0 für n = 2. c) Es gilt det A = 0 für n = 3. d) Es gilt Ax x = 0 für alle x R n. e) Wenn λ R ein Eigenwert von A ist, dann folgt λ = 0. Lösung: Die Antworten lauten: f) exp A ist eine orthogonale Matrix. g) Es gilt det (exp A) = exp (tra) = e 0 = 1. a) Ja! b) Nein! Beispiel A = ( 0 1 1 0 ) c) Ja! d) Ja! e) Ja! f) Ja! g) Ja!

Aufgabe 38: Thema: Orthonormalsystem und orthogonale Projektion Sei V ein euklidischer Raum und U = span{u 1,..., u n } ein Unterraum, wobei {u 1,..., u n } ein Orthonormalsystem sei. Welche Aussagen sind richtig? a) Wenn v V und v u i = 0 für i = 1,..., n, dann ist v = 0. b) Die orthogonale Projektion P v U eines Vektors v V ist eindeutig bestimmt und es gilt: P v = n i=1 (v u i)u i. c) Für v, w V gilt: P v P w = n i=1 (v u i)(w u i ). d) Wenn v V, dann gilt: v 2 = n i=1 (v u i) 2. e) Wenn v U, dann gilt: v 2 = n i=1 (v u i) 2. Lösung: Die Antworten lauten: a) Nein! b) Ja! c) Ja! d) Nein! e) Ja! Aufgabe 39: Thema: Determinate, Eigenwerte, definite Matrizen Welche Aussagen sind richtig? a) Eine n n Matrix A ist genau dann negativ definit, wenn A nur negative Eigenwerte hat. a 11 a 12 a 13 b) Die 3 3 Matrix A = a 21 a 22 a 23 sei positiv definit, dann a 31 a 32 a 33 gilt: ( ) a11 a a 11 > 0, det 12 > 0, det (A) > 0. a 21 a 22 c) Für n n Matrizen A, B gilt: det (A + B) = det A + det B. Lösung: Die Antworten lauten: a) Ja! b) Ja! c) Nein!

Aufgabe 40: Thema: Normalengleichungssystem Sei A eine m n Matrix. Betrachten Sie das Normalengleichungssystem A T Ax = A T b für b R m. Welche Aussagen sind richtig? a) Das Normalengleichungssystem ist für alle b R m lösbar. Lösung: Die Antworten lauten: a) Ja! b) Nein! b) Für b = 0 hat das System stets nur die triviale Lösung. c) Ax ist eindeutig bestimmt, auch wenn es mehrere Lösungen x R n gibt. d) Gilt Rang von A gleich n, dann ist A T A positiv definit. e) Ist A eine symmetrische n n Matrix, dann ist jede Lösung des Systems auch Lösung von Ax = b. c) Ja! Seien x 1 und x 2 Lösungen der Gleichung A T Ax = A T b. Dann folgt daraus d) Ja! Rang von A gleich n, daraus folgt: A T A(x 1 x 2 ) = 0 (x 1 x 2 )A T A(x 1 x 2 ) = 0 A(x 1 x 2 ) 2 = 0 A(x 1 x 2 ) = 0 Ax 1 = Ax 2 Ax = 0 x = 0. A T Ax x = Ax 2 0 für x 0 Zudem wissen wir, dass die Matrix A T A positiv semidefinit ist und somit ist A T A positiv definit. e) Nein! Beispiel: A sei die Nullmatrix.

Aufgabe 41: Thema: Positiv definite Matrizen Sei A eine symmetrische n n Matrix. Welche Aussagen sind richtig? a) Gilt det A > 0, dann ist A positiv definit. b) Ist A positiv definit, dann gilt det A > 0. c) Hat das homogene System Ax = 0 eine nichttriviale Lösung, dann ist A nicht positiv definit. d) Ist A positiv definit, dann ist das Gleichungssystem Ax = b für alle b R n eindeutig lösbar. Lösung: Die Antworten lauten: ( ) 1 0 a) Nein! Beispiel: A = 0 1 b) Ja! Da die Matrix A positiv definit ist, sind alle ihre Eigenwerte größer Null. Da die Determinante von A sich schreiben läßt als das Produkt der Eigenwerte von A ist auch die Determinante größer Null. c) Ja! Wenn das homogene System Ax = 0 eine nicht triviale Lösung hat, sind die Spalten von A linear abhängig. Daraus folgt, dass die Determinante von A gleich Null ist und somit muss mindestens ein Eigenwert von A gleich Null sein, so dass die Matrix nicht positiv definit sein kann. d) Ja! Wenn die Matrix A positiv definit ist, gilt det A 0. Daraus folgt A ist invertierbar und somit ist das Gleichungssystem eindeutlich lösbar. Aufgabe 42: Thema: Offene und abgeschlossene Mengen in R Welche Mengen sind offen in R? a) {x R x 2 > 5} b) {x R x 2 < 5} c) {1, 2, 3,... } Welche Mengen sind abgeschlossen in R? Lösung: Die Antworten lauten: a) Ja! d) {x R x 2 5} e) {x R x 2 5} f) {1, 2, 3,...} b) Nein! Die Menge läßt sich auch schreiben als [0, 5).

c) Nein! d) Ja! e) Ja! f) Ja! Aufgabe 43: Thema: Differenzierbarkeit Lösung: a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist? b) Wie hängen Differenzierbarkeit und Stetigkeit zusammen? c) Welche Voraussetzung an die partiellen Ableitungen impliziert die Differenzierbarkeit? d) Welche geometrische Interpretation hat der Gradient von f an der Stelle x 0? e) Wie berechnet man den Gradienten? f) Was besagt der Satz von Schwarz? g) Was ist eine Richtungsableitung? h) Was ist ein lokales Minimum bzw. ein lokales Maximum einer Funktion vom R n nach R? i) Welches Gleichungssystem muss man lösen, um solche lokalen Extremwerte zu finden? j) Was ist eine positiv (bzw. negativ) definite (n n)-matrix? k) Was ist die Hesse-Matrix einer Funktion f : R n R? l) Was folgt, wenn der Gradient an einer Stelle x 0 im Innern des Definitionsbereiches verschwindet und die Hessematrix dort positiv definit ist? Was gilt, wenn sie dort negativ definit ist? a) Eine Funktion f : R n R heißt differenzierbar an der Stelle x 0, falls es eine lineare Abbildung a : R n R gibt, so dass wobei o : R n R mit o(h) h f(x) = f(x 0 ) + a(x x 0 ) + o(x x 0 ), h 0 0. b) Differenzierbare Funktionen sind stetig, aber nicht umgekehrt. Bsp: f : R R, x x ist stetig an x 0 = 0, aber nicht differenzierbar an der Stelle.

c) Wenn alle partiellen Ableitungen existieren und stetig sind, dann ist f differenzierbar. d) Die Richtung des Gradienten von f an der Stelle x 0 ist die Richtung des steilsten Anstieges von f, und seine Länge ist dieser steilste Anstieg. ( ) T f e) grad f = x 1, f x 2,, f x n. f) Satz von Schwarz: Sei f : R n R zweimal stetig differenzierbar, dann gilt für alle v, w R n : D 2 f(x)(v, w) = D 2 f(x)(w, v). D.h. die Bilinearform D 2 f(x) ist symmetrisch und damit ist dann auch D 2 f(x) eine symmetrische Matrix: 2 xi xj f(x) = 2 xj xi f(x). g) Sei v ein Vektor; Die Richtungsableitung v f(x 0 ) eine Funktion f an der Stelle x 0 ist die Variation dieser Funktion in der Richtung v. v f(x 0 ) = t f(x 0 + tv) t=0 = grad f(x 0 ) v. Man bezeichnet auch die partielle Ableitung als Richtungsableitung. h) Ein lokales Minimum einer Funktion f ist ein Punkt x 0, zu dem es eine Umgebung V (x 0 ) gibt mit der Bedingung x V (x 0 ) : f(x) f(x 0 ). Ebenso ist ein lokales Maximum einer Funktion f ein Punkt x 0, zu dem es eine Umgebung V (x 0 ) gibt mit der Bedingung x V (x 0 ) : f(x) f(x 0 ) i) Um solche lokalen Extremwert zu finden, sucht man nach kritischen Punkten, das heißt, man löst die Gleichung f(x) = 0. Dann ist zu entscheiden, ob es sich um einen Sattelpunkt oder ein lokales Extremum handelt. j) Eine symmetrische Matrix A heißt positiv definit, falls die Eigenwerte von A alle positiv sind. Eine symmetrische Matrix A heißt negativ definit, falls die Eigenwerte von A alle negativ sind. k) Die Hesse-Matrix von f ist die die Ableitung des Gradienten dieser Funktion. ( ) f(x) D 2 f(x) = xj xi l) Wenn der Gradient an einer Stelle x 0 im Innern des Definitionsbereiches einer Funktion f verschwindet und die Hessematrix dort positiv definit ist, dann ist f ein lokales Minimum, wenn die Hessematrix dort statt dessen negativ definit ist, ist der Punkt ein lokales Maximum. i,j

Aufgabe 44: Für welche α R sind die folgenden Matrizen positiv (bzw. negativ) definit: a) A := ( α) b) c) d) B := C := ( ) α 4 4 2α ( ) 1 α α 1 2α 2 0 α D := 0 2 0 α 0 1 Tipp: Falls x 2 + px + q = 0, so gilt für die beiden Lösungen x 1 und x 2, dass x 1 + x 2 = p x 1 x 2 = q Lösung: a) Für α < 0 ist A positiv definit, für α > 0 negativ definit. b) Das charakteristische Polynom ist in dem Fall λ 2 3αλ + 2α 2 16 = 0 Seien λ 1 und λ 2 die Eigenwerte von B. Sie sind Lösungen der oberen Gleichung, und es ist dann klar, daß { λ 1 + λ 2 = 3α λ 1 λ 2 = 2α 2 16 B ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt (α 2 8) > 0 und α > 0, also wenn α ] 8, + [. B ist negativ definit, wenn λ 1 < 0 und λ 2 < 0, das heißt (α 2 8) > 0 und α < 0, also wenn α ], 8[.

c) Das charakteristische Polynom ist in dem Fall λ 2 2λ + 1 α 2 = 0 Seien λ 1 und λ 2 die Eigenwerte von C. Sie sind Lösungen der oberen Gleichung, und es ist dann klar daß { λ 1 + λ 2 = 2 λ 1 λ 2 = 1 α 2 (1) C ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt (1 α 2 ) > 0 (wir haben schon λ 1 + λ 2 = 2) und α ] 1, +1[. C ist negativ definit, wenn λ 1 < 0 und λ 2 < 0, das ist unmöglich weil λ 1 +λ 2 = 2 und dann ist C nie negativ definit. d) Das charakteristische Polynom ist in dem Fall (2α 2 λ)(2 λ)(1 λ) (2 λ)α 2 = 0 (2) (2 λ) ( λ 2 (2α 2 + 1)λ + α 2) = 0 (3) { λ 3 = 2 (4) λ 1, λ2 lösen λ 2 (2α 2 + 1)λ + α 2 = 0 Wir haben dann { λ 1 + λ 2 = 2α 2 + 1 λ 1 λ 2 = α 2 D ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt α 0. Wegen λ 3 = 2 > 0 ist D nie negativ definit.as ist unmöglich weil λ 1 + λ 2 > 0. Aufgabe 45: Thema: Differenzierbarkeit bei vektorwertigen Funktionen Lösung: a) Wie ist Differenzierbarkeit für Funktionen von R n nach R m definiert? b) Nennen Sie ein hinreichendes Kriterium für Differenzierbarkeit! c) Was versteht man unter der Jacobimatrix einer differenzierbaren Abbildung an einer Stelle x 0? d) Was besagt die mehrdimensionale Kettenregel? e) Sind differenzierbare Abbildungen immer stetig? f) Wie sind Polarkoordinaten im R 2 definiert? g) Was sind Kugel-, was Zylinderkoordinaten?

a) Eine Funktion f : R n R m heißt differenzierbar in einem Punkt x 0 R n, falls es eine lineare Abblidung a : R n R m gibt, so dass wobei o : R n R m mit o(h) h f(x) = f(x 0 ) + a(x x 0 ) + o(x x 0 ), h 0 0. b) f ist differenzierbar genau dann wenn f partiell differenzierbar nach alle Variablen ist und alle partielle Ableitungen stetig sind. c) Die Jacobimatrix einer differenzierbaren Abbildung an einer Stelle x 0 ist die Darstellung von Df(x 0 ) in Matrixform. ( ) Df(x 0 ) = f i (x 0 ) xj d) Sei g : R p R n und f : R n R m, D(f g)(x) = (Df) (g(x)) (Dg(x)) Bemerkung: Dg ist eine (n p) Matrix, Df ist eine (m n) Matrix, und D(f g) ist eine (m p) Matrix. f 1 f 1 f x 1 x 2 1 g 1 g 1 g x n x 1 x 2 1 x p f 2 f 2 f x 1 x 2 2 g x n 2 g 2 g x 1 x 2 2 x p Df =, Dg = f m g x 2 n x 2 f m x 1 f m x n e) Ja, differenzierbare Abbildungen sind immer stetig. f) Definition von Polarkoordinaten im R 2 : Sei M ein Punkt im R 2 mit Koordinaten (x, y) im kanonischen Koordinatensystem. Man nennt r = x 2 + y 2 den Abstand zwischen M und dem Ursprungspunkt O = (0, 0) von R 2, und θ den Winkel zwischen die x Achse und OM. Die Polarkoordinaten von M sind (r, θ), ihre Verbindung mit den kartesischen Kordinaten von M ist { x = r cos(θ) y = r sin(θ) g) Definition von Zylinderkoordinaten im R 3 : Sei M ein Punkt im R 3 mit Koordinaten (x, y, z) im kanonischen Koordinatsystem. Man nennt r = x 2 + y 2 die Abstand zwischen der Projektion N von M auf den (x, y)-ebene und dem Ursprungspunkt O = (0, 0, 0) von R 3, und θ den Winkel zwischen der x Achse und ON. Die Zylinderkoordinaten von M sind (r, θ, z) und ihre Verbindung mit den kartesische Kordinate von M ist x = r cos(θ) y = r sin(θ) z = z i,j g n x 1 g n x p

Definition von Kugelkoordinaten im R 3 : Sei M ein Punkt im R 3 mit Koordinaten (x, y, z) im kanonischen Koordinatensystem. Man nennt r = x2 + y 2 + z 2 den Abstand zwischen M und dem Ursprungspunkt O = (0, 0, 0) von R 3, N die Projektion von M auf den (x, y) Achse, θ den Winkel zwischen x-achse und ON, und φ den Winkel zwischen den y-achse und OM. Die Kugelkoordinaten von M sind (r, φ, θ) und ihre Verbindung mit den kartesischen Kordinaten von M ist x = r sin(φ) cos(θ) y z = r sin(φ) sin(θ) = r cos(φ) Aufgabe 46: Geben Sie den Satz von Gauß an Lösung: a) einmal mit Differentialoperatoren und b) und einmal mit ausgeschriebenen partiellen Ableitungen und ausgeschriebenem Skalarprodukt. a) Sei Ω R n eine beschränkte, offene Menge und Ω sein Rand, unter Voraussetzung daß es eine glatte Fläche ist; (in dem Sinn, daß der Rand Ω eine lokale, Stetig differenzierbare Parametrisierung besitzt). Wir bezeichnen mit N(x) die äußere Normale auf Ω, dann gilt für ein stetig differenzierbares Vektorfeld V (x) auf Ω div (V (x)) dx = V (x) N(x)da b) Die Gleichung ist explizit ( n ) V i (x) dx = x i Ω Ω i=1 Ω Ω ( n ) V i (x)n i (x) da wobei V (x) = (V 1 (x), V 2 (x),, V n (x)) and N(x) = (N 1 (x), N 2 (x),, N n (x)). Aufgabe 47: Geben Sie die Formel für die Integration einer Funktion f : R 2 R über einer Kurve γ : [0, 1] R 2 an. Lösung: Die Formel für die Integration der Funktion f : R 2 R über eine stetige differenzierbare Kurve γ : [0, 1] R 2 ist. 1 fdl = f(γ(t)) γ(t) dt γ 0 Aufgabe 48: Geben Sie das Flächenelement bei der Integration über eine Graphenfläche g : [0, 1] 2 R an. Lösung: Laut Skript ist das Flächenelement bei der Integration über eine Graphenfläche g : [0, 1] R 2 gegeben durch 1 + g 2. i=1

Aufgabe 49: a) Was ist die Definition einer orthogonalen linearen Abbildung f : R n R n? Lösung: b) Wann ist eine Matrix A R n,n orthogonal? a) Eine orthogonale lineare Abbildung f : R n R n ist eine längentreue Abbildung ( f(x) = x für alle x R n ). b) Eine Matrix A R n,n ist orthogonal, falls A 1 = A T. Aufgabe 50: Geben Sie die Formel der Taylorentwicklung einer Funktion f : R n R bis zur Ordnung 2 an. Lösung: Die Formel der Taylorentwicklung einer Funktion f : R n R an der Stelle x 0 bis zur Ordnung 2 lautet: f(x) = f(x 0 ) + grad f(x 0 ) (x x 0 ) + 1 2 wobei D 2 f die Hesse-Matrix ist. ( D 2 f(x 0 )(x x 0 ) ) (x x 0 ) + O( x x 0 3 ) Frohe Festtage!