u = 1 in Ω, v = 1 in BR (0), v = 0 auf B R (0). w = v + u = 1 1 = 0 in Ω,

Größe: px
Ab Seite anzeigen:

Download "u = 1 in Ω, v = 1 in BR (0), v = 0 auf B R (0). w = v + u = 1 1 = 0 in Ω,"

Transkript

1 Aufgabe Es sei Ω R n ein beschränktes Gebiet mit Ω B R (0 für ein R > 0. Zeigen Sie: Ist u C (Ω C(Ω eine Lösung von u = in Ω, u = 0 auf Ω, so gilt die Abschätzung 0 u(x R x n für alle x Ω. Hinweis: Berechnen Sie zunächst R x n. Lösung zur Aufgabe : Wegen u 0, ist die Funktion u superharmonisch in Ω. Das Minimumprinzip für superharmonische Funktionen liefert daher min u = min u = 0, d.h. u 0 in Ω. Ω Ω Sei v C (B R (0 gegeben durch v(x := R x für alle x B R (0. n Die Funktion v C (B R (0 ist die eindeutige Lösung von v = in BR (0, v = 0 auf B R (0. Offentsichlich gilt v(x 0 für alle x Ω B R (0. Die Funktion w := v u C (Ω C(Ω löst folglich w = v + u = = 0 in Ω, w = v u 0 auf Ω. Nach dem Minimumprinzip für harmonische Funktionen gilt daher w = v u 0 in Ω, also u(x v(x = R x n für alle x Ω.

2 Aufgabe Sei u C (R n harmonisch. a Zeigen Sie, dass : R n R für i =,..., n harmonisch ist. b Sei zusätzlich < für i =,..., n. Beweisen Sie: Es existieren a R n, b R so, dass u(x = a x + b für alle x R n. Lösung zur Aufgabe : a Für alle x R n gilt ( (x = n x j= j ( Schwarz (x = n x j= j } } = u(x=0 u(x = 0. Demnach ist : R n R per Definition harmonisch. b Nach Teil a ist : R n R harmonisch für i =,..., n. Zusammen mit der Vorrausset- zung < folgt daher nach dem Satz von Liouville: Es existiert eine Konstante a i R so, dass (x = a i für alle x R n. Mit a := (a,..., a n T R n ergibt sich folglich u(x = a für alle x R n. Für die Funktion v : R n R, v(x := u(x a x, gilt daher v(x = u(x (a x = a a = 0 R n für alle x R n. Da der R n ein Gebiet ist, existiert (z.b. nach Satz 3.9, Analysis, Reichel, SS 03 deshalb eine Konstante b R so, dass Schließlich erhalten wir v b auf R n. u(x = a x + v(x = a x + b für alle x R n.

3 Aufgabe 3 Betrachten Sie für g C(R n L (R n die Lösung u: R n (0, R, x y u(x, t := (4πt n 4t g(y dy R n e der homogenen Wärmeleitungsgleichung. Zeigen Sie: Es existiert eine Konstante C 0 mit u(x, t Ct n 4 für alle (x, t R n (0,. Lösung zur Aufgabe 3: Für alle (x, t R n (0, gilt u(x, t = (4πt n R n (4πt n ( ( CS R n e x y 4t g(y dy e x y 4t g(y dy e x y ( 4t dy R n (4πt n = e x y R n (4πt n (4πt n 4t }} (4πt n 4 R n = t n 4 (4π n 4 g L (R n e x y 4t e x y 4t dy } (4πt n } =(Lemma 3.3 Mithin gilt die Behauptung mit C := (4π n 4 g L (R n. g(y dy R n dy g L (R n g L (R n

4 Aufgabe 4 Seien Ω := (0,, T > 0, u 0 C(Ω mit u 0 0 in Ω sowie sup x Ω u C, (Ω T C(Ω T eine Lösung der Wärmeleitungsgleichung t u x = 0, in Ω T, u(x, 0 = u 0 (x, x Ω, u(0, t = u(, t = 0, t [0, T ]. Zeigen Sie: Es existiert eine Konstante C 0 so, dass 0 u(x, t C sin(πxe π t für alle (x, t Ω T. ( Hinweis: Berechnen Sie zunächst sin(πxe πt. t x u 0 (x sin(πx <. Ferner sei Lösung zur Aufgabe 4: u 0: Nach Voraussetzung gilt t u x = 0 in Ω T, u 0 auf Γ T. Nach dem Minimumprinzip für die Wärmeleitungsgleichung (Korollar 3.3. gilt demzufolge min u = min u 0. Ω T Γ T u v in Ω T : Sei zunächst C > 0 beliebig. Die Funktion v : Ω T R gegeben durch v(x, t := C sin(πxe π t für alle (x, t Ω T ist Lösung der homogenen WLG v t v x = 0, in Ω T, v(x, 0 = C sin(πx, x Ω, v = 0, auf Ω [0, T ]. Wir wählen nun C := sup x Ω u 0 (x sin(πx < und erhalten damit v(x, 0 = C sin(πx u 0 (x für alle x Ω = (0,. Die Funktion ṽ C, (Ω T C(Ω T, ṽ := v u löst daher ṽ t ṽ x = 0, in Ω T, ṽ(x, 0 = v(x, 0 u 0 (x 0, x Ω, v = v u = 0, auf Ω [0, T ]. Also gilt speziell: ṽ ist Lösung der homogenen Wärmeleitungsgleichung mit ṽ 0 auf Γ T. Nach dem Minimumsprinzip für die WLG gilt daher min ṽ = min ṽ 0. Daraus ergibt sich v u in Ω T Γ T Ω T.

5 Aufgabe 5 Bestimmen Sie mit Hilfe eines Separationsansatzes eine Lösung u C ([0, ] [0, der eindimensionalen Wellengleichung u t u in (0, [0,, x = 0, u(x, 0 = 0, x [0, ], ( π t (x, 0 = sin x, x [0, ], u(0, t = 0, t 0, (, t = 0, x t 0. ( Lösung zur Aufgabe 5: Seien x (0, und t > 0. Aus dem Separationsansatz u(x, t = v(xw(t folgt Folglich existiert eine Konstante λ R mit 0! = u t (x, t u x (x, t = w (tv(x w(tv (x. v (x v(x = w (t w(t λ. Für v, w ergeben sich damit die Differentialgleichungen w (t = λw(t für alle t > 0, ( v (x = λv(x für alle x (0,. (3 λ = 0: Aus (3 folgt v(x = ax+b für Konstanten a, b R. Wegen 0 = u(0, t = v(0w(t ergibt sich b = 0 oder w 0. Mit 0 = (, t = x v (w(t = aw(t erhalten wir a = 0 oder w 0. Somit ist v 0 oder w 0, also u 0. Aber u 0 löst die Wellengleichung ( nicht. λ > 0: Die allgemeine Lösung von (3 ist gegeben durch v(x = Ae λx + Be λx (x (0, mit Konstanten A, B R. Durch die Randbedingungen ergibt sich: (i u(0, t = 0 0 [ λa e ] λx + e λx.! = v(0 = A + B, d.h. v(x = Ae λx Ae λx, v (x = (ii (, t = 0 0 =! v ( = [ λa e λ ] + e λ. Demnach gilt A = 0 und somit v 0 und x u 0. Widerspruch zu u löst (.

6 λ < 0: Die allgemeine Lösung von (3 ist gegeben durch ( λx ( λx v(x = A sin + B cos (x (0, mit Konstanten A, B R. Durch die Randbedingungen ergibt sich: (i u(0, t = 0 0! = v(0 = B. v(x = A sin ( λx, v (x = λa cos ( λx. (ii (, t = 0 0 =! v ( = λa cos ( λ. Um eine nichttriviale Lösung zu erhalten, x muss daher die Bedingung cos ( λ = 0 erfüllt sein, d.h. λ ( } k + π : k N0 bzw. λ ( } k + π : k N 0. Demnach soll w die DGl ( mit λ = ( k + π für ein k N 0 lösen. Die allgemeine Lösung von ( ist gegeben durch ( λt ( λt w(t = C sin + D cos (( = C sin k + (( πt + D cos k + πt (t > 0 mit Konstanten C, D R sowie k N 0. Durch die Randbedingungen ergibt sich: (i u(x, 0 = 0 0! = w(0 = D. Mithin ist w(t = C sin (( k + πt, w (t = C ( k + π cos (( k + πt. (ii sin ( π x! = t (x, 0 = v(xw (0 = Ĉ sin (( k + (( πx cos k + π0 Ĉ sin (( k + πx mit einer Konstanten Ĉ R. Durch die Wahl Ĉ = und k = 0 erhalten wir daher die Lösung u(x, t := ( π ( π π sin x sin t. = Eine Probe zeigt, dass die so definierte Funktion u C ([0, ] [0, tatsächlich eine Lösung von ( ist.

7 Aufgabe 6 Zu g C 3 (R 3, h C (R 3 mit g, h, g L (R 3 sei u: R 3 (0, R die Lösung der homogenen Wellengleichung u u = 0, t in R3 (0,, u(x, 0 = g(x, x R 3, (4 t (x, 0 = h(x, x R3. Zeigen Sie: Es existiert eine Konstante C 0 mit u(x, t C( + t für alle (x, t R 3 (0,. Lösung zur Aufgabe 6: Nach Satz 4.7. ist die eindeutige Lösung von (4 gegeben durch die Kirchhoff-Formel u(x, t = th(y + g(y + g(y (y x dσ 4πt y für alle (x, t R 3 (0,. B t(x Für (x, t R 3 (0, gilt daher u(x, t = 4πt 4πt CS 4πt 4πt [ B t(x B t(x B t(x th(y + g(y + g(y (y x dσ y t h(y + g(y + g(y (y x dσ y t h(y + g(y + g(y y x dσ }} y =t ] t h + g + g t dσ y B t(x = t h + g + g t C( + t mit der Konstanten C := max h + g, g }.

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Scheinklausur zur Vorlesung Partielle Differentialgleichungen

Scheinklausur zur Vorlesung Partielle Differentialgleichungen Karlsruher Institut für Technologie (KIT) WS 2010/2011 Institut für Analysis 31.1.2011 Prof. Dr. Wolfgang Reichel Dipl.-Math. Dagmar Roth Scheinklausur zur Vorlesung Partielle Differentialgleichungen Name:

Mehr

Partielle Differentialgleichungen Prüfung am

Partielle Differentialgleichungen Prüfung am Partielle Differentialgleichungen Prüfung am 27.04.2017 Name, Vorname Matrikelnummer Unterschrift Dauer: 60 Minuten. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit. Bitte schreiben

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 205/206 29.0.206 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

Proseminar Partielle Differentialgleichungen 1

Proseminar Partielle Differentialgleichungen 1 Proseminar Partielle Differentialgleichungen 1 Gerald Teschl SS2012 Bemerkung: Die meisten Beispiel sind aus dem Buch von L. C. Evans, Partial Differential Equations, Amer. Math. Soc., 1998 bzw. aus der

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Partielle Di erentialgleichungen I Blatt 12 Lösungen bitte zur Übung am 12. Januar 2018 mitbringen

Partielle Di erentialgleichungen I Blatt 12 Lösungen bitte zur Übung am 12. Januar 2018 mitbringen Universität Leipzig Mathematisches Institut Prof. Dr. László Székelyhidi Dr. Stefano Modena WS07/8 Partielle Di erentialgleichungen I Blatt Lösungen bitte zur Übung am. Januar 08 mitbringen Aufgabe 45.

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Lösungsvorschläge zum 7. Übungsblatt.

Lösungsvorschläge zum 7. Übungsblatt. Übung zur Analysis II SS Lösungsvorschläge zum 7 Übungsblatt Aufgabe 5 a) f : R R definiert durch fx, y) : x, y) und D : U, ) und D : U 4, ) \ U, ) b) f : R R definiert durch fx, y) : x ) cost) c) γ :

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Musterlösung Serie 2

Musterlösung Serie 2 D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen

Mehr

7. Die eindimensionale Wärmeleitungsgleichung

7. Die eindimensionale Wärmeleitungsgleichung H.J. Oberle Differentialgleichungen II SoSe 2013 7. Die eindimensionale Wärmeleitungsgleichung Als Beispiel für eine parabolische PDG betrachten wir die eindimensionale Wärmeleitungsgleichung u t (x, t)

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren Fachbereich Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung mit anderen Randbedingungen nicht Dirichlet, symmetrische Differentialoperatoren 8.7.2 Die ins Netz

Mehr

Die Perronsche Methode

Die Perronsche Methode Die Perronsche Methode Stephanie Seger LMU München Hüttenseminar 13.12.2012-16.12.2012 Stephanie Seger Die Perronsche Methode 1/13 Lösung eines speziellen Randwertproblems Existenz von Lösungen des klassischen

Mehr

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) Institut für Analysis Priv.-Doz. Dr. Peer Kunstmann Markus Antoni WS 22/23 Bachelor Modulprüfung Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren.

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren. 56 SS2016 Definition 6.17 (Unterlösung,Oberlösung). Ω R n seieingebietleinelliptischeroperator wie in Bedingung 6.1. Seien a i j, b i c stetig mit c 0 in Ω. Sei f stetig in Ω. Eine Funktion u C(Ω) heißt

Mehr

D-CHEM Mathematik III Sommer 2016 Prof. Dr. F. Da Lio. First Draft. 20 x ct x + ct x 4t x + 4t 20, 4t 20 x 20 4t.

D-CHEM Mathematik III Sommer 2016 Prof. Dr. F. Da Lio. First Draft. 20 x ct x + ct x 4t x + 4t 20, 4t 20 x 20 4t. D-CHEM Mathematik III Sommer 06 Prof. Dr. F. Da Lio First Draft. a) Der Wert u(x, t) kann für (x, t) berechnet werden, wenn (x, t) im Einflussgebiet von [ 0, 0] liegt (denn nur auf dem Intervall [ 0, 0]

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 203 Institut für Analysis 504203 Prof Dr Tobias Lamm Dr Patrick Breuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Bestimmen Sie die

Mehr

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Department Mathematik der Universität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Die ins Netz

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, (13.58) Test 1 Gruppe A (Mo, 8.4.14) (mit Lösung ) Unterlagen: eigenes

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Wintersemester 2013/14 T R, M.S. Bla 9 vom 07.02.2014 http://www.math.kit.edu/iana1/lehre/hm3etec2013w/

Mehr

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r Funktionentheorie, Woche 8 Harmonische Funktionen 8. Folgen der Holomorphie Im letzten Kapitel sahen wir, dass der Realteil einer holomorphen Funktion harmonisch ist, und dass es zu jeder harmonischen

Mehr

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung Kapitel 7 Randwertprobleme Anwendungsbeispiel: Temperaturverteilung in einem dünnen Stab mit isolierter Oberfläche. u(x) : Temperatur im Stab an der Stelle x, x ; L. Im Gleichgewichtszustand genügt u der

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt Kurze Zusammenfassung der Vorlesung 6 Am Anfang werden wir einbisschen mehr den Potenzreihenansatz besprechen. Abgewandelter Potenzreihenansatz In Verallgemeinerung der Eulerschen Differentialgleichung

Mehr

Wärmeleitungsgleichung,

Wärmeleitungsgleichung, Fachbereich Mathematik der Universität Hamburg SoSe 2015 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung, 05.06.2015 Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 6. Übungsblatt Aufgabe 2

Mehr

u tt u = f in Verbindung mit geeigneten Anfangs und Randbedingungen. Hier bezeichnet t > 0 die Zeitvariable und x Ω, Ω R n offen, die Ortsvariable.

u tt u = f in Verbindung mit geeigneten Anfangs und Randbedingungen. Hier bezeichnet t > 0 die Zeitvariable und x Ω, Ω R n offen, die Ortsvariable. Kapitel 6: Die Wellengleichung In diesem Kapitel untersuchen wir die Wellengleichung u tt u = 0 sowie die inhomogene Wellengleichung der Form u tt u = f in Verbindung mit geeigneten Anfangs und Randbedingungen.

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Die Perronsche Methode

Die Perronsche Methode Emilia Finsterwald und Peter Schrank 21.06.2012 Gliederung 1 Oskar Perron 2 3 4 5 6 7 8 Oskar Perron (1880-1975) b7.mai 1880 in Frankenthal - d22.feb. 1975 in München Lösung eines speziellen s Im Fall

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

1 0, x C X (A). = 1 χ A(x).

1 0, x C X (A). = 1 χ A(x). Aufgabe 1 a) Wir müssen nur zeigen, dass χ A B (x) = χ A (x) χ B (x) für alle x X gilt. (Dass χ A χ B Abbildung von X in {0, 1} ist, ist klar.) Sei also x X beliebig. Fall 1: x A B. Dies bedeutet x A und

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir =

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir = 4.2 Eigenschaften harmonischer Funktionen Die Mittelwerteigenschaft: Eine besondere Eigenschaft harmonischer Funktionen ist, dass der Funktionswert an einer Stelle x stets gleich dem Mittelwert von u über

Mehr

Übungsblatt 10 Musterlösung

Übungsblatt 10 Musterlösung Übungsblatt 0 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Aufgabe 45 Fehlerkonstante von MSV Betrachten Sie ein allgemeines lineares q Schrittverfahren α q j y i+ j = h β q j

Mehr

3.3 Eindimensionale Wellengleichung

3.3 Eindimensionale Wellengleichung 3.3. Eindimensionale Wellengleichung 77 3.3 Eindimensionale Wellengleichung Die Wellengleichung lautet c 2 u(x,t) = 2 u t 2(x,t) für alle x Ω Rn, t R, wobei c > 0 eine Konstante ist. Schauen wir uns diese

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Differentialgleichungen II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 23 1. Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : sin als Lösung besitzt. Welche der folgenden Aussagen

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

AUFFINDEN ERSTER INTEGRALE. 1. Die Problemstellung Wir betrachten eine autonome Differentialgleichung x (t) = f(x(t))

AUFFINDEN ERSTER INTEGRALE. 1. Die Problemstellung Wir betrachten eine autonome Differentialgleichung x (t) = f(x(t)) AUFFINDEN ERSTER INTEGRALE Zusammenfassung. In dieser kleinen Note widmen wir uns in einem für uns ausreichendem Maße den theoretischen Grundlagen zum Auffinden erster Integrale. (1) 1. Die Problemstellung

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt Karlsruher Institut für Technologie KIT) Institut für Analysis Priv.-Do. Dr. P. C. Kunstmann Dipl.-Math. D. Roth SS 0 5.07.0 Aufgabe 60 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom Übungsaufgaben 3. Übung SS 18: Woche vom 23.-27. 4. 2018 Partielle DGL IV (PDGL 2. O.: Normalform, Separ.-ans.) Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 8. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

3.3 Eindimensionale Wellengleichung

3.3 Eindimensionale Wellengleichung 3.3. Eindimensionale Wellengleichung 75 3.3 Eindimensionale Wellengleichung Die Wellengleichung lautet c 2 u(x,t) = 2 u t 2(x,t) für alle x Ω Rn, t R, wobei c > 0 eine Konstante ist. Schauen wir uns diese

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 partielle Differentialgleichungen (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen D-MATH Lineare Algebra I HS 2017 Dr. Meike Akveld Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen 1. a) Seien v 1, v 2 V, λ K, dann sind Also ist id V linear. b) Seien v

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

8. Spezielle Funktionen

8. Spezielle Funktionen H.J. Oberle Differentialgleichungen II SoSe 2013 8. Spezielle Funktionen Spezielle Funktionen (der mathematischen Physik) entstehen zumeist aus Separationsansätzen für PDG bei Vorliegen von Symmetrie-Eigenschaften.

Mehr

2. Quasilineare PDG erster Ordnung

2. Quasilineare PDG erster Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 2. Quasilineare PDG erster Ordnung Eine skalare PDG erster Ordnung hat die allgemeine Form F (x, u(x), u x (x)) = 0. (2.1) Dabei ist u : R n G R die gesuchte

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe ( Punkte) Sei S := {(x, y, z) R 3 : z = x 2 y 2 und x 2 + y 2 }. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b)

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4. Umkehrbarkeit I Man betrachte die durch g(s, t = (e s cos(t, e s sin(t gegebene Funktion g : R R. Zeigen Sie, dass

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr