Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt"

Transkript

1 Karlsruher Institut für Technologie KIT) Institut für Analysis Priv.-Do. Dr. P. C. Kunstmann Dipl.-Math. D. Roth SS Aufgabe 60 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge um. Übungsblatt a) Die Partialbrucherlegung von f ist gegeben durch f) i) + +i). Um eine Laurententwicklung um den Punkt 0 i im Gebiet G u erhalten, müssen wir den weiten Summanden in eine Reihe entwickeln: f) i) + + i) i) + i + i) i) + i) + 4i n n0 i ) n i a n i) n wobei a n i) + n0 { ) n, n 0 i) n+, n i + i ) i n i)n ) i) n+ Beachte, dass für G gilt: i < und folglich i i <, weshalb die Entwicklung in die geometrische Reihe möglich ist. b) Für f gilt die Partialbrucherlegung f) letten Summanden in eine Reihe um 0 0: f) + 4 ) + n 4 n0 n0 { a n n wobei a n n+), n 0, n n + ). Wir entwickeln die beiden ) n + n0 ) n+ n Beachte auch hier, dass für alle G gilt: <, weshalb die Entwicklungen in geometrische Reihen möglich sind. Aufgabe 6 a) Die Funktion f) e ) 4 hat in 0 einen Pol der Ordnung 4. Mit Hilfe der Formel aus.3 a) sieht man Resf; ) d 3 ) 4 3! d 3 f) )) d 3 6 d 3 6 e e 6. b) Da f in 0 eine wesentliche Singularität besitt, können wir nicht wie uvor vorgehen. Wir bestimmen stattdessen die ugehörige Laurentreihe um 0 und lesen das Residuum ab f) e k l n0 ) n ) ) + n! ) k k)! )k+ + ) l l ))! )l + k k k ) k )k k)! ) k )k k)! ) k )k k)!

2 ) + k ) ) k k ))! + )k ) k,. k)! Das Residuum von f in ist der Koeffiient von ), also Aufgabe 6 Resf; ) )! +!. e a) Der Integrand f) : besitt in eine einfache und in 3 eine doppelte Polstelle )+3) und ist holomorph auf C\{, 3}. Da innerhalb des Integrationsweges nur die Polstelle liegt, liefert der Residuensat f) d πi Resf; ) eπi 8, denn für das Residuum von f in gilt Resf; ) )f) e + 3) e 6. b) Nun liegen die beiden Polstellen 3 und von f innerhalb des Integrationsweges 9. Deswegen gilt nach dem Residuensat ) e f) d πi Resf; ) + Resf; 3) πi 6 5e 3 ) e 5e 3 )πi, 6 8 da 9 Resf; 3) d + 3) f) )) d e d 3 d )) 3 5e 3 6. e ) e ) ) c) Schreibe f) :. Der Nenner von f) wird genau dann 0, wenn kπ mit einem e i k Z gilt. Von diesen Punkten liegt nur 0 im Inneren des Kreises. Daher ist f) d πi Resf; 0). Nun sieht man anhand der Darstellung f) e i + i + i) + ) i + i +, dass in 0 eine hebbare Singularität von f vorliegt. Deshalb gilt Resf; 0) 0 und das Integral hat den Wert 0. d) Sei f) : e. Hier liefert der Residuensat f) d πi Resf; ). Um das Residuum Resf; ) u berechnen, betrachten wir die Laurententwicklung von f um ) f) exp exp + ) e e / ) e ) k ) k ; k! der Koeffiient von ) lautet e. Also ist Resf; ) e und damit ) exp d πi e. k0 3

3 e) Der Integrand f) : )+)+i) besitt in,, i jeweils einen Pol erster Ordnung und ist holomorph auf C \ {,, i}. Da sich alle Polstellen im Inneren von G befinden, ergibt sich nach dem Residuensat ) f) d πi Resf; ) + Resf; ) + Resf; i). G Wir berechnen nun die Residuen von f in den einfachen) Polstellen Resf; ) )f) + ) + i) 3 + i) i), 3 4 Resf; ) + )f) ) + i) 3 + i) 4 + i), 5 i Resf; i) + i)f) i ) + ) i i + ) i + ) + 3i). 5 Hiermit ist G 4 f) d πi i) i) + ) 5 + 3i) 0. Aufgabe 63 Als Hintereinanderausführung holomorpher Funktionen ist die Funktion f auf gan C holomorph. Sie lässt sich also um 0 0 in eine Potenreihe entwickeln f) n0 f n) 0) n! Diese Potenreihe konvergiert auf der größten Kreisscheibe um 0 0, auf der f holomorph ist. Hier konvergiert die Potenreihe also für jedes C. Der Integrand f/) ist holomorph auf C \ {0} und für 0, insbesondere also für 0 < <, gilt nach den obigen Überlegungen f/) n0 Nach dem Residuensat gilt dann e sin/) d / f n) 0) n! / und Ablesen an der Laurentreihe für f/) ergibt n n. n0 f n) 0) n! n. f/) d πi Resf/); 0), πi f 0) Wegen f ) cos)f), f ) sin)f) + cos )f) und f0) ist f 0). Das Integral ist also gleich Aufgabe 64 πi πi. Da C einfach usammenhängend ist, gilt: u ist genau dann Realteil einer holomorphen Funktion, wenn u harmonisch ist, wenn also u 0 gilt. Wegen ux, y) u x x, y) + u x, y) y x + λy + y + λx + λ)x + y ). 3

4 ist dies genau für λ 6 der Fall. Wir betrachten im folgenden daher ux, y) x 4 + y 4 6x y. Nun benötigen wir alle Funktionen v mit x v y u und y v x u. Für diese v ist die Funktion fx + iy) ux, y) + ivx, y) dann nach Konstruktion holomorph und u ist Realteil von f. Die erste Forderung an v lautet x vx, y) y ux, y) 4y 3 x y) 4y 3 + x y. Hieraus folgt durch Integration beüglich x: Es gilt vx, y) 4xy 3 +4x 3 y+cy) mit einer gewissen Funktion c: R R. Damit ergibt sich y vx, y) xy + 4x 3 + c y), und dies soll x ux, y) 4x 3 xy sein. Dau muss c y) 0 gelten, also c konstant sein. Damit haben wir die holomorphe Funktion f gefunden fx + iy) ux, y) + ivx, y) x 4 + y 4 6x y + i 4xy 3 + 4x 3 y + c) x 4 + 4ix 3 y 6x y 4ixy 3 + y 4 + ic x + iy) 4 + ic c R). Wir erhalten also: Genau die Funktionen der Form f) 4 + ic, wobei c R beliebig, haben ux, y) x 4 + y 4 6x y als Realteil. Aufgabe 65 a) Definitionsgemäß gilt für die Hauptweige von Potenfunktion und Logarithmus α e α Log, Log log + i Arg, wobei Arg π, π), α C. Mit Log + i) log + i + i Arg + i) log + iπ/4 ergibt sich + i) i e i Log+i) e ilog +iπ/4) e i log π/4 e π/4 coslog ) + i sinlog ) ). Man liest ab: Re + i) i ) e π/4 cos log ) und Im + i)i ) e π/4 sin log ). Wegen Log i log i + i Arg i iπ/ gilt i i e iiπ/) e π/, also i ii) i e π/) expe π/ Log i) exp π e π/ i) cos π e π/ ) + i sin π e π/ ). Man sieht: Rei ii) ) cos π e π/ ) und Imi ii) ) sin π e π/ ). Wegen Log i iπ/ ergibt sich Damit erhalten wir LogLog i) Logiπ/) log iπ/ + i Argiπ/) logπ/) + iπ/. Log i) i e i LogLog i) e i logπ/) π/ e π/ cos logπ/) ) + ie π/ sin logπ/) ), und Real- und Imaginärteil können unmittelbar abgelesen werden. b) Die Gleichung e / i e i π ist genau dann erfüllt, wenn i π + 4k)π + kπi i i + 4k)π mit einem gewissen k Z gilt, d.h. { C e / i} { +4k)π k Z}. i 4

5 Aufgabe 66 Vorüberlegung: i) Eine Gerade in der komplexen Ebene lässt sich schreiben als { C : a + bt, t R} wobei a, b C fest. Eine weitere Möglichkeit, Geraden u schreiben ist die sogenannte Hessesche Normalform { C : β+ β +γ 0} wobei β C\{0} und γ R. Durch äquivalente Umformungen kann man eigen, dass sich beiden Schreibweisen ineinander überführen lassen t sei im folgenden reell): β + β + γ 0 Reβ) γ β γ + it γ β + i β t ii) Der Kreis in der komplexen Ebene um 0 C mit Radius r > 0 lässt sich beschreiben durch { C : 0 < r} bw. { C : 0 + re it, t [0, π]}. Eine weitere Schreibweise ist gegeben durch { C : + β + β + γ 0} wobei β C und γ R fest mit β > γ. Es gilt: + β + β + γ 0 + β) + β) β γ β) β γ Es sei w i Ĉ das Bild von Ĉ unter f, d.h. w f) +. Dann gilt: i w + w w w i + w) i w i w + w. a) Für alle C auf der Einheitskreislinie gilt: 0. Wir seten nun die für gewonnene Darstellung durch das Bild w ein und formen diesen Ausdruck um, bis wir erkennen, welche Gleichung die Bildpunkte w erfüllen: 0 i w + w i w i w) i w) 0 + w + w + w + w 0 iw + iw + w w w w 0 w + i) + w i) 0 + i)w + + i)w 0 Somit ist das Bild der Einheitskreislinie nach i) die Gerade durch den Ursprung γ 0) und den Punkt i β i +i i. b) Für alle Punkte auf der rellen Achse gilt: Im) 0, also 0. Wir gehen wie im a)-teil vor: 0 i w + w i w 0 i w) + w) + i + w) + w) 0 + w i + iw w w + i + iw + w + w 0 w + i) + w + i) + i 0 i w i) + w + i) 0 Das Bild ist nach i) wieder eine Gerade, in diesem Fall durch die Punkte t 0, eingesett). c) Für die Punkte auf der imaginären Achse gilt: +i i + 0 i w + w + i w 0 i w) + w) i + w) + w) 0 + w i w + i w w i iw w w 0 w + w + i) + w i) 0 w + + i w + + i w 0 Nach ii) ist dies ein Kreis um i mit Radius. und 5

6 Aufgabe 67 Sei w Ĉ das Bild der Möbiustransformation unter, d.h. w. Dies ist äquivalent u w Es sei K r { C : r}. Wir bestimmen unächst das Bild des Kreises K : 0 w + w w 0 ww w w ww 0 + w w + w + 0 Rew) Dies ist die ur imaginären Achse parallele Gerade durch den Punkt. Betrachten wir nun die Kreise K r mit < r. Dann gilt: r 0 w + w w + w r 0 w r r w r w r w 0 w w + r r w r r w r r 0 r r w + r r w + r r 0 ) Dies ist ein Kreis um r r mit Radius R r r r r r r r> r r. +w. 6

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) = Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz Ferienkurs Analysis 3 für Physiker Laurentreihen und Residuensat Autor: Benjamin Rüth Stand:. Mär 204 Inhaltsvereichnis Inhaltsvereichnis Inhaltsvereichnis Singularitäten 3 2 Laurentreihen 4 2. Laurententwicklung...............................

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt Institut für Analysis SS207 PD Dr. Peer Christian Kunstmann 4.07.207 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November 009 Musterlösungen 6. Sei B r := { C < r} und f : C C durch 3 + definiert. Welches ist der grösste Wert von r so dass f Br injektiv

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Funktionentheorie Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 Funktionentheorie - Zusammenfassung Grundlagen Komplexe Funktion f (z)

Mehr

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu) ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

4.4 Die Potentialgleichung

4.4 Die Potentialgleichung Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Lösung 2 : Logarithmen, Wurzeln & Komplexe Funktionen

Lösung 2 : Logarithmen, Wurzeln & Komplexe Funktionen D-ITET FS 09 Meike Akveld Komplexe Analysis Lösung : Logarithmen, Wureln & Komplexe Funktionen Aufgabe..a) Berechnen Sie die folgenden Terme in der algebraischen Form. i) e i, ii) e i, iii) Log + i), i)

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Strömungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204 200W/ Wintersemester

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warel Ma Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 8 (.2.29) Zentralübung 37. Gane Funktionen Eine auf

Mehr

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0 UNIVESITÄT KALSUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Ferienkurs Analysis 3 - Funktionentheorie

Ferienkurs Analysis 3 - Funktionentheorie Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius 12.08.2009 1 Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch

Mehr

Komplexe Analysis D-ITET. Serie 6

Komplexe Analysis D-ITET. Serie 6 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 208 Komplexe Analysis D-ITET Serie 6 ETH Zürich D-MATH Aufgabe 6. (6.a) um 0 = 0. Der Konvergenradius der Taylorreihe Berechnen Sie die ersten drei

Mehr

Mathematik für Ingenieure III Kurs-Nr WS 2007/08

Mathematik für Ingenieure III Kurs-Nr WS 2007/08 Mathematik für Ingenieure III Kurs-Nr. 93 WS 7/8 Kurseinheit 7: Lösungsvorschläge zu den Einsendeaufgaben Aufgabe : Es sollen die Singularitäten deren Art der folgenden Funktionen bestimmt werden. a fz

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 4 MC-Aufgaben (Online-Abgabe) 1. Sei z := exp ( π 6 i) (5 + b i). Für welches b R ist z eine reelle Zahl? (a) 1 (b) (c) 1 5 (d) 5 (e)

Mehr

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) =

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) = Musterlösung Analysis III f. Ing., 09. Oktober 0. Aufgabe 9 Punkte Partialbruchzerlegung: (z )(z +3) z z +3 Um eine im Ringgebiet < z < 5 konvergente Laurent-Reihe zu erhalten, entwickelt man den Term

Mehr

(a) Laurentreihe. Dann gilt:a n = 0 n Z mitn<0. (a) Laurentreihe. Dann gilt: (1): k N:a k 0 und (2):

(a) Laurentreihe. Dann gilt:a n = 0 n Z mitn<0. (a) Laurentreihe. Dann gilt: (1): k N:a k 0 und (2): Lösungen ur Funktionentheorie Blatt Ergänendes Material: In der Funktionentheorie gibt drei Arten von isolierten Singularitäten: Hebbare Singularitäten, Pole Polstellen und wesentliche Singularitäten.

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale,

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale, Department Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Anleitung u Blatt 7 Komplexe Funktionen Isolierte Singularitäten, Residuensat, reelle Integrale, Die ins Net gestellten Kopien

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Ferienkurs Analysis 3 für Physiker. Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Funktionentheorie Ferienkurs Analysis 3 für Physiker Funktionentheorie Autor: Benjamin Rüth, Korbinian Singhammer Stand: 28. Februar 25 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Was ist Funktionentheorie?

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Höhere Mathematik Vorlesung 8

Höhere Mathematik Vorlesung 8 Höhere Mathematik Vorlesung 8 Mai 2017 ii In der Mathematik versteht man die Dinge nicht. Man gewöhnt sich nur an sie. John von Neumann 8 Funktionentheorie Komplexe Zahlen Jede komplexe Zahl besitzt eine

Mehr

Komplexe Analysis D-ITET. Serie 2

Komplexe Analysis D-ITET. Serie 2 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 018 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Hinweis: Auf diesem Aufgabenblatt gibt es ein paar Aufgaben, welche etwas schwieriger sind als

Mehr

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwar WS 0/0 7..0 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge um. Übungsblatt

Mehr

Differenzengleichungen, Z - Transformation

Differenzengleichungen, Z - Transformation Differenengleichungen, Z - Transformation In diesem Kapitel wollen wir eine weitere Transformation, die Z-Transformation behandeln. Mit Hilfe der Z-Transformation können lineare Differenengleichungen (DFG

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 018 Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt komplexe Funktionen, K.Rothe,

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v 1.3 2016/06/22 16:12:36 hk Exp $ 3 Meromorphe Funktionen und der Residuenkalkül 3.3 Hauptteile und Residuen Am Ende der letzten Sitzung hatten wir die Laurententwicklung einer holomorphen

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Kreistreue der Möbius-Transformationen

Kreistreue der Möbius-Transformationen Kreistreue der Möbiustransformationen Satz Möbius Transformationen sind kreistreu. Beweis Verwende eine geeignete Zerlegung für c 0: a az + b cz + d = c (cz + d) ad c + b cz + d = a c ad bc c cz + d. Wir

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

Musterlösung Analysis 3 - Funktionentheorie

Musterlösung Analysis 3 - Funktionentheorie Musterlösung Analysis 3 - Funktionentheorie 3. Mär Aufgabe : Zum Aufwärmen (i) Betrachte ie Lauranterlegung von f : C C, f() = sin un eige mit Hilfe er Zerlegung, ass ie Singularität bei = hebbar ist.

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Themen Potenzreihen Laurentreihen Residuenkalkül

Themen Potenzreihen Laurentreihen Residuenkalkül 5 Reihenentwicklungen und der Residuensatz Themen Potenzreihen Laurentreihen Residuenkalkül folgen 5.1 Potenzreihen und Taylorreihen Satz Sei und sei f(z) = a n (z z 0 ) n, a n, n=0 R = 1 lim sup n a n,

Mehr

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2.

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2. Aufgabe (8 Punkte (a der Realteil von z +i 4 i zu bestimmen. z + i ( + i(4 + i + i 4 i + i.,5 Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält Re (z Im (z.,5 (b (b

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

5. Sätze über komplexe Zahlen 5.0 Was lernen wir?

5. Sätze über komplexe Zahlen 5.0 Was lernen wir? 5. Säte über komplexe Zahlen 5.0 Was lernen wir? 5. Säte über komplexe Zahlen 5.0 Was lernen wir? Didaktischer Hinweis Für Schüler reicht es meist aus, die Unterkapitel 5.1 bis 5.4 u bearbeiten. Die anderen

Mehr

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i Übungsblatt 10 zur Funktionentheorie im WiSe 09/10 Prof. Dr. Christoph Schweigert Übungsgruppe 1 Aufgabe 1 1.a) (t) = 1 + exp(it) für 0 t 2 π. (z+1)(z 1) = π 3 4 i Ich betrachte f(z) = 1 (z 1) 3. Als Quotient

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum Technische Universität Chemnit. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple : Integralrechnung, Kurven im Raum Letter Abgabetermin: 6. Mai in Übung oder Briefkasten bei Zimmer Rh. Str.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Ferienkurs Analysis 3 für Physiker. Holomorphe Funktionen und wichtige Sätze der Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Holomorphe Funktionen und wichtige Sätze der Funktionentheorie Ferienkurs Analysis 3 für Physiker Holomorphe Funktionen und wichtige Sätze der Funktionentheorie Autor: Benjamin Rüth Stand: 7. März 24 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Was ist

Mehr

52 Andreas Gathmann. =: f + (z)

52 Andreas Gathmann. =: f + (z) 52 Andreas Gathmann 9. Laurent-Reihen In den letten beiden Kapiteln haben wir gesehen, dass sich holomorphe Funktionen lokal um jeden Punkt 0 in eine Potenreihe a n( 0 n entwickeln lassen, und daraus viele

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungsettel aus dem Modul math34. Dieser Übungsettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungsettel u diesem

Mehr

Komplexe Taylor-Reihe

Komplexe Taylor-Reihe Komplexe Taylor-Reihe Eine in einem Gebiet D analytische Funktion f lässt sich in jedem Punkt a D in eine Taylor-Reihe entwickeln: f (n) (a) n! (z a) n. Taylor-Reihe - Komplexe Taylor-Reihe Eine in einem

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen D-MATH Funktionentheorie HS 208 Prof. Michael Struwe Lösungen Serie 8 Laurentreihen, isolierte Singularitäten, meromorphe Funktionen. Bestimmen Sie die Laurentreihenentwicklung der folgenden Funktionen:

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 24 2.5.24 Funktionentheorie Lösungsvorschläge zum 3. Übungsblatt Aufgabe (K) a) Beweisen

Mehr

Aufgaben zu Kapitel 32

Aufgaben zu Kapitel 32 Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Verständnisfragen Aufgabe 3. Zeigen Sie, dass die Summe der n-ten Einheitswurzeln für n immer null ergibt und interpretieren Sie dieses Ergebnis für n 3 geometrisch.

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r Funktionentheorie, Woche 8 Harmonische Funktionen 8. Folgen der Holomorphie Im letzten Kapitel sahen wir, dass der Realteil einer holomorphen Funktion harmonisch ist, und dass es zu jeder harmonischen

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 203 Institut für Analysis 504203 Prof Dr Tobias Lamm Dr Patrick Breuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Bestimmen Sie die

Mehr

Ferienkurs Analysis 3 für Physiker. Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Funktionentheorie Ferienkurs Analysis 3 für Physiker Funktionentheorie Autor: Benjamin Rüth, Maximilian Jokel Stand: 9. März 26 Inhaltsverzeichnis Inhaltsverzeichnis Grundlagen der Funktionentheorie 3. Holomorphe Funktionen............................

Mehr

1 für n = 2, 3, 4,...,

1 für n = 2, 3, 4,..., Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3. Zeigen Sie, dass die Summe der n-ten Einheitswurzeln für n immer null ergibt und interpretieren Sie dieses Ergebnis für n 3 geometrisch. Aufgabe 3. Zeigen

Mehr