Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Größe: px
Ab Seite anzeigen:

Download "Komplexe Funktionen für Studierende der Ingenieurwissenschaften"

Transkript

1 Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6

2 Komplexe Funktionen, K Rothe, SoSe 214, Theoriehinweise zu Blatt 6 2 Singularitäten Besitzt f in z eine Definitionslücke, dann handelt es sich um eine isolierte Singularität, wenn eine punktierte Kreisscheibe < z z < r existiert, in der f holomorph ist Klassifikation isolierter Singularitäten Isolierte Singularitäten z werden anhand der Koeffizienten a k des Hauptteils der Laurent-Reihe zum Entwicklungspunkt z klassifiziert: a) z heißt hebbar, wenn die Laurent-Reihe keinen Hauptteil besitzt, dh wenn = a 1 = a 2 = a 3 = gilt, also eine reine Taylor- Reihe vorliegt b) z heißt Pol der Ordnung m >, wenn der Hauptteil der Laurent-Reihe nach m Summanden abbricht, dh a m und = a (m+1) = a (m+2) = a (m+3) = gilt c) z heißt wesentliche Singularität, wenn der Hauptteil der Laurent-Reihe unendlich viele Summanden besitzt, dh a k für unendlich viele k > gilt Der Koeffizient a 1 der Laurent-Reihe von f in der punktierten Kreisscheibe < z z < r um z wird als Residuum von f in z bezeichnet: Res (f; z ) := a 1 = 1 f(z) dz 2πi z z =ρ Residuenberechnung a) z Pol erster Ordnung Res (f; z ) = lim z z (z z ) f(z), Speziell für f(z) = g(z)/h(z) erhält man Res (f; z ) = g(z ) h (z ) (g, h holomorph und h besitzt in z eine einfache Nullstelle)

3 Komplexe Funktionen, K Rothe, SoSe 214, Theoriehinweise zu Blatt 6 3 b) z Pol m-ter Ordnung Res (f; z ) = 1 (m 1)! lim z z d m 1 dz m 1 [(z z ) m f(z)] Aufgabe 21: Für die folgenden Funktionen a) f(z) = z2 + z z exp(z), b) f(z) =, z 3 2z2 z 4 c) f(z) = cosh 1 z sinh 1 z π, d) f(z) = z sin z bestimme man: Lage und Art der (endlichen) Singularitäten, die zugehörigen Residuen und die ersten vier (nichtverschwindenden) Summanden der Laurentreihe um z =, die für große z konvergiert Komplexe Partialbruchzerlegung Gegeben sei die rationale Funktion r(z) = p(z) q(z) mit Polynomen p und q und es gelte a) Grad p < Grad q und b) r besitze die verschiedenen Polstellen z 1,, z m Dies sind die Nennernullstellen von q, die nach kürzen mit denen von p übrig geblieben sind p und q können damit als teilerfremd vorausgesetzt werden Betrachtet wird also die in den isolierten hebbaren Singularitäten stetig ergänzte Funktion Dann besitzt r die komplexe Partialbruchzerlegung r(z) = h(z; z 1 ) + + h(z; z m )

4 Komplexe Funktionen, K Rothe, SoSe 214, Theoriehinweise zu Blatt 6 4 Dabei ist n k h(z; z k ) = j=1 a j,k ( ) j = a 1,k + a 2,k ( ) a n k,k ( ) n k der Hauptteil der Laurent-Reihe von r zum Entwicklungspunkt z k und n k die Ordnung des Pols z k Zur Berechnung der Koeffizienten a j,k C können die Koeffizienten der Taylor-Reihe der um z k holomorphen Funktion g(z) := ( ) n k r(z) zum Entwicklungspunkt z k verwendet werden: r(z) = 1 ( ) n k ( g(z k ) + g (z k ) 1! ( ) + g (z k ) ( ) 2 + 2! Speziell für einen Pol 1-ter Ordnung in z k erhält man: h(z; z k ) = a 1,k = Res (r; z k) = g(z k) ) Residuensatz Die Funktion f sei im Gebiet G bis auf isolierte Singularitäten z k holomorph Für eine geschlossene Kurve c in G, die endlich viele verschiedene z 1,, z m einmal im mathematisch positiven Sinn umläuft und auf der selbst keine Singularitäten liegen gilt der Residuensatz m f(z) dz = 2πi Res (f; z j ) Bemerkung: c Umläuft c eine Singularität z j mehrfach, so wird der zugehörige Summand der obigen Summe Res (f; z j ) noch mit der Umlaufzahl, der Differenz der Anzahl positiver und negativer Umläufe, Uml (c; z j ) multipliziert j=1

5 Komplexe Funktionen, K Rothe, SoSe 214, Theoriehinweise zu Blatt 6 5 Aufgabe 22: Gegeben sei die Funktion f(z) = 25 z 4 z 2 2z + 2 a) Man bestimme mit Hilfe von Laurent-Reihenentwicklungen die Partialbruchzerlegung von f b) Man berechne mit Hilfe des Residuensatzes das Integral f(z) dz für den Kreis c : z + 2 = 2 c Berechnung reeller Integral über den Residuensatzes a) Es sei f im Gebiet G, das die obere Halbebene H = {z C Imz } umfasst, bis auf endlich viele isolierte und nicht reelle Singularitäten z k holomorph und es gelte lim z f(z) = gleichmäßig in z H, dann kann das folgende reelle uneigentliche Integral berechnet durch f(x) dx = 2πi Res (f; z k ) Imz k > Insbesondere fallen rationale Funktionen r(z) = p(z) in diese Klasse, wenn für die Polynome Grad p + 2 Grad q q(z) gilt b) Es sei f im Gebiet G, das die obere Halbebene H = {z C Imz } umfasst, holomorph bis auf endlich viele isolierte und nicht reelle Singularitäten z k in der oberen Halbebene und es gelte lim z,y CHW f(z) =, dann gilt f(x)e ix dx = 2πi Imz k > Res ( f(z)e iz ; z k )

6 Komplexe Funktionen, K Rothe, SoSe 214, Theoriehinweise zu Blatt 6 6 c) Für die Polynome p und q der rationalen Funktion r(z) = p(z) q(z) gelte Grad p < Grad q Außerdem habe r keine Polstellen z k im Bereich x <, dann kann das folgende reelle uneigentliche Integral mit < α < 1 berechnet durch r(x) x α dx = 2πi 1 e 2παi z k Res ( ) r(z) z ; z α k Man wähle in der Polardarstellung z = re iϕ für die Auswertung von z α den Zweig < ϕ < 2π d) Ein Integral vom Typ 2π R(cos ϕ, sin ϕ)dϕ mit einer rationalen Funktion R lässt sich als (geschlossenes) Kurvenintegral über den Einheitskreis deuten: Parametrisierung des Einheitskreises c: c(ϕ) = e iϕ, ϕ 2π Auf dem Einheitskreis, also für z = c(ϕ), gilt: c (ϕ) = iz, z = 1 z, cos ϕ = 1 ( z + 1 ), sin ϕ = 1 2 z 2i ( z 1 ) z Besitzt R keine Polstellen auf dem Einheitskreis, dann gilt nach dem Residuensatz 2π ( ( 1 R(cos ϕ, sin ϕ)dϕ = R z + 1 ), 1 ( z 1 )) 1 2 z 2i z iz c }{{} =r(z) = 2πi Res (r; z k ), z k <1 dabei sind z k die Polstellen der rationalen Funktion r(z) dz

7 Komplexe Funktionen, K Rothe, SoSe 214, Theoriehinweise zu Blatt 6 7 Aufgabe 23: Man berechne mit Hilfe des Residuenkalküls die Integrale a) b) c) 2 1 x 2 4x + 6 dx, cos x x dx und x 1 (x 2 + 3x 4) x + 2 dx, d) 2π sin ϕ 4 + cos ϕ dϕ Aufgabe 24: (Klausur WiSe6/7) Gegeben sei die durch f(z) = exp(z 2) 1 z 2 + z 6 definierte Funktion a) Man bestimme und klassifiziere alle Singularitäten von f b) Man berechne die Residuen für alle Polstellen von f c) Für die Potenzreihenentwicklung von f zum Entwicklungspunkt z = 2 gebe man die ersten drei nicht verschwindenden Glieder an d) Für die Laurentreihe von f zum Entwicklungspunkt z 1 = 3 bestimme man den Hauptteil e) Man berechne f(z) dz f) Man berechne z+2 =2 z+1 =1 f(z) dz

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

H.J. Oberle Komplexe Funktionen SoSe Residuensatz

H.J. Oberle Komplexe Funktionen SoSe Residuensatz H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen Einleitung 28: Holomorphe Funktionen, Potenzreihen und Laurentreihen 28.1 Einleitung Wir wissen bereits, dass eine holomorphe Funktion f : M C unendlich oft komplex differenzierbar ist. Für jedes z 0 M

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

Mathematik für Ingenieure III Kurs-Nr WS 2007/08

Mathematik für Ingenieure III Kurs-Nr WS 2007/08 Mathematik für Ingenieure III Kurs-Nr. 93 WS 7/8 Kurseinheit 7: Lösungsvorschläge zu den Einsendeaufgaben Aufgabe : Es sollen die Singularitäten deren Art der folgenden Funktionen bestimmt werden. a fz

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

4 Funktionen mit isolierten Singularitäten

4 Funktionen mit isolierten Singularitäten 4 Funktionen mit isolierten Singularitäten Funktionen wie z +z 2, z tanz oder z e /z sind mit Ausnahme einzelner Punkte in C holomorph. In diesem Abschnitt untersuchen wir solche Funktionen in der Nähe

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

TU Dortmund. Residuensatz und Anwendungen

TU Dortmund. Residuensatz und Anwendungen TU Dortmund Fakultät für Mathematik Residuensatz und Anwendungen Timo Putz Matrikelnummer: 127042 Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition der Laurent-Reihe.......................... 1

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung:

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung: Beispiel 1: Wegverformung Berechne: Lösung: [Man sagt: Folglich ist, mit existiert für alle hat eine "Singularität" oder "Pol".] analytisch auf Deswegen kann Wegunabhängigkeit (i.2) genutzt werden, um

Mehr

Lösungen zum 9. Übungsblatt Funktionentheorie I

Lösungen zum 9. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 25 Mathematisches Institut I Prof Dr M von nteln Dr C Kaiser Lösungen zum 9 Übungsblatt Funktionentheorie I Aufgabe 9 K a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Aufgaben zu Kapitel 32

Aufgaben zu Kapitel 32 Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Verständnisfragen Aufgabe 3. Zeigen Sie, dass die Summe der n-ten Einheitswurzeln für n immer null ergibt und interpretieren Sie dieses Ergebnis für n 3 geometrisch.

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

Laurent-Reihen und isolierte Singularitäten

Laurent-Reihen und isolierte Singularitäten Laurent-Reihen und isolierte Singularitäten Seminar Analysis III (SoSe 203) Pascal Niehus - Vortrag vom 27.05.203 - Kontaktdaten: Name: Studiengang: Fächer: E-Mail: Pascal Niehus BfP Mathematik, Physik

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung Partialbruchzerlegung rationaler Funktionen Satz 4 (komplexe Partialbruchzerlegung) Es sei q/p eine echt gebrochen rationale Funktion, dh deg q < deg p und es sei p(z) = c (z z 1 ) α 1 (z z k ) α k die

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

Laurentreihen und Singularitäten

Laurentreihen und Singularitäten Laurentreihen und Singularitäten Wichtig: Zu jeder Laurentreihe das Konvergenzgebiet angeben! Wichtig: Ob man eine Laurentreihe verwenden kann um damit Singularitäten klassifizieren und Residuen berechnen

Mehr

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Begleittext zum Vortrag Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Christian Offen 27.11.2013 Inhaltsverzeichnis 1 Die Struktur der Menge der elliptischen

Mehr

Vertiefung der Funktionentheorie

Vertiefung der Funktionentheorie Vertiefung der Funktionentheorie Wintersemester 2009/2010 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 0. Wiederholung 2 1. Der Residuensatz 4 2. Anwendungen des Residuensatzes 7 3. Das Null-

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

10 Logarithmus- und Potenzfunktion

10 Logarithmus- und Potenzfunktion 4 Logarithmus- und Potenzfunktion. Satz: Sei G einfach zusammenhängend, f H(G) und z G. Dann existiert genau eine Stammfunktion F von f mit F(z ) =. Für z G sei γ z ein beliebiger Integrationsweg in G,

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

γ j γ j (f) = f(z) dz.

γ j γ j (f) = f(z) dz. 27 6. Globale Versionen des Cauchyschen Integralsatzes. Residuensatz 6.. Ketten und Zyklen. Es seien γ,...,γ n Wege in der Ebene und K =Bildγ... Bild γ n. Jedes γ j liefert eine lineare Abbildung γ j :

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $ $Id: residuum.tex,v.6 202/06/29 7:27:57 hk Exp $ 6 Der Residuenkalkül 6. Der Residuensatz Am Ende der letzten Sitzung hatten wir den Begriff des Residuums einer holomorphen Funktion f : U C in einer isolierten

Mehr

5. Die Liouville'schen Sätze

5. Die Liouville'schen Sätze 5. Die Liouville'schen Sätze In diesem Vortrag wird eine Unterklasse der meromorphen Funktionen betrachtet, die Menge der elliptischen Funktionen. Diese werden zunächst formal eingeführt, es folgen die

Mehr

4 Der globale Cauchysche Integralsatz 56

4 Der globale Cauchysche Integralsatz 56 Inhaltsverzeichnis Vorbemerkung ii 0 Abbildungen f : U lc lc, (x, y) f(x, y) 2 1 Holomorphe Funktionen 10 2 Kurvenintegrale 18 3 Die Stammfunktion 27 3.1 Stammfunktionen und der Cauchysche Integralsatz........

Mehr

Funktionentheorie. Skript zur Vorlesung WS 2007/08. Peter Junghanns

Funktionentheorie. Skript zur Vorlesung WS 2007/08. Peter Junghanns Skript zur Vorlesung Funktionentheorie WS 2007/08 Peter Junghanns Hinweis: Das vorliegende Skript stellt nur ein Gerüst zu den Inhalten der Vorlesung dar. Die Vorlesung selbst bietet weiterführende Erläuterungen,

Mehr

Kapitel 3. Die Stammfunktion

Kapitel 3. Die Stammfunktion Kapitel 3 Die Stammfunktion Nachdem wir im vorigen Kapitel die Grundlagen von Kurvenintegralen erarbeitet haben, befassen wir uns nun mit der konkreten Berechnung eines solchen Integrals. Besonderes Augenmerk

Mehr

(a) Laurentreihe. Dann gilt:a n = 0 n Z mitn<0. (a) Laurentreihe. Dann gilt: (1): k N:a k 0 und (2):

(a) Laurentreihe. Dann gilt:a n = 0 n Z mitn<0. (a) Laurentreihe. Dann gilt: (1): k N:a k 0 und (2): Lösungen ur Funktionentheorie Blatt Ergänendes Material: In der Funktionentheorie gibt drei Arten von isolierten Singularitäten: Hebbare Singularitäten, Pole Polstellen und wesentliche Singularitäten.

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr

(Cauchysche Integralformel)

(Cauchysche Integralformel) H.J. Oberle Komplexe Funktionen SoSe 203 8. Die Cauhyshe Integralformel Satz (8.) (Cauhyshe Integralformel) Ist f : D C holomorph auf einem Gebiet D und ist : [a, b] D \ {z 0 } ein geshlossener, zum Punkt

Mehr

Elemente der Funktionentheorie

Elemente der Funktionentheorie Mitteilung sd98027, August 2010 1 Elemente der Funktionentheorie Die wichtigsten Sätze und Hilfsmittel für Anwendungen in der physikalischen Feldtheorie Übersicht Einige Sätze der mathematischen Funktionentheorie,

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

Einführung in die Funktionentheorie 1

Einführung in die Funktionentheorie 1 Einführung in die Funktionentheorie Martin Ziegler Freiburg, WS 994/95, WS 2000/0, SS 2006 Literatur [] Klaus Jänich. Funktionentheorie. Springer Verlag, 993. [2] H.Behnke und F.Sommer. Theorie der analytischen

Mehr

Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Tobias Vienenkötter 15.01.2014 1 Inhaltsverzeichnis 1 Funktionen auf Riemannschen

Mehr

Konvergenzverbesserung und komplexe Integrale

Konvergenzverbesserung und komplexe Integrale Konvergenzverbesserung und komplee Integrale Konvergenzverbesserung und komplee Integrale von Friedhelm Götze, Jena Vor kurzem erschien ein Artikel über den Residuensatz [] in der, in dem schon einige

Mehr

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen Doppel-periodische Funktionen und die Weierstraßsche -Funktion Vortrag zum Seminar zur Funktionentheorie, 30.03.2009 Stefanie Kessler Die komplexen Zahlen als Erweiterung der reellen Zahlen ermöglichen

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Mathematik für Anwender I. Klausur

Mathematik für Anwender I. Klausur Fachbereich Mathematik/Informatik 27. März 2012 Prof. Dr. H. Brenner Mathematik für Anwender I Klausur Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Polynome und rationale Funktionen

Polynome und rationale Funktionen Polynome und rationale Funktionen Definition. 1) Eine Funktion P : R R (bzw. P : C C) der Form P (x) = n a k x k = a 0 + a 1 x + a 2 x 2 +... + a n x n mit a k R (bzw. C) und a n 0 heißt Polynom vom Grad

Mehr

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Stand: 2.07.2006 - Version:.0. Erhältlich unter http://privat.macrolab.de Diese Formelsammlung

Mehr

Analysis III für Physik

Analysis III für Physik Analysis III für Physik Prof Dr Uwe Jannsen Wintersemester 2014/15 Inhaltsverzeichnis 0 Erinnerung/Einstimmung 1 1 Komplexe Funktionen 4 2 Komplexe Differenzierbarkeit 6 3 Komplexe Potenzreihen 10 4 Der

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 9 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Gruppenübungen Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani 6..4 Aufgabe 4. (schriftlich

Mehr

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit)

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit) Mathematik (ET) UE WS 2014/2015 1. Übungsblatt 1. Berechnen Sie (a) die Bogenlänge der Kurve : x(t) = (b) den Gradient von f(x,y,z) = 4x y 2 +5z. ( t 7+t 2 ) mit 1 t 3, 2. Berechnen Sie das Kurvenintegral

Mehr

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3 2 Komplexe Zahlen 2.1 Grundlagen Aufgabe 2.1.1 Sei z 1 = 2 + und =. Stellen Sie a) z 1 +, b) z 1, c) z 1. zeichnerisch dar und berechnen Sie die Werte. Aufgabe 2.1.2 Berechnen Sie die folgenden Werte,

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe Scheinklausur Höhere Mathematik Musterlösung 0. 0. 0, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 5 6 7 8 9 0 Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise:

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr