Folgen, Reihen, Potenzreihen, Exponentialfunktion

Größe: px
Ab Seite anzeigen:

Download "Folgen, Reihen, Potenzreihen, Exponentialfunktion"

Transkript

1 Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion Inhaltsverzeichnis 1 Folgen 2 2 Reihen 4 3 Potenzreihen 7 4 Exponentialfunktion 7

2 Ferienkurs Seite 2 1 Folgen (1) Definition. Folge. Eine Folge ist eine Abbildung f : N C. Anstatt f schreibt man oft (a n ) n N, wenn f(n) = a n. (a n ) heißt reelle Folge, wenn a n R n N. Man nennt (a n ) beschränkt, wenn c R : n N : a n c. (a n ) heißt konvergent, wenn es ein a C gibt, so dass ɛ > 0 N N n > N : a n a ɛ. a heißt Grenzwert oder Limes von (a n ). Man schreibt a n a oder lim n a n = a. (2) Satz. Jede konvergente Folge ist beschränkt. (3) Rechenregeln. Es seien (a n ) und (b n ) konvergente Folgen in C mit den Grenzwerten a n a und b n b. Dann gilt: lim n (a n + b n ) = a + b lim n (a n b n ) = a b a n lim = a n b n b für b 0 und b n 0 für fast alle n N. Ist (a n ) eine Folge in C mit a n a C, dann gilt: a n a a n a Re a n Re a und Im a n Im a lim n a n = lim n Re a n + i lim n Im a n (4) Einschließungskriterium Seien (a n ) und (b n ) konvergente Folgen mit lim a n = lim b n a n n und sei (c n ) eine beliebige Folge mit a n c n b n für fast alle n N. Dann konvergiert auch (c n ) und es gilt lim c n = a. n (5) Definition. Monotonie. Eine reelle Folge (a n ) heißt monoton wachsend (fallend), wenn gilt: n N: a n a n+1 (a n a n+1 )

3 Ferienkurs Seite 3 Gilt sogar a n > a n+1 bzw. a n < a n+1 n N, so spricht man von strenger Monotonie. (6) Satz. Eine beschränkte Folge konvergiert gegen sup {a n }, wenn sie monoton wachsend ist bzw. gegen inf {a n }, wenn sie monoton fallend ist. (7) Definition. Cauchy-Folge. Eine Folge (a n ) C N heißt Cauchy-Folge, falls ɛ > 0 N N : n, m > N : a n a m < ɛ. (8) Cauchy-Konvergenzkriterium. Für (a n ) C N gilt: (a n ) ist Cauchy-Folge (a n ) ist konvergent (9) Definition. Häufungspunkt. a C heißt Häufungspunkt von (a n ) C N, falls ɛ > 0 N N n > N : a n a < ɛ. Das bedeutet, dass a n U ɛ (a) für unendlich viele n N. Bemerkung: Jeder Grenzwert ist ein Häufungspunkt, aber nicht jeder Häufungspunkt ist ein Grenzwert (vgl. die Folge ( 1) n ). (10) Definition. Teilfolge. Sei (a n ) n N C und sei (n k ) k N eine streng monoton wachsende Folge von Indizes. Dann nennt man (a nk ) k N eine Teilfolge von (a n ). Bemerkungen: (i) a n a a nk a für jede Teilfolge. (ii) a ist Häufungspunkt von (a n ) Teilfolge (a nk ) mit lim a nk = a (11) Satz von Bolzano-Weierstraß. Jede beschränkte Folge besitzt eine monotone Teilfolge und somit mindestens einen Häufungspunkt. Bemerkung zu Konvergenzkriterien: Neben dem Cauchy-Kriterium und dem Satz von Bolzano-Weierstraß gibt es eine weitere wichtige Aussage über Konvergenz: Monotonie-Kriterium: Eine monotone Folge konvergiert genau dann, wenn sie beschränkt ist. Sie strebt gegen ihr Supremum, falls sie wächst, bzw. gegen ihr Infimum, falls sie fällt.

4 Ferienkurs Seite 4 (12) Definition. Limes superior/inferior. Sei (a n ) R N. Dann definiert man lim sup a n := inf sup {a k k n} als Limes superior und n n lim inf a n := sup inf {a k k n} als Limes inferior. n n Ist (a n ) beschränkt, so sind lim sup und lim inf der größte bzw. kleinste Häufungspunkt. Einschub: Metrische Räume Definition. Metrik. Eine Metrik auf einer Menge M ist eine Abbildung d : M M [0, ) mit folgenden Eigenschaften: (a) Nichtdegeneriertheit: x, y M : d(x, y) = 0 x = y (b) Symmetrie: x, y M : d(x, y) = d(y, x) (c) Dreiecksungleichung: x, y, z M : d(x, z) d(x, y) + d(y, z) Das Paar (M, d) heißt metrischer Raum. Man definiert außerdem die sogenannte ɛ-umgebung: U ɛ (a) := {x M d(x, a) < ɛ} für ɛ > 0. Metriken sind also eine Verallgemeinerung des Abstandsbegriffs. In den folgenden Vorlesungen wird nur Gebrauch von der sogenannten Euklidischen Metrik gemacht. Diese ist definiert auf R n. d(x, y) := x y, wobei x := ( n i=1 x 2 i ) 1 2 Man nennt einen metrischen Raum vollständig, wenn jede Cauchy-Folge gegen einen Grenzwert in M konvergiert. Der Euklidische Raum ist vollständig. 2 Reihen (1) Definition. Reihe. Sei (a n ) C N. Dann heißt s n := n a k, n N, Folge der Partialsummen oder Reihe. Konvergiert die Folge (s n ), so heißt die Reihe konvergent. lim n s n heißt dann Wert der Reihe. Bemerkung: Reihen und Folgen unterscheiden sich lediglich dadurch, dass man bei Reihen versucht, Konvergenzaussagen in Abhängigkeit der Summanden a k zu erhalten. Alle bisherigen Sätze über Folgen gelten auch für Reihen.

5 Ferienkurs Seite 5 Zwei wichtige Beispiele: (i) Die geometrische Reihe q n konvergiert für q < 1 und zwar gegen 1 1 q. (ii) Die harmonische Reihe n=1 1 n divergiert. Im Folgenden sind einige Konvergenzkriterien für Reihen zusammengefasst. (2) Cauchy-Kriterium. Die Reihe (3) Ist a k konvergiert genau dann, wenn m ɛ > 0 N N n > N m n : a k < ɛ. k=n a k konvergent, so folgt aus dem Cauchy-Kriterium: lim a k = 0 k (4) Linearität. Sind die Reihen die Reihen (a k + b k ) und (a k + b k ) = a k + b k a k und b k konvergent, so konvergieren auch (λa k ) und es gilt: und (λa k ) = λ (5) Leibniz-Kriterium. Ist (a n ) R N eine monotone Nullfolge (also eine monoton fallende Folge nichtnegativer Zahlen mit a k 0), so ist die alternierende Reihe ( 1) k a k konvergent. (6) Definition. Absolute Konvergenz. Eine Reihe a k heißt absolut konvergent, falls die Reihe a k konvergiert. a k (7) Satz. Aus der absoluten Konvergenz folgt die normale Konvergenz. Die Umkehrung gilt im Allgemeinen nicht (vgl. alternierende harmonische Reihe). Konvergenzkriterien für absolute Konvergenz:

6 Ferienkurs Seite 6 (8) Majorantenkriterium. Sei b k eine konvergente Reihe mit ausschließlich nichtnegativen Gliedern und sei (a k ) eine Folge mit a k b k für fast alle k N. Dann konvergiert die Reihe a k absolut. (9) Quotientenkriterium. Sei a k eine Reihe mit a k 0 für alle k > N für N N. Existiert eine Zahl q mit 0 < q < 1, so dass gilt: a k+1 a a k q für alle k > N, d.h. lim sup k+1 a k < 1, so ist die Reihe a k absolut konvergent. (10) Wurzelkriterium. Sei a k eine Reihe und sei L := lim sup k a k. Dann gilt: L < 1 a k konvergiert absolut. Bemerkung: Umgekehrt ist die Reihe für q 1 bzw. L 1 divergent. Lässt sich in (8) eine divergente Minorante finden, so ist die Reihe ebenfalls divergent. (11) Umordnungssatz. Sei a k eine absolut konvergente Reihe mit (a k ) C N und sei g : N N eine Bijektion (Permutation). Dann ist auch jede umgeordnete Reihe a g(k) absolut konvergent und es gilt: a k = a g(k). (12) Cauchy-Produkt. Seien ist auch die Reihe a k und c k mit c n := ( ) ( ) c n = a k b k b k absolut konvergente Reihen. Dann n a n k b k absolut konvergent und es gilt: Anmerkung: Rechentrick Teleskopsumme. Hat man eine Reihe wie beispielsweise ( 1 n 1 ), so ist es sinnvoll, sich zunächst die n-te Partialsumme n + 1 n=1 genauer anzuschauen: s n = n+1 = 1 1 n+1 Im Limes n geht s n (und damit der Wert der Reihe) also in diesem Beispiel gegen 1.

7 Ferienkurs Seite 7 3 Potenzreihen (1) Definition. Potenzreihe. Eine Reihe P (z) := a n (z z 0 ) n mit Koeffizienten a n C und festem z 0 C heißt Potenzreihe zum Entwicklungspunkt z 0. R := sup { z z 0 z C P (z) konvergiert} [0, ] heißt Konvergenzradius der Potenzreihe P. (2) Konvergenz von Potenzreihen. (a) z z 0 < R a n (z z 0 ) n ist absolut konvergent (b) z z 0 > R a n (z z 0 ) n ist divergent 1 (c) R = (Formel von Cauchy, Hadamard) k lim sup ak k (d) R = lim a k k a k+1 (Formel von Euler) (e) Die abgeleitete Reihe a k k(z z 0 ) k 1 hat den gleichen Konvergenzradius wie k=1 die Ausgangsreihe. Gleiches gilt für die integrierte Potenzreihe. (3) Rechenregeln. Seien P (z) = a k z k und Q(z) = b k z k Potenzreihen mit den Konvergenzradien R 1, R 2 > 0. Dann gelten: (a) λp (z) + Q(z) = (λa k + b k )z k, z < min(r 1, R 2 ) k (a l b k l )z k, z < min(r 1, R 2 ) (Cauchy-Produkt für Potenz- (b) P (z)q(z) = reihen) l=0 4 Exponentialfunktion (1) Definition. Exponentialfunktion. Man definiert die Potenzreihe z n exp(z) = n! = ez als Exponentialfunktion, wobei z C. Der Konvergenzradius ist R =.

8 Ferienkurs Seite 8 (2) Funktionalgleichung. z, w C exp(z) exp(w) = exp(z + w) (3) Satz. Für jede Folge (z n ) C N gilt: (z n z) (( ) 1 + zn n ) n exp(z). ( Daraus folgt: e = lim ) n n n (4) Weitere Eigenschaften. (a) z C : exp(z) 0 (b) z C : exp( z) = 1 exp(z) (c) x R : exp(z) > 0 (d) x R : exp(αz) ist streng monoton wachsend (fallend) für α > 0 (α < 0) (5) Umkehrfunktion. Da exp : R R + eine Bijektion ist, kann man eine Umkehrfunktion definieren: ln : ] 0, [ R. (i) Funktionalgleichung: x, y > 0 ln(xy) = ln(x) + ln(y) (ii) x > 0, q Q : ln(x q ) = q ln(x) Man kann den Logarithmus im Komplexen fortsetzen; man nennt dies Hauptzweig des Logarithmus. Es gilt: log : C\ {0} {z C Im(z) ( π, π)}, z log(z) := ln z + i arg(z) (arg(z) = ϕ, vgl. Polardarstellung) (6) Definition. Allgemeine Potenzfunktion. Für a C, z C\ {0} definiert man: z a := exp(a ln(z)) (7) Definition. Trigonometrische Funktionen. Sei z C. cos(z) := sin(z) := ( 1) n (2n)! z2n ( 1) n (2n + 1)! z2n+1 Diese Potenzreihen haben den Konvergenzradius R = und sind auf ganz C stetig.

9 Ferienkurs Seite 9 (8) Eigenschaften. (a) sin( z) = sin(z) (ungerade Funktion) (b) cos( z) = cos(z) (gerade Funktion) (c) sin(z) = 1 ( 2i e iz e iz), cos(z) = 1 ( 2 e iz + e iz) (d) e iz = cos(z) + i sin(z) (Eulersche Formel) (e) (sin z) 2 + (cos z) 2 = 1 (f) (cos z + i sin z) n = cos(nz) + i sin(nz) (9) Additionstheoreme. Seien z, w C. Es gilt: cos(z + w) = cos(z) cos(w) sin(z)sin(w) und sin(z + w) = sin(z) cos(w) + cos(z) sin(w) (10) Definition. Hyperbolische Funktionen. Man definiert cosh(x) := cos(ix) = 1 2 (ex + e x ) sinh(x) := sin(ix) = 1 2 (ex e x ) Es gilt: (cosh x) 2 (sinh x) 2 = 1 (11) Polardarstellung einer komplexen Zahl. Sei z C, z = x + iy. Dann gilt auch: z = re iϕ. Alle Zahlen mit gleichem r liegen in der komplexen Ebene auf einem Kreis. Es gilt des Weiteren: n Z : e i2πn = 1. (12) Definition. Tangens, Kotangens. Sei z C. tan(z) = sin(z) cos(z) cot(z) = cos(z) sin(z) für z 2Z+1 2 π für z Zπ

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Die alternierende harmonische Reihe.

Die alternierende harmonische Reihe. Die alternierende harmonische Reihe Beispiel: Die alternierende harmonische Reihe k k + = 2 + 3 4 + konvergiert nach dem Leibnizschen Konvergenzkriterium, und es gilt k k + = ln2 = 06934 für den Grenzwert

Mehr

Mathematische Anwendersysteme Einführung in MuPAD

Mathematische Anwendersysteme Einführung in MuPAD Mathematische Anwendersysteme Einführung in MuPAD Tag 6 Folgen Konvergenzkriterien Reihen Potenzreihen 2322004 Gerd Rapin grapin@mathuni-goettingende Gerd Rapin Mathematische Anwendersysteme: Einführung

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Kapitel 6 REIHEN. Fassung vom 21. April Claude Portenier ANALYSIS 99

Kapitel 6 REIHEN. Fassung vom 21. April Claude Portenier ANALYSIS 99 Kapitel 6 REIHEN Fassung vom 2 April 2002 Claude Portenier ANALYSIS 99 6 Der Begri der Reihe 6 Der Begri der Reihe DEFINITION Sei (z l ) l2n eine Folge in C Die Folge (s k ) k2n in C de niert durch s k

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Zusammenfassung der Vorlesung Einführung in die Analysis

Zusammenfassung der Vorlesung Einführung in die Analysis Zusammenfassung der Vorlesung Einführung in die Analysis Hier werden die wichtigsten Definitionen und Sätze aus der Vorlesung dargestellt, zusammen mit Beweisideen und Querverbindungen. Ziel ist es, die

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Mathematik I. Vorlesung 24. Reihen

Mathematik I. Vorlesung 24. Reihen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 24 Reihen Wir betrachten Reihen von komplexen Zahlen. Definition 24.1. Sei ( ) k N eine Folge von komplexen Zahlen. Unter der Reihe versteht

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Komplexe Zahlen. Gerald und Susanne Teschl. 15. Januar 2014

Komplexe Zahlen. Gerald und Susanne Teschl. 15. Januar 2014 Komplexe Zahlen Gerald und Susanne Teschl 15 Januar 014 1 Die komplexen Zahlen C Für unsere Zahlenmengen gilt bisher N Z Q R und man könnte wirklich glauben, dass wir nun in der Lage sind, jede Gleichung

Mehr

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 3. Gruppenübung zur Vorlesung Höhere Mathematik 2 Sommersemester 2009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Kapitel 3. Folgen und Reihen. 3.1 Folgen

Kapitel 3. Folgen und Reihen. 3.1 Folgen Kapitel 3 Folgen und Reihen 3. Folgen 3.2 Cauchy Folgen 3.3 Unendliche Reihen 3.4 Absolut konvergente Reihen 3.5 Multiplikation von Reihen 3.6 Potenzreihen 3. Folgen In diesem gesamten Abschnitt bezeichnen

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth Folgen und Reihen Mathematik I für Chemiker Daniel Gerth Überblick Folgen und Reihen Dieses Kapitel erklärt: Was man unter Folgen und Reihen versteht; Was man unter Grenzwert von Folgen und Reihen versteht;

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Mathematik I für Studierende der Physik

Mathematik I für Studierende der Physik Mathematik I für Studierende der Physik Vicente Cortés Department Mathematik Universität Hamburg Hamburg, Wintersemester 2006-2007 1 1 last update: April 19, 2007 1 / 379 Inhaltsverzeichnis I Reelle und

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe. Folgen und Reihen Christoph Laabs, christoph.laabs@tu-dresden.de Grundlagen Eine Reihe ist darstellbar durch z. B. = a 0 + a + a 2 + a + a 4 +... Ausgesprochen wird das als Summe von von k bis Unendlich.

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2016/2017 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

Konvergenzbegriffe und Konvergenzkriterien

Konvergenzbegriffe und Konvergenzkriterien Kapitel 4 Konvergenzbegriffe und Konvergenzkriterien 4. Konvergenz reeller Zahlenfolgen Im Abschnitt 2.5 haben wir bereits den Begriff des Grenzwerts einer Folge eingeführt und Rechenregeln für Folgengrenzwerte

Mehr

Kapitel 7 STETIGKEIT

Kapitel 7 STETIGKEIT Kapitel 7 STETIGKEIT Fassung vom 8. Juni 2002 Claude Portenier ANALYSIS 29 7. Der Begri Stetigkeit 7. Der Begri Stetigkeit DEFINITION I.a. sagt man, daßeine Abbildung von einer Menge X in K n, wobei K

Mehr

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel 2 Stetige Funktionen 2. Grenzwerte von Funktionen Definition Sei I R ein Intervall, a I ein innerer Punkt und f eine reellwertige Funktion, die auf I \ {a} (aber eventuell nicht in a) definiert ist. Wir

Mehr

3.5. DIE EXPONENTIALREIHE 73

3.5. DIE EXPONENTIALREIHE 73 3.5. DIE EXPONENTIALREIHE 73 wichtigen Formeln auf, ohne diese Zahl ist die Analysis nicht denkbar! Wir werden ihr oft begegnen und dadurch wird diese Bedeutung offenbar werden. Will man diese Zahl mittels

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

2 Folgen und Reihen. 2.1 Konvergente Folgen. Beispiele

2 Folgen und Reihen. 2.1 Konvergente Folgen. Beispiele 49 Folgen und Reihen Häufig werden Größen, die sich nicht durch einen in endlich vielen Schritten berechenbaren Ausdruck angeben lassen, durch Näherungen oder Approximationen ersetzt. Dabei muss z.b. in

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Contents. 1 Aussagen Aussagen Verknüpfung von Aussagen Regeln Quantoren Mengen 6

Contents. 1 Aussagen Aussagen Verknüpfung von Aussagen Regeln Quantoren Mengen 6 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Wintersemester 2016/17 Ioannis Anapolitanos Karlsruher Institut für Technologie Institut für Analysis Englerstr. 2, 76131

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Höhere Mathematik II. (Vorlesungskript)

Höhere Mathematik II. (Vorlesungskript) Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Vorlesungskript) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

z k k! = 1 + z + z2 2! + z3 k=0

z k k! = 1 + z + z2 2! + z3 k=0 Kapitel 5 Spezielle Funktionen 5.1 Exponentialfunktion 5. Natürlicher Logarithmus und allgemeine Potenz 5.3 Sinus und Cosinus 5.4 Trigonometrische Umkehrfunktionen 5.5 Polarkoordinaten 5.6 Der Fundamentalsatz

Mehr

Im vorigen Kapitel sind wir im Zusammenhang mit der geometrischen Verteilung P (k) = q k 1 p auf Ω = N + bereits auf Reihen

Im vorigen Kapitel sind wir im Zusammenhang mit der geometrischen Verteilung P (k) = q k 1 p auf Ω = N + bereits auf Reihen Kapitel 6 Grundlagen der Analysis Im vorigen Kapitel sind wir im Zusammenhang mit der geometrischen Verteilung P (k) = q k 1 p auf Ω = N + bereits auf Reihen P (j) = 1 und Grenzwerte von Folgen j=1 lim

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Grundlagen: Folgen u. endliche Reihen Unendliche Reihen Potenzreihen. Reihen. Fakultät Grundlagen. März 2015

Grundlagen: Folgen u. endliche Reihen Unendliche Reihen Potenzreihen. Reihen. Fakultät Grundlagen. März 2015 Fakultät Grundlagen März 015 Fakultät Grundlagen Grundlagen: und endliche Beispiele Geometrische Reihe, Konvergenzkriterien Fakultät Grundlagen Folie: Übersicht Grundlagen: und endliche Artithmetische

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr