Mathematik für Ingenieure III Kurs-Nr WS 2007/08

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Ingenieure III Kurs-Nr WS 2007/08"

Transkript

1 Mathematik für Ingenieure III Kurs-Nr. 93 WS 7/8 Kurseinheit 7: Lösungsvorschläge zu den Einsendeaufgaben Aufgabe : Es sollen die Singularitäten deren Art der folgenden Funktionen bestimmt werden. a fz cos z. sin z Der Zähler besitzt die Nullstellen z πk, k Z. Wegen cos z sin z sin πk, k Z, cos z cos z cos πk, k Z, handelt es sich um Nullstellen. Ordnung. Der Nenner besitzt die Nullstellen z πk, k Z. Sie sind aufgr von sin z cos z cos πk, k Z einfach. Daraus folgt mit 7..4b, dass f in z k π, k Z, einen Pol. Ordnung besitzt, während sich für z kπ, k Z, aus 7..3 ergibt, dass f dort eine hebbare Singularität besitzt. b fz Es gilt fz z zπ e z cos z. z z π e z cos z. Der Zähler besitzt die Nullstellen z z π. Beide sind von. Ordnung. Für den Nenner liegt bei z kπi, k Z, eine Nullstelle. Ordnung für z π + kπ, k Z, eine Nullstelle. Ordnung vor. Daraus folgt mit b, dass in z z π jeweils eine hebbare Singularität, in z kπi, k Z \ {} ein Pol. Ordnung in z π + kπ, k Z \ {}, ein Pol. Ordnung vorliegt. c 8 FernUniversität in Hagen MING III

2 Lösungsvorschläge MING III LE 7 / c fx sin z z e z 3. Der Zähler besitzt in z wegen sowie sin z z cos z cos sin z z sin z sin sin z z cos z cos eine Nullstelle 3. Ordnung. Die Nullstellen des Nenners sind z kπi. Sie sind von 3. Ordnung. Damit ergibt sich aus b: f besitzt in z eine hebbare Singularität in z kπi, k Z \ {}, einen Pol 3. Ordnung. d fz exp. z 3 Der Definitionsbereich von f ist C \ {}. Wir benutzen die Taylorentwicklung von exp um z erhalten, indem wir z 3 einsetzen fz n n n n! z 3 n! z3n. Nach 7.. ist z weder hebbare Singularität nach Polstelle. Es liegt also eine wesentliche Singularität vor. Aufgabe : Wir bestimmen die iduen der folgenden Funktionen jeweils an der Stelle z. c a fz z z, n, c C. n Offensichtlich hat f schon die Form einer Laurent-Reihe um z liefert c, falls n, fz, falls n.

3 Lösungsvorschläge MING III LE 7 / 3 b fz z sin πz, z. Wegen sowie sin πz sin πz π cos πz π cos πz π liegt, da z ist, ein Pol. Ordnung vor, vgl Für das iduum berechnet man wiederum mit Hilfe von 7.. f π cos π π. c c fz exp z z n, n, c C. Wir benutzen die Taylorentwicklung von exp um z erhalten, indem wir einsetzen fz k k k! c k z z nk k! c k z z nk. Gemäß 7..8 ergibt sich c, falls n, fz, falls n. c z z n d fz z π cos 3 z, z π. Wegen sowie cos z cos z sin z sin π besitzt cos z in z π eine einfache Nullstelle. Damit ist z π eine dreifache Nullstelle der Funktion cos 3 z. Weiterhin ist z π eine einfache Nullstelle des Zählers von f, so dass mit

4 Lösungsvorschläge MING III LE 7 / b folgt, dass f in z π man mit 7..9 π f Für die Funktion gz z π cos z lim z π lim z π 6 lim z π eine Polstelle. Ordnung besitzt. Für das iduum berechnet z π cos 3 z 3 3 z π cos 3 z + 3 z π 3 cos z sin z z π cos z cos 4 z cos 6 z cos z + z π sin z. cos z ist z π eine einfache Nullstelle des Zählers des Nenners. Für cos z + z π sin z hz cos z liegt wegen cos z + z π sin z sin z + sin z + z π cos z z π cos z, cos z + z π sin z cos z z π sin z, cos z + z π sin z sin z z π cos z im Zähler eine dreifache Nullstelle vor. Daraus folgt, dass gz hz in z π jeweils eine hebbare Singularität besitzen, für die Grenzwerte gilt lim gz π lim hz. π z z Dabei ergibt sich der Grenzwert von gz aus der de l Hospitalschen Regel. Insgesamt erhält man damit π f 6 lim z π 6. gz lim z π hz

5 Lösungsvorschläge MING III LE 7 / 5 Aufgabe 3: Wir berechnen die folgenden Integrale mit Hilfe des iduensatzes 7.. e z z a z 3 z dz. 3 Die Funktion fz ez z z 3 z besitzt isolierte Singularitäten in z z. Wegen sowie e z z e z e z e z z e z e z erhält man unter weiterer Berücksichtigung von e z z, dass f in z z jeweils einen Pol. Ordnung besitzt. Es gilt z zfz z 3 z n! zn also, vgl. 7..9, z n n f lim z zfz 4, wiederum mit 7..9 n! zn f lim z e z z z 3 e 3. 8 Aus 7.. folgt damit abschließend e z z dz πi f + f z 3 z 3 πi 4 + e 3 8 πi 4 e 5.

6 Lösungsvorschläge MING III LE 7 / 6 b 6 tan z dz. Wegen 3 π < 6 < π sind die isolierten Singularitäten von fz tan z sin z cos z in 6 gegeben durch z 3 π, z π, z 3 π z 4 3 π. Zur Berechnung der iduen kann man aufgr von sinz j, cos z sin z sinz j, j,..., anwenden. Man erhält fz j sin z j sin z j, j,..., 4. Aus 7.. folgt damit abschließend c 6 tan z dz πi 3 tan z dz. 4 fz j j 8πi. Wegen π < 3 < π, sind die isolierten Singularitäten von fz tan z sin z cos z cos z cos z z π z π. Es gilt für j, fz j cos z zj cos z. zj Die Funktion gz cos z zj

7 Lösungsvorschläge MING III LE 7 / 7 besitzt an den Stellen z j, j, jeweils einen Pol. Ordnung. Mit 7..9 erhält man z zj gz j lim z zj cos z Wegen sowie lim z zj z z j cos z + z z j sin z cos z cos 4 z z z j cos zcos z + z z j sin z lim z zj cos 4 z z z j cos z + z z j sin z lim lim. z z j cos z z z j cos z cos z + z z j sin z sin z + sin z + z z j cos z z z j cos z cos z + z z j sin z cos z z z j sin z cos z + z z j sin z sin z z z j cos z besitzt der Zähler der Funktion h j z cos z + z z j sin z cos z in z j eine dreifache Nullstelle, also liegt in z j eine hebbare Singularität von h j vor mit lim h j z, j,. z z j Die Funktion h j z z z j cos z besitzt in z j lim h j z, z z j man erhält insgesamt 3 tan z dz. eine hebbare Singularität, insbesondere existiert deshalb

8 Lösungsvorschläge MING III LE 7 / 8 Aufgabe 4: Es soll das Anfangswertproblem x x + 5x, x 4x + x mit x x 7 mit Hilfe des iduensatzes gelöst werden. Wir benutzen dazu die Notation aus 7.. Damit gilt A 5 c, c T 7, 7. 4 Wir berechnen Dz det z 5 4 z z z z z D z det zz, z 7z z + 3, D z det z z z 6. Es ergibt sich damit unter Benutzung von 7..9 die Lösung 7z + 3 x t zz ezt 7z zz ezt 7z + 3 7z + 3 lim z z ezt + lim z z et e zt

9 Lösungsvorschläge MING III LE 7 / 9 7z 6 x t zz ezt 7z 6 + zz ezt 7z 6 7z 6 lim z z ezt + lim z z e zt et. Es gilt x x 7, x + 5x et et 4 4 et 35 4 x t et 4x + x e t e t 4e t 7 et x t. Aufgabe 5: Es sollen die folgenden Integrale berechnet werden. a x x + x 4 + x + 9 dx. Zunächst gilt P x Qx x x + x 4 + x + 9 x + i 3 x i 3 x + 9x + Damit sind die Voraussetzungen von 7..6 erfüllt, man erhält unter Benutzung von 7..9 x x + z z + dx πi z z + x 4 + x + 9 z + 9z + + i z + 9z + 3i z z + πi lim z i z + 9z + i + lim z 3i. z z + z + 3iz +

10 Lösungsvorschläge MING III LE 7 / i 8 3i πi + 6i 48i 3i i π 48 π 3. b π dt a + cos t, a >. Zunächst stellt man fest, dass π dt a + cos t π dt a + cos t gilt. Das letzte Integral ist vom Typ Setzt man cos t eit + e it so erhält man π dt a + cos t, π i i Für den Integranden gilt mit fz dt a + e it + e it π z z z z ie it ae it + e it + dt z + az + dt. z a + a z a a. Aus a > a > folgt z >, aus a + a > a > a a > a a > a a + a >

11 Lösungsvorschläge MING III LE 7 / sowie a + a < a + a ergibt sich z <. Mit Hilfe des iduensatzes erhält man c π dt a + cos t x sin x + x 4 dx. π z z z z π lim z z z z π z z π a. Zunächst stellt man fest, dass aufgr von P x Qx x + x 4 die Voraussetzungen von 7.. erfüllt sind. Es gilt damit x sin x dx Im πi zeiz + x4 + z 4 Aus 7.. folgt mit α zeiz + z 4 e i π 4 e iα+iα e i π 4 4 cos π + i sin π 4i e α cos α + i sin α z + zeiz + z 4 3. i e 4 π zeiz + z 4 3 i e 4 π e i α+iα 4 cos 3 π + i sin 3 π 4i e α cos α i sin α.

12 Lösungsvorschläge MING III LE 7 / Daraus folgt x sin x dx Im + x4 πi πe α sin α πe sin. 4i e α i sin α d cos x x dx. Zunächst stellt man fest, dass aufgr von P x Qx x die Voraussetzungen von 7.. erfüllt sind. Es gilt damit, wenn man außerdem noch beachtet, dass der Integrand eine gerade Funktion ist die Nullstellen des Nenners gerade die Punkte + i, i, + i, i sind, cos x x dx Re πi cos x x dx e iz e iz z i z i Aus 7.. folgt e iz z i e i+i 4 + i 3 4e cos + i sin i + i i cos + i sin i 6e i cos + sin + isin cos 6e

13 Lösungsvorschläge MING III LE 7 / 3 e iz z i e i +i 4 + i 3 Damit ergibt sich 4e cos i sin i + i i cos i sin + i 6e i 6e cos + sin isin cos. cos x x dx π Re cos + sin 8e π 8e cos + sin.

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1 UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

TU Dortmund. Residuensatz und Anwendungen

TU Dortmund. Residuensatz und Anwendungen TU Dortmund Fakultät für Mathematik Residuensatz und Anwendungen Timo Putz Matrikelnummer: 127042 Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition der Laurent-Reihe.......................... 1

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Laurent-Reihen und isolierte Singularitäten

Laurent-Reihen und isolierte Singularitäten Laurent-Reihen und isolierte Singularitäten Seminar Analysis III (SoSe 203) Pascal Niehus - Vortrag vom 27.05.203 - Kontaktdaten: Name: Studiengang: Fächer: E-Mail: Pascal Niehus BfP Mathematik, Physik

Mehr

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0 UNIVESITÄT KALSUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

Cauchysche Integralformel

Cauchysche Integralformel Aus der komplexen Differenzierbarkeit folgt somit die Existenz und Stetigkeit von Ableitungen beliebiger Ordnung. auchysche Integralformel 1-1 auchysche Integralformel Für ein beschränktes Gebiet D, das

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

sin(e z +z 2 ). tan der

sin(e z +z 2 ). tan der Das Testat besteht aus einer festgesetzten Zahl von Entscheidungsfragen des folgenden Typs: Zu finden ist die schärfste der folgenden drei Holomorphieeigenschaften, die eine Funktion haben kann: Holomorphie

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

11. Übungsblatt zur Mathematik II für MB

11. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 8.6.. Übungsblatt zur Mathematik für MB Aufgabe 5 ntervall im R egeben sei das ntervall { (x, y, z) R : π x π, y, z π}. Berechnen Sie x

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Musterlösung zu Blatt 11, Aufgabe 1

Musterlösung zu Blatt 11, Aufgabe 1 Musterlösung zu Blatt, Aufgabe Analysis II MIIA SoSe 7 Martin Schottenloher Musterlösung zu Blatt, Aufgabe I Aufgabenstellung Berechnen Sie folgende komplexe Kurvenintegrale vgl. 3.9: a zn dz für n N,

Mehr

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III Walter Strampp AUFGABEN ZUR WIEDERHOLUNG Mathematik III Differenzialgleichungen erster Ordnung Aufgabe.: Richtungsfeld und Isoklinen skizzieren: Wie lauten die Isoklinen folgender Differenzialgleichungen:

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Skriptum zum Praktikum Einführung in die Mathematik 2

Skriptum zum Praktikum Einführung in die Mathematik 2 Skriptum zum Praktikum Einführung in die Mathematik Tobias Hell & Georg Spielberger Letzte Änderung:. Februar 0 Universität Innsbruck WS 00/ Inhaltsverzeichnis Präliminarien 4 Rechnen mit Potenzen und

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2 Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

Weitere Aufgaben zu Mathematik C

Weitere Aufgaben zu Mathematik C Bergische Universität Wuppertal Fachbereich C PD Dr. Schuster Weitere Aufgaben zu Mathematik C A. Kurvenintegrale und Stammfunktionen. Das Vektorfeld F: R 3 R 3 sei gegeben durch F(x, y, z) = 2z(x + y)

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36 Lösungsvorschläge zu Blatt ) ZV X := Produkt der Augenzahlen bei einem Wurf mit Würfeln Mögl. Werte k des Produktes Wurfergebnis P X = k), ) /6, ),, ) /6, ),, ) /6, ),, ),, ) /6 5, 5), 5, ) /6 6, 6),,

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $ $Id: residuum.tex,v.6 202/06/29 7:27:57 hk Exp $ 6 Der Residuenkalkül 6. Der Residuensatz Am Ende der letzten Sitzung hatten wir den Begriff des Residuums einer holomorphen Funktion f : U C in einer isolierten

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

3 Die komplexen Grundfunktionen

3 Die komplexen Grundfunktionen Analysis IV, SS 01 Freitag 18.5 $Id: grundf.tex,v 1.5 01/05/18 07:49:5 hk Exp $ 3 Die komplexen Grundfunktionen 3.1 Die Exponentialfunktion und verwandte Funktionen In der letzten Sitzung hatten wir die

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal Apl. Prof. Dr.. Herbort, Prof. Dr. M. Heilmann 28.8.212 Bergische Universität Wuppertal Modul: Mathematik 1b für Ingenieure, Bachelor Sicherheitstechnik (PO 211 Aufgabe 1 (2 Punkte a Berechnen Sie das

Mehr

1 Die vier Sätze von LIOUVILLE

1 Die vier Sätze von LIOUVILLE Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, 3.06.005 Marcel Carduck Es sei stets Ω ein Gitter in C und (ω 1, ω ) eine Basis von Ω. Weiter bezeichne P := (u; ω 1, ω ) := {u + λ 1

Mehr

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis Wachstumsverhalten ganzer Funktionen Vortrag zum Seminar zur Funktionentheorie, 11.6.212 Simon Langer Inhaltsverzeichnis 1 Einleitung 2 2 Wachstumsverhalten ganzer Funktionen 3 3 Ganze Funktionen endlicher

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

Perioden. Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, David Friedrich

Perioden. Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, David Friedrich Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, 26102005 David Friedrich Mein Seminarvortrag über Perioden meromorpher Funktionen dient als Einstieg in das Thema der elliptischen Funktionen

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 9/ 9..9 3. Übungsblatt zur Analysis II Gruppenübung Majorantenkriterium für uneigentliche Riemann-Integrale: Es seien f : [, ) [, ) und g

Mehr

Die Regeln von de l Hospital

Die Regeln von de l Hospital Die Regeln von de l Hospital Von Florian Modler Guillaume Francois Antoine de l Hospital war ein französischer Mathematiker und Aristokrat. Er wurde 66 geboren und verstarb 704 im Alter von 43 Jahren.

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1 D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 3. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 76. Ableitungen

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Sommersemester < 2 2 < 1+π = g,

Sommersemester < 2 2 < 1+π = g, D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 04 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 53. Gleichheitsproblem

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt Aufgabe 5 (4 Punkte). Für n 1 sei ζ n = e πi n. Die n-ten Einheitswurzeln sind gegeben als ζn k = e kπi

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 7.1 (Herbst 2015, Thema 1, Aufgabe 4) Gegeben sei das Dreieck und die Funktion f : R mit Bestimmen Sie f(

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 203/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 9. Übungsblatt Aufgabe

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen 2 Komplexe Zahlen 2.1 Definition Die omplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 + z 2 (x 1, y 1 ) + (x 2, y 2 ) :=

Mehr