Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Größe: px
Ab Seite anzeigen:

Download "Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007"

Transkript

1 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben. Die Lösungswege sind absichtlich nicht angegeben, Fragen können aber in den Übungen gestellt werden. Alle Klausuren dauerten Minuten. Taschenrechner waren nicht zugelassen. Dieses Material unterliegt dem Urheberrecht und ist nur für die Studierenden der FH Jena zur eigenen Vorbereitung auf Klausuren freigegeben. Analysis-Klausur vom..7, Erreichbare Punktzahl: = Aufgabe : a) Ordnen Sie die folgenden reellen Zahlen der Größe nach und beginnen Sie mit der kleinsten! a = ln, b = sin π, c = log 5, d = cosh, f = x lim e x b) Durch welche Verschiebung in x Richtung und in y Richtung geht der Graph der Funktion f(x) =x 8x + aus dem Graphen der Funktion g(x) =x + hervor? c) Berechnen Sie alle reellen Lösungen der Gleichung sinx + tanx = im Intervall, π! Aufgabe : (Gehört jetzt in die Algebra) a) Welche der beiden komplexen Zahlen z = + j j, z = e j hat den größeren Betrag? b) Welche der beiden komplexen Zahlen hat das größere Argument? Aufgabe : Welchen Anstieg hat der Graph der Funktion an der Stelle x? a) f(x) =sinx tanx ; x = π b) f(x) = x + x ; x = Aufgabe : Gegeben ist die gebrochene rationale Funktion f(x) = x x +. a) Wo ist die Funktion monoton wachsend bzw. fallend? b) Wo ist die Funktion konvex bzw. konkav? Aufgabe 5: Welche Fläche schließt der Graph der Funktion f(x) =x x + mit der x Achse im Intervall - x ein? (Hinweis: Wurzelwerte müssen nicht ausgerechnet werden!) Aufgabe 6: Stellen Sie die Funktion f(x) = x x als Summe einer ganzen x x +

2 rationalen Funktion und von Partialbrüchen dar! Aufgabe 7: (Gehört jetzt in Analysis ) Bestimmen Sie die Richtungsableitung der Funktion z(x,y) = x + y an der Stelle x =, y = in der Richtung des Winkels α=5! Lösung : a) c < = d < a < = b < f = b) Einheiten nach rechts und Einheiten in y Richtung! c) x =, x = π Lösung : a) z = < = z b) z = j arg(z )= π < arg(z )= Lösung : a) f ( π )= b) f () = 6 Lösung :a) f(x) ist monoton wachsend in D f. b) f(x) ist konvex für x < und konkav für x > Lösung 5: A = Lösung 6: f(x) =x x (x ) Lösung 7: α z (P )= 7,99 Analysis-Klausur vom.5.7, Erreichbare Punktzahl: = Aufgabe : Gegeben ist die gebrochene rationale Funktion f(x) = x x. a) Berechnen Sie evtl. vorhandene Nullstellen und Unstetigkeitsstellen der Funktion sowie ihre Asymptote für x ±! b) Wie verhalten sich die Funktionswerte bei Annäherung (von links und rechts) an die Unstetigkeitsstellen? c) In welchem Teil des Definitionsbereiches ist die Funktion monoton wachsend? d) In welchem Teil des Definitionsbereiches ist die Funktion konvex? e) An welcher Stelle x > ist der Anstieg des Graphen der Funktion um % größer als an der Stelle x =? Aufgabe : (Gehört jetzt in die Algebra)

3 a) Man berechne die komplexe Zahl z = j e π j und gebe das Ergebnis in der + j arithmetischen, in der trigonometrischen und in der Exponentialform an! b) Man berechne z! Aufgabe : Geben Sie für die Funktion y = x x + x 7x + 7x x + 8 den Ansatz für die Partialbruchzerlegung an! Die weitere Rechnung soll nicht erfolgen! Hinweis: x = ist eine doppelte Nullstelle des Nennerpolynoms! Aufgabe : Hat die Funktion f(x) =sin ln ( x + ) + π e x an der Stelle x = ein relatives (lokales) Extremum? a Aufgabe 5: Man berechne 6x cos(x + π )dx mit a = π! Aufgabe 6: (Gehört jetzt in Analysis ) Geben Sie die Gleichung der Tangentialebene an den Graphen der Funktion z(x,y) =(x + y)cos(x + y ) an der Stelle x =π, y = an! Lösung : a) Nullstelle: x N =, Polstelle: x P = Asymptote: y As = b) lim = x + lim =+ c) mon. wachs. in D f. x d) konvex in (,) e) x = Lösung : a) z = e 5 6 πj = cos 5 6 π+jsin 5 6 π = j b) z = + = Lösung : x x + (x ) (x x + ) = A x + B (x ) + Cx + D x x + Lösung : f () =sin π cos π π = sin π π = π Kein rel. Extr.! Lösung 5: sin(x + π ) π = ( ) = Lösung 6: z T (x,y) = πx y + π Analysis-Klausur vom..8, Erreichbare Punktzahl: = Aufgabe : Man gebe je ein Beispiel an für

4 a) eine in R stetige und monoton fallende Funktion, b) eine alternierende Nullfolge, c) eine echt gebrochene rationale Funktion mit einer Polstelle und einer Lücke, d) eine geometrische Folge, bei der jedes Glied um % größer ist als sein Vorgänger, e) eine kubische Funktion, die an der Stelle x = den Anstiegswinkel 6 hat, f) eine quadratische Funktion f(x), für die f(x)dx = gilt! Aufgabe : Man berechne folgende Grenzwerte, falls sie existieren! a) lim n n +( ) n n n 5 n + b) lim x π sinx cosx c) lim x x e x Aufgabe : Man zerlege die Funktion f(x) = x in eine Summe von Partialbrüchen! x Aufgabe : Man linearisiere die Funktion f(x) = x x + an der Stelle x =! Aufgabe 5: Wo hat die Funktion f(x) =x 9x + x 6 im Intervall [,9] ihr absolutes (globales) Maximum? Aufgabe 6: Man berechne die bestimmten Integrale! a) 9 x dx b) dx 6 + x c) Aufgabe 7: Von welcher Funktion f(x) ist die Funktion π x + cosx dx d) tan 5 (x)dx F(x) =ln x x + 5cos x x eine Stammfunktion? Lösung : a) b) c) Lösung : f(x) = x x = (x ) + (x + ) Lösung : y T (x) = x + Lösung 5: glob. Max bei x = 9 Lösung 6: a) x 9 x + 9arcsin x = 9π b) ln x x c) [xtanx + ln cosx ] π/ = π 8 ln d) = ln8 ln = ln

5 Lösung 7: f(x) =F (x) = x 5 sinx x x + 5cos x + x Analysis-Klausur vom.5.8, Erreichbare Punktzahl: = Aufgabe : Man gebe je ein Beispiel an für a) die Funktionsgleichung einer nach unten geöffneten Parabel mit dem Scheitelpunkt S( ;), b) eine Zahlenfolge {a n } mit dem Grenzwert 7, für die a = gilt, c) eine gerade Funktion f(x) mit f() =, d) eine Funktion g(x), deren Graph bei x = einen um % größeren Anstieg hat als der Graph von f(x) = x, e) eine Funktion f(x), für die f(x)dx = gilt! Aufgabe : Wie lautet das Taylorpolynom. Grades für die Funktion f(x) =e x an der Stelle x =? Aufgabe : Für die Funktion f(x) = x x + 6x 6 x x + x ist eine Stammfunktion F(x) zu ermitteln! (Hinweis: Partialbruchzerlegung!) Aufgabe : Warum hat die Funktion f(x) =cos ln ( x + ) + π e x an der Stelle x = kein relatives (lokales) Extremum? Aufgabe 5: Man berechne die Fläche zwischen den Graphen der Funktionen f(x) =lnx und g(x) = x im Intervall [,]! Aufgabe 6: Man berechne den Grenzwert lim tanx x π cosx! Lösung : T (x) = + (x ) +(x ) Lösung : F(x) = dx x + dx (x ) dx = ln x x x + x Lösung : f () = π Kein rel. Extremum! Lösung 5: A = + ln

6 Lösung 6: lim tanx x π cosx = lim sinx x π cosx = lim x π cosx sinx = Analysis-Klausur vom 9..9, Erreichbare Punktzahl: = Aufgabe : a) Man gebe ein Beispiel an für eine trigonometrische Funktion mit der Periode π! b) Gesucht ist das Glied a einer arithmetischen Folge, von der a = 5 und a 9 = 6 bekannt sind. c) Man gebe ein Beispiel an für eine ganze rationale Funktion mit den Nullstellen x =, x = x = und x =! d) Wie lautet die Funktionsgleichung einer Normalparabel mit dem Scheitelpunkt S( ;5)? e) Die Ellipse beschreiben! (x 6) + (y + ) 9 = ist durch eine Parameterdarstellung zu f) Gesucht ist irgendeine Funktion, deren Graph an der Stelle x = den Anstiegswinkel 6 hat. g) Man gebe ein Beispiel an für eine hyperbolische Funktion f(x), für die f(x)dx = gilt! Aufgabe : Welche Art von Unstetigkeit hat die Funktion f(x) = sinx cosx bei x = π? Aufgabe : Wie muss der Ansatz für die Partialbruchzerlegung der Funktion f(x) = x x + 6 gewählt werden? Die Berechnung soll nicht erfolgen. x x 6x + Hinweis: x = ist eine doppelte Nennernullstelle. Aufgabe : Berechne das Taylorpolynom. Grades der Funktion f(x) =cosx an der Stelle x = π! Aufgabe 5: Wo hat der Graph der Funktion f(x) =x x 5x + 5 im Intervall [,] den steilsten Anstieg? Aufgabe 6: Man berechne die bestimmten Integrale! a) x (lnx) dx b) 5 x dx c) x x + sinxdx π d) ( cosx + cos x) Aufgabe 7: Gesucht ist die Länge der Kurve y = 9 ( x) zwischen x = und x =!

7 Lösung : lim x π cosx sinx = Lösung : x x + 6 x x 6x + = Es liegt eine Lücke vor. A x + Lösung : T (x) = x + π + 6 (x π ) Lösung 5: Steilster Anstieg bei x = Lösung 6: a) 5 (lnx) 5 b) 5 c) = 5 ln 5 B (x ) + Cx + D x + x + 8 x x + dx = ln x x + = ln 5 5 x x + sinxdx = Lösung 7: L = + y dx = ( x) d) x sinx + sinx π = π = 8 Analysis-Klausur vom 9.5.9, Erreichbare Punktzahl: = Aufgabe : a) Der Graph der Funktion f(x) = cosx + x wird um Einheiten nach links und um Einheiten nach oben verschoben. Man gebe die Funktionsgleichung für die so entstehende Funktion g(x) an! b) Berechne lim x ± sinx + x! (Begründung!) c) Welche der Funktionen sind gerade und welche sind ungerade: f(x) =x sinx, g(x) =lnx + x, h(x) =e x + e x? d) In Ungarn kostet ein bestimmter Artikel 6 Forint. Darin sind % Mehrwertsteuer enthalten. Wie hoch ist der Nettopreis (also ohne Mwst.)? e) Für die Funktion f(x) = x an! sinx gebe man die. Ableitung und eine Stammfunktion Aufgabe : Die durch die Gleichung x x + y = beschriebene Kurve C ist in Polarkoordinaten r = r(ϕ) anzugeben! Aufgabe : Man skizziere den Graph der Funktion f(x) =x 9x + x 6,

8 nachdem man zuvor die Schnittpunkte mit den Achsen, die relativen Extrema und die Wendepunkte ermittelt hat! Aufgabe : Man zerlege die Funktion f(x) = x + x(x + ) in eine Summe von Partialbrüchen! Aufgabe 5: Man berechne die Bogenlänge der Zykloide x = (t sint), y = ( cost) für eine volle Umdrehung ( t π) des erzeugenden Kreises! Aufgabe 6: Man gebe die Gleichung der Tangente an den Graphen der Funktion y = x 6x + 7 im Punkt (;) an! Lösung : a) g(x) = b) lim x ± sinx + x cos(x + ) +(x + ) + =, dasin( ) <. c) f(x) ist ungerade und h(x) ist gerade. d) 6 :, = 5 HUF e) f (x) = x cosx, F(x) =ln x + cosx Lösung : r(ϕ) = cosϕ Lösung : Schnittpunkt mit der y Achse: (; 6); Nullstellen: x N =, x N = x N = Rel. Max. bei P max (;) Rel. Min. bei P min (;) ; Wendepunkt: x W = y W = y 6 - x - - Lösung : x + x(x + ) = x x + (x + ) + (x + ) π Lösung 5: L = sin t dt = 8cos t π = 6

9 Lösung 6: y T (x) = x + 5 Analysis-Klausur vom.., Erreichbare Punktzahl: = Aufgabe : a) Man gebe ein Beispiel an für eine monoton fallende Folge! b) Gesucht ist das Glied a einer geometrischen Folge, von der a = und a = 5 bekannt sind. c) Man gebe ein Beispiel an für eine echt gebrochene rationale Funktion mit der einzigen Nullstelle x N = und der einzigen Unstetigkeitsstelle x p =! d) Wie lautet die implizite Gleichung eines Kreises mit dem Mittelpunkt M(; 5) und dem Radius R =? e) Der Kreis aus Aufgabe d) ist durch eine Parameterdarstellung zu beschreiben! f) Der Graph der Funktion f(x) =ax hat an der Stelle x = den Anstiegswinkel 6. Man bestimme a! g) Man gebe ein Beispiel an für eine Funktion f(x), für die Aufgabe : Welche Art von Unstetigkeit hat die Funktion f(x) = f(x)dx = sinx cos x f(x)dx gilt! bei x =π? Aufgabe : Man berechne die restlichen Nullstellen der Funktion f(x) =x x x + 7x + 6,wennbereitsx N = bekannt ist! Aufgabe : Für die Funktion f(x) = x x + 6 gebe man den Ansatz für die (x )(x + ) (x + ) Partialbruchzerlegung an! Aufgabe 5: Berechne das lineare Taylorpolynom der Funktion f(x) = x =π! e x cosx an der Stelle Aufgabe 6: Wo hat die Funktion f(x) =x x 9x + 5 im Intervall [,] ihr globales Maximum? Aufgabe 7: Man berechne die bestimmten Integrale! π/ a) π/6 cosx (sinx) dx Aufgabe 8: b) x + x dx c) sin x sin x + x dx Gesucht ist die Länge der Kurve y = ( x) zwischen x = und x =!

10 Lösung : a) n b) a = (q = 5) c) Beispiel: f(x) = x + (x )(x + ) d) (x ) +(y + 5) = 6 e) x = + cost, y = 5 + sint f) a = g) f(x) =x Lösung : lim x π sinx cos x = Es liegt eine Lücke vor. Lösung : x N =, x N =, x N = Lösung : x x + 6 (x )(x + ) (x + ) = A x + B x + + B (x + ) + Cx + D x + Lösung 5: T (x) = e π e π (x π)= e π (x + π) Lösung 6: globales Max. bei x = Lösung 7: a) 5 (sinx) 5 π π 6 = 5 5 b) ln (x + x ) + 8x + c) sin x sin x + x dx = Lösung 8: L = 8 = ln = ln7 ln + 5 Analysis-Klausur vom.., Erreichbare Punktzahl: = Aufgabe : a) Man ordne die folgenden reellen Zahlen der Größe nach und beginne mit der kleinsten! a = ln, b = sin π, c = log 5, d = cosh, e = x lim e x b) Durch welche Verschiebung in x Richtung und in y Richtung geht der Graph der Funktion f(x) =x 8x + aus dem Graphen der Funktion g(x) =x + hervor? c) Berechne alle reellen Lösungen der Gleichung sinx + tanx = im Intervall, π! Aufgabe : Gesucht ist das globale Minimum und das globale Maximum der Funktion y = x x + im Intervall [,]. Aufgabe : Welchen Anstieg hat der Graph der Funktion an der Stelle x?

11 a) f(x) =sinx tanx ; x = π b) f(x) = x + x ; x = Aufgabe : Gegeben ist die gebrochene rationale Funktion f(x) = x x +. a) Wo ist die Funktion monoton wachsend bzw. fallend? b) Wo ist die Funktion konvex bzw. konkav? Aufgabe 5: Welche Fläche schließt der Graph der Funktion f(x) =x x + mit der x Achse im Intervall x ein? (Hinweis: Wurzelwerte müssen nicht ausgerechnet werden!) Aufgabe 6: Stellen Sie die Funktion f(x) = x x als Summe einer ganzen x x + rationalen Funktion und von Partialbrüchen dar! Aufgabe 7: Für folgende Funktionen sind Stammfunktionen anzugeben! a) f(x) =x x b) f(x) = x c) f(x) =x + cosx cos(x) Aufgabe 8: Berechne die bestimmten Integrale! a) 9 x dx b) tan 5 (x)dx c) π x cos(x)dx π Lösung : a) c < = d < a < = b < e = b) Einheiten nach rechts und Einheiten in y Richtung! c) x =,x = π Lösung : globales Min. in P min (; ) und globales Max. in P max (; 5 ) Lösung : a) f ( π )= b) f () = 6 Lösung : a) f(x) ist monoton wachsend in D f. b) f(x) ist konvex für x < und konkav für x > Lösung 5: A = Lösung 6: f(x) =x x (x ) Lösung 7: a) F(x) = x x + x x ln x + x b) F(x) = (xtanx + ln cosx ) c) F(x) = x sinx + x cosx

12 Lösung 8: a) x 9 x + 9arcsin x c) x sinx + x cosx π/ = π = 9π b) tan 5 xdx =,weil...

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge Zweite Fassung Mai 04 Duale Hochschule Baden-Württemberg Stuttgart Campus Horb Testfragen Schreiben Sie das Ergebnis in das dafür vorgesehene

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Zweite Fassung Mai 04 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium sind.

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem.

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem. . Reelle Funktionen. Grundbegriffe Wenn man den Elementen einer Menge D (Definitionsbereich) in eindeutiger Weise die Elemente einer Menge B (Bildbereich; Wertebereich; Wertevorrat) zuordnet, spricht man

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Gruber I Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch mit Tipps und Lösungen

Gruber I Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch mit Tipps und Lösungen Gruber I Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist speziell auf die Anforderungen der Profiloberstufe

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Knarr 07. 09. 009 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn,

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn, Stroppel Musterlösung 0. 09. 03, 80min Aufgabe 7 Punkte) Gegeben seien folgende Potenzreihen: ) n fx) = n xn, gx) = n= + ) n n x+) n. 3 n= a) Bestimmen Sie jeweils den Konvergenzradius und den Entwicklungspunkt.

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Zusammenfassung Abitursstoff Mathematik

Zusammenfassung Abitursstoff Mathematik Zusammenfassung Abitursstoff Mathematik T. Schneider, J. Wirtz, M. Blessing 2015 Inhaltsverzeichnis 1 Analysis 2 1.1 Monotonie............................................ 2 1.2 Globaler Verlauf........................................

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Differenzial- und Integralrechnung II

Differenzial- und Integralrechnung II Differenzial- und Integralrechnung II Rainer Hauser Dezember 011 1 Einleitung 1.1 Ableitung Die Ableitung einer Funktion f: R R, x f(x) ist definiert als f (x) = df(x) dx = d f(x + h) f(x) f(x) = lim dx

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel 5. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz Analysis Trigonometrische Funktionen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Hinweis: Außer bei Aufgabe darf der GTR benutzt werden. Aufgabe : Bestimme ohne GTR: a) sin(405

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Mathematik im Berufskolleg II

Mathematik im Berufskolleg II Bohner Ott Deusch Mathematik im Berufskolleg II Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 6 ISBN 978--8-- Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung

Mehr

8 Blockbild und Hohenlinien

8 Blockbild und Hohenlinien Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Übungsaufgaben mit Lösungen

Übungsaufgaben mit Lösungen Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben mit Lösungen im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 06.07.2015 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

72 INHALTSVERZEICHNIS

72 INHALTSVERZEICHNIS Inhaltsverzeichnis 4 Folgen und Reihen 73 4. Zahlenfolgen......................................... 73 4.. Arithmetische Folgen................................ 74 4..2 Geometrische Folgen................................

Mehr

Abkürzungen & Begriffe

Abkürzungen & Begriffe A Bedeutungen Abkürzungen & Begriffe Abzisse ist ein normaler x-wert [ Ordinate] arcsin, arccos, arctan sind die korrekten Bezeichnungen für: sin -, cos -, tan -. [Die üblichen Bezeichnungen sin -, cos

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Mathematik Abitur 2014 Lösungen

Mathematik Abitur 2014 Lösungen Mathematik Abitur Lösungen Richard Reindl Analysis Aufgabengruppe Teil A. f (x) = lnx (lnx), f (x) = = lnx = = x = e, f(e) = e < x < e : lnx < = f (x) < = f fallend x > e : lnx > = f (x) > = f steigend.

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Übungsaufgaben zur Mathematikvorlesung I für den Studiengang Verfahrenstechnik

Übungsaufgaben zur Mathematikvorlesung I für den Studiengang Verfahrenstechnik Prof. Dr. Reinhard Strehlow Übungsaufgaben zur Mathematikvorlesung I für den Studiengang Verfahrenstechnik Arithmetik:. Vereinfachen Sie die Ausdrücke c) a 5 a + a 4 a + + a + 6a + a + 5a + 6 ( a a b +

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

Mathematik für Chemiker Aufgabenblatt 1 Abgabe bis vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1)

Mathematik für Chemiker Aufgabenblatt 1 Abgabe bis vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1) Hansen / Päschke 19.10.2016 Aufgabenblatt 1 Abgabe bis 26.10.2016 vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1) Aufgabe 1 Vereinfache folgende Ausdrücke: (a) z n+1 z 2n 2 z 2 (b) (

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 7.1 (Herbst 2015, Thema 1, Aufgabe 4) Gegeben sei das Dreieck und die Funktion f : R mit Bestimmen Sie f(

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre

Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Lösungshinweise und Tipps Die Lösungshinweise beziehen sich auf die konkrete Aufgabenstellung, während die von Fall zu Fall beigefügten

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr