Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2"

Transkript

1 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3 Berechnen Sie die Pompeiu-Wirtinger-Ableitungen f z f : C C, z e z f z der Funktion bestimmen Sie alle Punkte z C, in denen die Cauchy-Riemannschen Differentialgleichungen erfüllt sind. Lösung. Zunächst stellen wir fest, dass f(x + iy e (x +y für alle z x + iy C gilt. Wir berechnen damit für z x + iy C f z (z ( f (z i f x y (z ( xe (x +y + iye (x +y (x iye (x +y ze z ebenso f z (z ( f (z + i f x y (z ( xe (x +y iye (x +y (x + iye (x +y ze z. In Aufgabe 5 von Blatt haben wir allgemein gesehen, dass die reell differenzierbare Funktion f genau dann in einem Punkt z C die Cauchy-Riemannschen Differentialgleichungen erfüllt, wenn gilt f (z 0. Nach unseren obigen Rechnungen ist z diese Bedingung aber genau für z 0 erfüllt. Die Funktion f erfüllt also nur in z 0 die Cauchy-Riemannschen Differentialgleichungen. (4 Gegeben sei die Funktion u : C R, x + iy x 3 3xy x +. Bestimmen Sie eine ganze Funktion f mit Re(f u.

2 Lösung. Wir erinnern uns zunächst an die Cauchy-Riemannschen Differentialgleichungen: Demnach ist eine reell differenzierbare Funktion f : C C genau dann holomorph, wenn u : Re(f : C R v : Im(f : C R die Differentialgleichungen u x v y u y v x erfüllen. Für uns bedeutet dies, dass wir zu der gegebenen Funktion u eine Funktion v bestimmen müssen, die gemeinsam das obige Differentialgleichungssystem lösen. Wir berechnen hierzu u x (x, y 3x 3y u (x, y 6xy y bestimmen durch Integration nach y bzw. x die Darstellungen v(x, y 3x y y 3 y + C (x v(x, y 3x y + C (y mit differenzierbaren Funktionen C, C : R R. Ein Vergleich beider Darstellungen liefert 3x y y 3 y + C (x 3x y + C (y somit Es muss also mit einer Konstanten c R daher C (x y 3 + y + C (y. C (x c C (y y 3 y + c v(x, y 3x y y 3 y + c gelten. Zusammenfassend ergibt sich dann f(x + iy u(x, y + iv(x, y oder, in der Variablen z ausgedrückt, (x 3 3xy x + + i(3x y y 3 y + c (x + iy 3 (x + iy + ( + ic f(z z 3 z + ( + ic. (5 Sei G C ein Gebiet mit der Eigenschaft G {z z G}. Weiter sei f O(G gegeben. Zeigen Sie, dass f genau dann die Bedingung f(g R R erfüllt, wenn gilt f(z f(z für alle z G. Lösung. Wir überlegen uns zunächst, dass G R gilt (wobei wir den trivialen Fall G ausschließen wollen: Nehmen wir an, es würde G R gelten, dann wäre {Im(z z G} R\{0} wir hätten aufgr der Stetigkeit der Abbildung Im : C R zwei offene Mengen G + : {z G Im(z > 0} G : {z G Im(z < 0},

3 die klarerweise disjunkt sind zudem G G + G erfüllen. Da die Symmetriebedingung G {z z G} aber impliziert, dass z z eine Bijektion zwischen G + G darstellt, kann weder G + noch G leer sein, weshalb dies im Widerspruch zur Forderung steht, dass G zusammenhängend ist. : Wir nehmen nun an, dass f(g R R gilt. Durch g : G C, z f(z erhalten wir dann eine holomorphe Funktion (wie wir in Aufgabe auf Blatt gezeigt haben, die auf G R mit f übereinstimmt. Der Identitätssatz erzwingt nun, dass f g damit f(z f(z für alle z G gilt. : Nehmen wir umgekehrt an, dass f(z f(z für alle z G erfüllt ist, so können wir für alle z G R nachrechnen, dass f(z f(z f(z damit f(z R gelten muss. Dies zeigt f(g R R. (6 Gibt es eine holomorphe Funktion f : C C mit f(0 f(z e z für alle z C? Lösung. Wir nehmen an, es gäbe eine solche Funktion f. Wegen sup z C f(z sup e z z C wäre f beschränkt damit als ganze Funktion nach dem Satz von Liouville konstant. Ferner gilt lim sup f(iy lim sup e y 0, y y so dass nur f 0 in Frage kommt. Da dies aber mit der Forderung f(0 unvereinbar ist, kann es keine Funktion f geben, die alle Bedingungen der Aufgabenstellung erfüllt. (7 Berechnen Sie die beiden Integrale 0 dx ( + x sin(x + x dx.

4 Lösung. (a Wir betrachten die holomorphe Funktion Wegen f : C\{ i, i} C, z f(z ( + z. ( + z (z i (z + i hat diese in ±i Polstellen zweiter Ordnung. Wir erhalten somit Res(f; i lim z i d ( (z i f(z lim dz z i Definieren wir für R > die beiden Kurven γ,r : [ R, R] C, x x (z + i 3 4i. so gilt einerseits andererseits so dass wir γ,r f(z dz γ,r : [0, π] C, t Re it, R R f(z dz γ,r f(x dx R π 0 π 0 R R ( + x dx f(re it ire it dt πr (R, f(re it dt lim f(z dz R γ,r ( + x dx lim f(z dz 0 R γ,r folgern können. Der Residuensatz besagt nun, dass für die Kette γ R : γ,r + γ,r f(z dz + f(z dz f(z dz πi Res(f; i π γ,r γ,r γ R gelten muss. Wir erhalten somit für R ( + x dx π. Beachten wir nun, dass die Funktion x (+x y-achse ist, so folgt schließlich 0 ( + x dx gerade (also symmetrisch zur ( + x dx π 4.

5 (b Wir betrachten die holomorphe Funktion Diese hat wegen f : C\{ i, i} C, z exp(iz + z. f(z exp(iz + z exp(iz (z i(z + in ±i Polstellen erster Ordnung. Wir bestimmen damit das Residuum Res(f; i lim z i (z if(z lim z i exp(iz z + i Für R > definieren wir nun die Kurven Für diese rechnen wir nach, dass f(z dz γ,r sowie γ,r : [ R, R] C, x x γ 3,R : [ R, R] C, x x + ir γ,r : [0, R] C, y R + iy ei. γ 4,R : [0, R] C, y R + i(r y R R f(x dx R R R f(z dz f( x + ir dx γ 3,R R R f(z dz i f(r + iy dy γ,r 0 R f(z dz i f(r + iy dy γ 4,R 0 exp(ix + x dx R R e R R e y dy e R R 0 R R e (R y dy e R R 0 R gilt, d.h. wir haben exp(ix lim f(z dz R γ,r + x dx lim R f(z dz 0 γ j,r für j, 3, 4. Für die Kette γ R : γ,r + γ,r + γ 3,R + γ 4,R besagt nun der Residuensatz γ R f(z dz πi Res(f; i π e,

6 so dass wir schließlich exp(ix dx lim f(z dz π + x R γ R e erhalten. Durch Übergang zum Real- bzw. Imaginärteil ergibt sich sin(x ( + x dx Im exp(ix + x dx 0 (was auch direkt mit der Beobachtung klar ist, dass der Integrand eine ungerade Funktion ist zudem cos(x ( + x dx Re exp(ix + x dx π e. (8 Bestimmen Sie die Laurententwicklung der durch die Vorschrift f(z : z(z gegebenen Funktion auf den Mengen {z C z > } {z C 0 < z < }. Klassifizieren Sie die Singularitäten von f geben Sie Res(f; Res(f; 0 an. Berechnen Sie ferner das Integral z(z dz, wobei R den im positiven Sinn durchlaufenen Rand des Rechtecks bezeichnet. R R : {x + iy C < x <, < y < } Lösung. Für alle z C mit z > rechnen wir nach, dass f(z z(z (z + (z (z 3 + z (z ( n 3 (z n n0 ( n (z n+3 n0 Ferner erhalten wir für alle z C mit 0 < z < durch (gliedweises Differenzieren von z z n n0

7 die Reihenentwicklung somit ( z (n + z n n0 f(z z(z z (z z (n + z n n0 z + (n + z n. Zur Vollständigkeit bestimmen wir zudem für alle z C mit 0 < z < f(z n0 z(z (z + (z (z ( n (z n n0 ( n (z n. n0 Daran lesen wir ab, dass die Funktion f in der Singularität einen Pol zweiter Ordnung mit dem Residuum Res(f; in der Singularität 0 einen Pol erster Ordnung mit dem Residuum Res(f; 0 besitzt. Die Werte der Residuen können wir mit den aus Aufgabe 3 von Blatt 8 bekannten Rechenregeln bestätigen. In der Tat gilt Res(f; 0 lim zf(z lim z 0 z 0 (z d ( Res(f; lim (z f(z lim z dz z z. Mit Hilfe des Residuensatzes können wir nun den Wert des obigen Integrals bestimmen. Es gilt: z(z dz πi( Res(f; 0 + Res(f; 0. R (9 Gegeben sei die Kurve Berechnen Sie Ind γ (0. γ : [0, π] C, t ( + sin(4t e it.

8 Lösung. Definieren wir die Kurve so können wir unmittelbar Ind γ (0 πi berechnen. Wir setzen zur Abkürzung Durch γ : [0, π] C, t e it, γ z dz πi π r : [0, π] C, t + sin(4t. 0 γ (t γ (t dt H : [0, ] [0, π] C\{0}, (s, t ( ( sr(t + s e it ist dann eine wohldefinierte stetige Funktion gegeben, die die Bedingungen (i H(0, γ H(, γ. (ii H(s, 0 H(s, π für alle s [0, ]. erfüllt, also eine Homotopie zwischen γ γ in C\{0} darstellt. Da die Windungszahl unter Homotopie invariant ist, folgt nun Ind γ (0 Ind γ (0. (0 Bestimmen Sie die Anzahl der Nullstellen des durch p(z 9z 5 + 5z 4 gegebenen Polynoms p auf {z C < z < 5}. Geben Sie auch den Wert des folgenden Integrals an: 45z z 5 + 5z 4 dz D 5 (0 Lösung. Wir betrachten das holomorphe Polynom q, das durch q : C C, z 9z 5 4 gegeben ist. Wir rechnen dann nach, dass für alle z 5 p(z q(z 5 z 5 < z 5 4 9z 5 4 q(z für alle z p(z q(z 5 z 5 < z 5 9z 5 4 q(z erfüllt ist. Nach dem Satz von Rouché besitzen daher p q auf R : {z C } < z < 5

9 gleich viele Nullstellen (mit Vielfachheiten gezählt. Weil q wegen < 5 4 < 4 9 offensichtlich 5 verschiedene Nullstellen auf R hat, nämlich 5 4 ( πik 9 exp, mit k 0,,, 3, 4, 5 hat auch p unter Berücksichtigung von Vielfachheiten genau 5 Nullstellen auf R. Da p nach dem Famentalsatz der Algebra auf C genau 5 Nullstellen (unter Berücksichtigung von Vielfachheiten hat diese bereits alle in R liegen, ist p auf D (0 nullstellenfrei. Insbesondere hat p auch auf D 5 (0 genau 5 Nullstellen. Das Argumentprinzip liefert daher 45z z 5 + 5z 4 dz p (z dz 0πi. p(z D 5 (0 D 5 (0 ( Sei Ω C offen sei u : Ω [0, eine stetige Funktion. Zeigen Sie, dass eine normale Familie ist. F : {f O(Ω z Ω : f(z u(z} Lösung. Sei K eine kompakte Teilmenge von Ω. Dann gilt für alle f F damit f K max f(z max u(z < z K z K sup f F Dies zeigt, dass F lokalbeschränkt ist. f K max u(z <. z K ( Sei (a n n N eine Folge aus C, für die das unendliche Produkt P : ( + a n n konvergiert einen Wert P C\{0} hat. Zeigen Sie, dass lim n a n 0 gelten muss. Gilt dies auch dann noch, wenn wir nicht mehr P 0 fordern? Lösung. Für alle N N setzen wir P N : N n ( + a n. Ist nun N N gegeben, so erhalten wir P N+ P N + a N+ oder äquivalent Also gilt a N+ P N+ P N. ( lim a N lim a PN+ N+ lim P N N N P N P 0.

10 Umgekehrt definiert a n andererseits eine Folge (a n n N, die einerseits lim n a n 0 P ( + a n lim n N n N ( + a n lim N N 0 erfüllt. Die obige Behauptung gilt im Allgemeinen also nicht mehr, wenn wir auf die Forderung P 0 verzichten. (3 Konstruieren Sie eine ganze Funktion, die einfache Nullstellen genau in den Punkten aus { n n N} hat. Lösung. Wir stellen fest, dass die Reihe n ( r n 3 r 3 n n 3 für alle r > 0 konvergiert. Satz. der Vorlesung besagt dann, dass das Produkt f(z : n E ( z n n ( z ( z exp + z n n n auf C kompakt gegen eine ganze Funktion f konvergiert, die einfache Nullstellen genau in den Punkten aus { n n N} hat.

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Klausur zur Vorlesung Funktionentheorie Sommersemester Mittwoch, , 9:00 12:00 Uhr

Klausur zur Vorlesung Funktionentheorie Sommersemester Mittwoch, , 9:00 12:00 Uhr UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Klausur zur Vorlesung Funktionentheorie Sommersemester 2012 Mittwoch, 1.8.2012, 9:00 12:00 Uhr Willkommen

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik ................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie)

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Universität Kassel Fakutät 0/6 PD Dr. Sebastian Petersen 2.09.207 Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Version mit Lösungsskizzen Es können 30 Punkte erreicht

Mehr

Themen Potenzreihen Laurentreihen Residuenkalkül

Themen Potenzreihen Laurentreihen Residuenkalkül 5 Reihenentwicklungen und der Residuensatz Themen Potenzreihen Laurentreihen Residuenkalkül folgen 5.1 Potenzreihen und Taylorreihen Satz Sei und sei f(z) = a n (z z 0 ) n, a n, n=0 R = 1 lim sup n a n,

Mehr

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) = Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt Karlsruher Institut für Technologie KIT) Institut für Analysis Priv.-Do. Dr. P. C. Kunstmann Dipl.-Math. D. Roth SS 0 5.07.0 Aufgabe 60 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden

Mehr

4.4 Die Potentialgleichung

4.4 Die Potentialgleichung Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Funktionentheorie Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 Funktionentheorie - Zusammenfassung Grundlagen Komplexe Funktion f (z)

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

Funktionentheorie Nachholklausur

Funktionentheorie Nachholklausur Prof. Dr. Thomas Vogel Sommersemester 2014 Robert Schmidt 6.10.2014 Funktionentheorie Nachholklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor, PO 2007 2010 2011 Master, PO 2010

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Bernhard Lamel und Gerald Teschl SS27 Bemerkung: Die meisten Beispiel sind aus dem Buch von K. Jähnich, Funktionentheorie, Springer. 1. Beweise folgende Eigenschaften des

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. M. Sc. SS 6 9.9.6 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zur Übungsklausur

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu) ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Michael Kunzinger und Gerald Teschl WS215/16 Bemerkung: Die meisten Beispiele sind aus dem Buch von K. Jänich, Funktionentheorie, Springer. 1. Bereiten Sie eine Kurzpräsentation

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

Musterlösung zur Serie 11

Musterlösung zur Serie 11 D-MATH, D-PHYS Funktionentheorie HS 203 Prof. J. Teichmann Musterlösung zur Serie. (a) Die Identitätsfunktion ϕ : Ω C, ϕ(z) = z erfüllt die Bedingungen von Satz 4.7, weshalb es eine holomorphe Funktion

Mehr

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen 56 Integralsätze im Raum 273 X. Funktionentheorie Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen 58. Cauchy-Formeln und Anwendungen 59. Laurent-Entwicklungen und Residuensatz 274 X.

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion. Die Exponentialfunktion ist exp z Wie in der reellen Analysis werden auch die trigonometrischen Funktionen

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen D-MATH Funktionentheorie HS 208 Prof. Michael Struwe Lösungen Serie 8 Laurentreihen, isolierte Singularitäten, meromorphe Funktionen. Bestimmen Sie die Laurentreihenentwicklung der folgenden Funktionen:

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

9 Ergänzungen zur Funktionentheorie

9 Ergänzungen zur Funktionentheorie 9 Ergänzungen zur Funktionentheorie 9. Herausziehen von Polen und Nullstellen Das folgende Lemma hatten wir an zahlreichen Stellen verwendet, ohne es jemals streng bewiesen zu haben. Lemma 9. Die Funktion

Mehr

Ferienkurs Analysis 3 - Funktionentheorie

Ferienkurs Analysis 3 - Funktionentheorie Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius 12.08.2009 1 Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Mathematik für Ingenieure III Kurs-Nr WS 2007/08

Mathematik für Ingenieure III Kurs-Nr WS 2007/08 Mathematik für Ingenieure III Kurs-Nr. 93 WS 7/8 Kurseinheit 7: Lösungsvorschläge zu den Einsendeaufgaben Aufgabe : Es sollen die Singularitäten deren Art der folgenden Funktionen bestimmt werden. a fz

Mehr

10 Logarithmus- und Potenzfunktion

10 Logarithmus- und Potenzfunktion 4 Logarithmus- und Potenzfunktion. Satz: Sei G einfach zusammenhängend, f H(G) und z G. Dann existiert genau eine Stammfunktion F von f mit F(z ) =. Für z G sei γ z ein beliebiger Integrationsweg in G,

Mehr

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i Übungsblatt 10 zur Funktionentheorie im WiSe 09/10 Prof. Dr. Christoph Schweigert Übungsgruppe 1 Aufgabe 1 1.a) (t) = 1 + exp(it) für 0 t 2 π. (z+1)(z 1) = π 3 4 i Ich betrachte f(z) = 1 (z 1) 3. Als Quotient

Mehr

H.J. Oberle Komplexe Funktionen SoSe Residuensatz

H.J. Oberle Komplexe Funktionen SoSe Residuensatz H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe

Mehr

Konvergenzverbesserung und komplexe Integrale

Konvergenzverbesserung und komplexe Integrale Konvergenzverbesserung und komplee Integrale Konvergenzverbesserung und komplee Integrale von Friedhelm Götze, Jena Vor kurzem erschien ein Artikel über den Residuensatz [] in der, in dem schon einige

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Mathematik III für Physiker. Vorlesung

Mathematik III für Physiker. Vorlesung Mathematik III für Physiker Wintersemester /3 Vorlesung..3 Satz 6 (iduensatz) Sei f holomorph in G := C \ {z,..., z N } und G ein geschlossener, stückweise stetig dierenzierbarer Weg. Dann gilt f(ξ)dξ

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw.

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw. Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 04 3.06.04 Funktionentheorie Lösungsvorschläge zum 6. Übungsblatt Aufgabe (K) a) Zeigen

Mehr

f heißt komplex differenzierbar oder holomorph auf Ω, wenn f in allen z Ω komplex differenzierbar

f heißt komplex differenzierbar oder holomorph auf Ω, wenn f in allen z Ω komplex differenzierbar 2 Komplexe Analysis n diesem Abschnitt wollen wir einen kurzen Ausflug in die komplexe Analysis die sogenannte Funktionentheorie unternehmen, und zwar wollen wir jetzt komplexe Kurvenintegrale betrachten.

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Funktionentheorie - Zusammenfassung

Funktionentheorie - Zusammenfassung Funktionentheorie - Zusammenfassung Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: richard.gebauer@student.kit.edu

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v 1.3 2016/06/22 16:12:36 hk Exp $ 3 Meromorphe Funktionen und der Residuenkalkül 3.3 Hauptteile und Residuen Am Ende der letzten Sitzung hatten wir die Laurententwicklung einer holomorphen

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober 2009 Musterlösung 5 1. Sei f : C C eine holomorphe Funktion, so dass f(z) < z n für ein n N und alle hinreichend grossen z. Dann ist

Mehr

3 Der Riemannsche Abbildungssatz

3 Der Riemannsche Abbildungssatz 24 Biholomorphe Abbildungen 3 Der Riemannsche Abbildungssatz Definition. Sei G C ein Gebiet, G. Eine holomorphe oder meromorphe Funktion f auf U \ { } heißt holomorph (bzw. meromorph) im Unendlichen, falls

Mehr

5. Die Liouville'schen Sätze

5. Die Liouville'schen Sätze 5. Die Liouville'schen Sätze In diesem Vortrag wird eine Unterklasse der meromorphen Funktionen betrachtet, die Menge der elliptischen Funktionen. Diese werden zunächst formal eingeführt, es folgen die

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Komplexe Analysis D-ITET. Serie 3

Komplexe Analysis D-ITET. Serie 3 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 8 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Einschreibung in Echo Wichtig: Bitte schreiben Sie sich auf echo.ethz.ch in die Übungsste,

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) =

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) = Musterlösung Analysis III f. Ing., 09. Oktober 0. Aufgabe 9 Punkte Partialbruchzerlegung: (z )(z +3) z z +3 Um eine im Ringgebiet < z < 5 konvergente Laurent-Reihe zu erhalten, entwickelt man den Term

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Ferienkurs Analysis 3 für Physiker. Holomorphe Funktionen und wichtige Sätze der Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Holomorphe Funktionen und wichtige Sätze der Funktionentheorie Ferienkurs Analysis 3 für Physiker Holomorphe Funktionen und wichtige Sätze der Funktionentheorie Autor: Benjamin Rüth Stand: 7. März 24 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Was ist

Mehr

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 207 Dr. Hanna Peywand Kiani Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Laurent-Reihen, isolierte Singularitäten 6.

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

10. Isolierte Singularitäten

10. Isolierte Singularitäten 0. Isolierte Singularitäten 57 0. Isolierte Singularitäten Der wichtigste Spezialfall von Laurent-Reihen (und in der Tat auch der, den wir ab jetzt nur noch betrachten werden) ist der, bei dem der innere

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Kapitel 22. Einführung in die Funktionentheorie

Kapitel 22. Einführung in die Funktionentheorie Kapitel 22 Einführung in die Funktionentheorie In Kapitel 17 wurde die Differentialrechnung von Funktionen f: R m R n mehrerer Veränderlicher besprochen. Der Ableitungsbegriff war dabei nicht als Verallgemeinerung

Mehr

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen Einleitung 28: Holomorphe Funktionen, Potenzreihen und Laurentreihen 28.1 Einleitung Wir wissen bereits, dass eine holomorphe Funktion f : M C unendlich oft komplex differenzierbar ist. Für jedes z 0 M

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 24 2.5.24 Funktionentheorie Lösungsvorschläge zum 3. Übungsblatt Aufgabe (K) a) Beweisen

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Komplexe Analysis D-ITET. Serie 4

Komplexe Analysis D-ITET. Serie 4 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie 4 ETH Zürich D-MATH Aufgabe 4. Benutzen Sie Ihre Lieblingsprogrammiersprache, um die folgenden Vektorfelder zu

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr