1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) =

Größe: px
Ab Seite anzeigen:

Download "1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) ="

Transkript

1 Musterlösung Analysis III f. Ing., 09. Oktober 0. Aufgabe 9 Punkte Partialbruchzerlegung: (z )(z +3) z z +3 Um eine im Ringgebiet < z < 5 konvergente Laurent-Reihe zu erhalten, entwickelt man den Term im Außengebiet z > und den Term im z z+3 Innengebiet (offene Kreisscheibe) z < 5. Man hat also z + z (z )(z +3) z z +3 (z )+ (z )+5 ( 5 + z ) z 5 ( ) 5 z ( ) n+ (z ) n + ( 5) (n+) (z ) n n n0 ( z 5 Die erste geometrische Reihe konvergiert für <, also für z >. Die z zweite geometrische Reihe konvergiert für z < 5, also für z < 5. Damit 5 gilt die gesamte Reihenwicklung im Kreisring < z < 5. ) In verschiedenen Schreibweisen: (z )(z +3) ( ) n+ (z ) n + n n ( ) n+ (z ) n + ( 5) (n+) (z ) n n0 ( 5) (n+) (z ) n n0 a n (z ) n ( ) n+ für n < 0 mit a n ( n+ 5) für n 0 n

2 . Aufgabe 0 Punkte a) Man wandelt dieses Integral in ein Integral über den Einheitskreis um und benutzt dann den Residuensatz. π 0 dϕ +eiϕ π 0 z z ie iϕ +e iϕ ieiϕ dϕ iz +z dz i z(z +) dz Der Integrand hat 0 und als Polstellen. Ordnung. Nur die Polstelle 0 liegt innerhalb der Integrationskurve. Dann ist π ( ) dϕ i πires 0 +eiϕ z(z +),0 ( ) i πi i πi z + z0 π 3 b) Die Nullstellen des Nenners sind + i und i 3, von denen hat nur die erste einen positiven Imaginärteil. (Die Nullstellen sind beide einfach; der Zählergrad ist 0 und damit um Einheiten kleiner als der Nennergrad, welcher gleich ist) Es gilt ( ) 3 dx πi Res x +x+ x +x+, +i πi πi x+ i 3 π 3 x +i 3

3 3. Aufgabe Punkte a) Mit T(0) i, T() und T( ) i wird die von links nach rechts durchlaufene reelle Achse auf den im positiven Drehsinn durchlaufenen Einheitskreis abgebildet. Die obere Halbebene liegt zur Linken der reellen Achse, das Innere des Einheitskreis liegt gleichfalls links der Peripherie. b) Das Gebiet G liegt außerhalb des Kreises x +(y 5 3 ) 6, damit liegt 9 das Bildgebiet T(G) außerhalb des Bildkreises x +y. Aus Teil a) geht hervor, dass das Gebiet G in das Innere des Kreises z abgebildet wird. Somit wird das Gebiet G genau auf das Gebiet zwischen den Kreisen z und z abgebildet, d.h. T(G) ist ein in 0 zentrierter Kreisring mit Innenradius und Außenradius. y 0,5 0,5 x c) Auf der x-achse soll die gesuchte Lösung den Wert 0 annehmen. Die x-achse wird auf den Einheitskreis abgebildet. Die Ansatzfunktion muss damit für x +ỹ den Wert 0 annehmen: Aln( x +ỹ +B Aln+B B 0. Auf dem Kreis um (0, 3 ) mit Radius 3 soll die gesuchte Lösung den Wert annehmen. Dieser Kreis wird auf den Kreis um den Ursprung mit Radius abgebildet. Die Ansatzfunktion muss damit für x +ỹ den Wert annehmen: Aln( x +ỹ )+B Aln +B. Mit B 0 findet sich A ln ln, also ist ũ( x,ỹ) ln ln( x +ỹ ) die harmonische Lösung im Kreisring. Mit x +ỹ T(x+iy) finden wir u(x,y) ln T(x+iy) ln ln ln i(x+iy)+ x+iy +i y ++ix ln ln x+i(y +) ln ln x +( y) x +(+y)

4 . Aufgabe 0 Punkte a) Komplexe Differenzierbarkeit an einer Stelle bedeutet gleichwertig, dass die Cauchy-Riemann-Differentialgleichungen an dieser Stelle erfüllt werden. Mit z x+iy mit x,y R ist exp z exp(x iy) e x cosy +i( e x siny). Die Cauchy-Riemann-DGL lauten dann x (ex cosy) y ( ex siny), y (ex cosy) x ( ex siny) Die Ableitungen ausgewertet: e x cosy e x cosy, e x siny e x siny. Die Cauchy-Riemann-DGL werden genau dann erfüllt, wenn Imz eine Nullstelle des Sinus und des Cosinus ist. Solche Nullstellen gibt es nicht. Die Funktion exp z ist nirgend in der komplexen Ebene komplex differenzierbar. b) Es ist zunächst exp zdz expz dz z z Die Funktion expz hat genau für z 0 eine isolierte Singularität und ist sonst überall analytisch. Der Residuensatz ergibt also expz dz πires ( expz,0 ). z Das Residuum an der Stelle 0 lässt sich an der Laurent-Reihenentwicklung feststellen: expz k! z k. k0 Der Koeffizient bei z ist das gesuchte Residuum: Somit gilt exp zdz z z Res ( expz,0 )!. expz dz πires ( expz,0 ) πi πi.

5 5. Aufgabe 0 Punkte a) Der Integrand ist analytisch auf der punktierten Ebene C\{0}. Die Funktion ist dort eine Stammfunktion für. z z Der Kreisbogen läuft vom Punkt i zum Punkt. Damit ist C [ z dz ] z ( ) i. z zi i b) Es muss ein verschobener oder gedrehter Logarithmus aufgefunden werden, dessen Schlitz nicht den Kreisbogen C schneidet. Wir legen den Schlitz auf den Strahl vom Punkt 0 durch den Punkt +i. Dann liegt der Kreisbogen C vollständig im Schlitzgebiet C\{z C Rez Imz 0}. (Skizze genügt.) Auf diesem Schlitzgebiet ist ln ( z +i ) eine Stammfunktion für z. (Für jede komplexe Zahl γ mit Reγ > 0 und Imγ > 0 ist die Funktion ln( γ z) eine geeignete Stammfunktion.) Damit gilt )] z [ ( C z dz ln z +i zi ( ln ) ( ln i ) ( ln i ) ( ln +i ) +i +i ln ( +iarg + i ) (ln ( +iarg i )) ( ) ( 3π i i 3π ) 3π i. Das Integral hat den Wert 3π i.

6 6. Aufgabe 0 Punkte a) Wahr. Die Ableitung ist (z +)e z und ist für z 0 von Null verschieden, damit ist die Funktion ze z am Punkt 0 winkeltreu. b) Falsch. α) Mit T(z) az+b hat man a c 0 und b d, somit ad bc 0, cz+d was der Bedingung ad bc 0 widerspricht. β,...) keine Bijektivität; Kreise und Geraden immer nur auf einen Punkt abgebildet;... c) Falsch. Nach der Definition gilt Z[(,0,0,0,0,...)](z) z 0 +0 z +0 z +0 z +0 z Hingegen gilt Z[(0,,0,0,0,...)](z) z. d) Wahr. Es gilt p(it) (+it) t +it. Die Nyquist-Kurve ist ein Teil einer nach links geöffneten Parabel und durchläuft für 0 < t < den ersten und für < t < den zweiten Quadranten und verbleibt dort. Die Anzahl der durchlaufenen Quadranten ist gleich zwei. Nach dem Nyquist-Kriterium ist das Polynom (z + ) also stabil. e) Wahr. In Matrixform hat man d dt ( ) x y ( )( ) x. 0 y Die Systemmatrix ist eine Dreiecksmatrix; damit liest man als doppelten Eigenwert ab. Dieser Eigenwert hat negativen Realteil, damit ist der GGP asymptotisch stabil.

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Funktionentheorie Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 Funktionentheorie - Zusammenfassung Grundlagen Komplexe Funktion f (z)

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Bernhard Lamel und Gerald Teschl SS27 Bemerkung: Die meisten Beispiel sind aus dem Buch von K. Jähnich, Funktionentheorie, Springer. 1. Beweise folgende Eigenschaften des

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie)

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Universität Kassel Fakutät 0/6 PD Dr. Sebastian Petersen 2.09.207 Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Version mit Lösungsskizzen Es können 30 Punkte erreicht

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

1 für n = 2, 3, 4,...,

1 für n = 2, 3, 4,..., Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3. Zeigen Sie, dass die Summe der n-ten Einheitswurzeln für n immer null ergibt und interpretieren Sie dieses Ergebnis für n 3 geometrisch. Aufgabe 3. Zeigen

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion. Die Exponentialfunktion ist exp z Wie in der reellen Analysis werden auch die trigonometrischen Funktionen

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

Aufgaben zu Kapitel 32

Aufgaben zu Kapitel 32 Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Verständnisfragen Aufgabe 3. Zeigen Sie, dass die Summe der n-ten Einheitswurzeln für n immer null ergibt und interpretieren Sie dieses Ergebnis für n 3 geometrisch.

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Michael Kunzinger und Gerald Teschl WS215/16 Bemerkung: Die meisten Beispiele sind aus dem Buch von K. Jänich, Funktionentheorie, Springer. 1. Bereiten Sie eine Kurzpräsentation

Mehr

Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg SoSe 009 Dr. Hanna Peywand Kiani Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Komplexe Zahlenebene, Elementare Funktionen Die

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Konvergenzverbesserung und komplexe Integrale

Konvergenzverbesserung und komplexe Integrale Konvergenzverbesserung und komplee Integrale Konvergenzverbesserung und komplee Integrale von Friedhelm Götze, Jena Vor kurzem erschien ein Artikel über den Residuensatz [] in der, in dem schon einige

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

21 Komplexe Differentiation

21 Komplexe Differentiation 21 Komplexe Differentiation Wir wenden uns nun der (komplexen) Funktionentheorie zu und beschäftigen uns mit komplexwertigen Funktionen einer komplexen Veränderlichen Solche Funktionen lassen sich ebenfalls

Mehr

Komplexe Funktionen: Die komplexe Differenzierbarkeit. z = x +iy C (x,y) R 2. Alternativ wird die Darstellung in Polarkoordinaten verwendet:

Komplexe Funktionen: Die komplexe Differenzierbarkeit. z = x +iy C (x,y) R 2. Alternativ wird die Darstellung in Polarkoordinaten verwendet: Grundbegriffe 25: Funktionentheorie In den folgenden Kapiteln betrachten wir Funktionen f : M C mit M C. Wir nennen solche Funktionen komplexe Funktionen. 25.1 Grundbegriffe Die komplexe Zahl z = x +iy

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik ................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

11. Die Umlaufzahl und der Residuensatz

11. Die Umlaufzahl und der Residuensatz . Die Umlaufzahl und der Residuensatz 63. Die Umlaufzahl und der Residuensatz Wir wollen uns nun noch einmal mit der Berechnung geschlossener Wegintegrale beschäftigen. Sind D C offen, f : D C holomorph

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz Ferienkurs Analysis 3 für Physiker Laurentreihen und Residuensat Autor: Benjamin Rüth Stand:. Mär 204 Inhaltsvereichnis Inhaltsvereichnis Inhaltsvereichnis Singularitäten 3 2 Laurentreihen 4 2. Laurententwicklung...............................

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen Einleitung 28: Holomorphe Funktionen, Potenzreihen und Laurentreihen 28.1 Einleitung Wir wissen bereits, dass eine holomorphe Funktion f : M C unendlich oft komplex differenzierbar ist. Für jedes z 0 M

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

Funktionentheorie Nachholklausur

Funktionentheorie Nachholklausur Prof. Dr. Thomas Vogel Sommersemester 2014 Robert Schmidt 6.10.2014 Funktionentheorie Nachholklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor, PO 2007 2010 2011 Master, PO 2010

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

2 Komplexe Funktionen

2 Komplexe Funktionen 2 Komplexe Funktionen Wir betrachten komplexwertige Funktionen f einer komplexen Variablen. 2.1 Begriff und geometrische Deutung Definition: Eine komplexe Funktion ist eine Funktion, deren Definitions-

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe Dr. Hanna Peywand Kiani Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Elementare Funktionen.Teil stereographische Projektion

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

: C C, z = x + iy z = x iy.

: C C, z = x + iy z = x iy. Komplexe Zahlen (C, +, ): Körper der komplexen Zahlen mit C = R 2, i 2 = 1, R C Unterkörper z, w C, z = x + iy, w = u + iv, (x, y), (u, v) R 2 : z + w = (x + u) + i(y + v), z w = (xu yv) + i(xv + yu).

Mehr

Mathematik für Physiker C

Mathematik für Physiker C Mathematik für Physiker C Sönke Hansen Wintersemester 2015/16 Das Vorlesungsskript wird mit einer zeitlichen Verzögerung erst nach den jeweiligen Vorlesungen aktualisiert. Inhaltsverzeichnis 1 Funktionentheorie

Mehr

Höhere Mathematik Vorlesung 8

Höhere Mathematik Vorlesung 8 Höhere Mathematik Vorlesung 8 Mai 2017 ii In der Mathematik versteht man die Dinge nicht. Man gewöhnt sich nur an sie. John von Neumann 8 Funktionentheorie Komplexe Zahlen Jede komplexe Zahl besitzt eine

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Funktionentheorie - Zusammenfassung

Funktionentheorie - Zusammenfassung Funktionentheorie - Zusammenfassung Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: richard.gebauer@student.kit.edu

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

4 Der globale Cauchysche Integralsatz 56

4 Der globale Cauchysche Integralsatz 56 Inhaltsverzeichnis Vorbemerkung ii 0 Abbildungen f : U lc lc, (x, y) f(x, y) 2 1 Holomorphe Funktionen 10 2 Kurvenintegrale 18 3 Die Stammfunktion 27 3.1 Stammfunktionen und der Cauchysche Integralsatz........

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Laurent-Reihe. Eine in einem Kreisring D : r 1 < z a < r 2 analytische Funktion f kann in eine Laurent-Reihe. c n (z a) n. f (z) =

Laurent-Reihe. Eine in einem Kreisring D : r 1 < z a < r 2 analytische Funktion f kann in eine Laurent-Reihe. c n (z a) n. f (z) = Laurent-Reihe Eine in einem Kreisring D : r < z a < r 2 analytische Funktion f kann in eine Laurent-Reihe f (z) = n= c n (z a) n entwickelt werden, die in D absolut konvergiert. Laurent-Reihe - Laurent-Reihe

Mehr

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Stand: 2.07.2006 - Version:.0. Erhältlich unter http://privat.macrolab.de Diese Formelsammlung

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

10 Logarithmus- und Potenzfunktion

10 Logarithmus- und Potenzfunktion 4 Logarithmus- und Potenzfunktion. Satz: Sei G einfach zusammenhängend, f H(G) und z G. Dann existiert genau eine Stammfunktion F von f mit F(z ) =. Für z G sei γ z ein beliebiger Integrationsweg in G,

Mehr

Elemente der Funktionentheorie

Elemente der Funktionentheorie Mitteilung sd98027, August 2010 1 Elemente der Funktionentheorie Die wichtigsten Sätze und Hilfsmittel für Anwendungen in der physikalischen Feldtheorie Übersicht Einige Sätze der mathematischen Funktionentheorie,

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

Gebiet. Komplexe Funktionen Gebiet 1-1

Gebiet. Komplexe Funktionen Gebiet 1-1 Komplexe Analysis Das Handout ist Bestandteil der Vortragsfolien zur Höheren Mathematik; siehe die Hinweise auf der Internetseite vhm.mathematik.uni-stuttgart.de für Erläuterungen zur Nutzung und zum Copyright.

Mehr

Cauchysche Integralformel

Cauchysche Integralformel Aus der komplexen Differenzierbarkeit folgt somit die Existenz und Stetigkeit von Ableitungen beliebiger Ordnung. auchysche Integralformel 1-1 auchysche Integralformel Für ein beschränktes Gebiet D, das

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung:

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung: Beispiel 1: Wegverformung Berechne: Lösung: [Man sagt: Folglich ist, mit existiert für alle hat eine "Singularität" oder "Pol".] analytisch auf Deswegen kann Wegunabhängigkeit (i.2) genutzt werden, um

Mehr

Skript zur Vorlesung. Funktionentheorie. Gelesen von Prof. Dr. Heinrich Freistühler im Sommersemester 2018

Skript zur Vorlesung. Funktionentheorie. Gelesen von Prof. Dr. Heinrich Freistühler im Sommersemester 2018 Skript zur Vorlesung Funktionentheorie Gelesen von Prof. Dr. Heinrich Freistühler im Sommersemester 2018 Quelle:. Endl, W. Luh: Analysis III. AULA-Verlag 1994. Dank an Herrn Sebastian Sahli, der eine erste

Mehr

TU Dortmund. Residuensatz und Anwendungen

TU Dortmund. Residuensatz und Anwendungen TU Dortmund Fakultät für Mathematik Residuensatz und Anwendungen Timo Putz Matrikelnummer: 127042 Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition der Laurent-Reihe.......................... 1

Mehr

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Komplexe Zahlen. y [a, b] Aus der Vektorrechnung übernehmen wir die Addition und die Skalarmultiplikation. e[a,b] = [ea,eb] Mit e ist [e,0] gemeint.

Komplexe Zahlen. y [a, b] Aus der Vektorrechnung übernehmen wir die Addition und die Skalarmultiplikation. e[a,b] = [ea,eb] Mit e ist [e,0] gemeint. omplexe Zahlen Wir betrachten die Punkte P(a b) der x-ebene, genauer die Elemente [a,b] aus R 2. Sie entsprechen den 2dimensionalen Ortsvektoren und werden durch Pfeile (hier Zeiger genannt) veranschaulicht.

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr